1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
//===- BufferizationToMemRef.cpp - Bufferization to MemRef conversion -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert Bufferization dialect to MemRef
// dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/BufferizationToMemRef/BufferizationToMemRef.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTBUFFERIZATIONTOMEMREF
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// The CloneOpConversion transforms all bufferization clone operations into
/// memref alloc and memref copy operations. In the dynamic-shape case, it also
/// emits additional dim and constant operations to determine the shape. This
/// conversion does not resolve memory leaks if it is used alone.
struct CloneOpConversion : public OpConversionPattern<bufferization::CloneOp> {
using OpConversionPattern<bufferization::CloneOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(bufferization::CloneOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Check for unranked memref types which are currently not supported.
Type type = op.getType();
if (isa<UnrankedMemRefType>(type)) {
return rewriter.notifyMatchFailure(
op, "UnrankedMemRefType is not supported.");
}
MemRefType memrefType = cast<MemRefType>(type);
MemRefLayoutAttrInterface layout;
auto allocType =
MemRefType::get(memrefType.getShape(), memrefType.getElementType(),
layout, memrefType.getMemorySpace());
// Since this implementation always allocates, certain result types of the
// clone op cannot be lowered.
if (!memref::CastOp::areCastCompatible({allocType}, {memrefType}))
return failure();
// Transform a clone operation into alloc + copy operation and pay
// attention to the shape dimensions.
Location loc = op->getLoc();
SmallVector<Value, 4> dynamicOperands;
for (int i = 0; i < memrefType.getRank(); ++i) {
if (!memrefType.isDynamicDim(i))
continue;
Value dim = rewriter.createOrFold<memref::DimOp>(loc, op.getInput(), i);
dynamicOperands.push_back(dim);
}
// Allocate a memref with identity layout.
Value alloc = rewriter.create<memref::AllocOp>(op->getLoc(), allocType,
dynamicOperands);
// Cast the allocation to the specified type if needed.
if (memrefType != allocType)
alloc = rewriter.create<memref::CastOp>(op->getLoc(), memrefType, alloc);
rewriter.replaceOp(op, alloc);
rewriter.create<memref::CopyOp>(loc, op.getInput(), alloc);
return success();
}
};
/// The DeallocOpConversion transforms all bufferization dealloc operations into
/// memref dealloc operations potentially guarded by scf if operations.
/// Additionally, memref extract_aligned_pointer_as_index and arith operations
/// are inserted to compute the guard conditions. We distinguish multiple cases
/// to provide an overall more efficient lowering. In the general case, a helper
/// func is created to avoid quadratic code size explosion (relative to the
/// number of operands of the dealloc operation). For examples of each case,
/// refer to the documentation of the member functions of this class.
class DeallocOpConversion
: public OpConversionPattern<bufferization::DeallocOp> {
/// Lower a simple case avoiding the helper function. Ideally, static analysis
/// can provide enough aliasing information to split the dealloc operations up
/// into this simple case as much as possible before running this pass.
///
/// Example:
/// ```
/// %0 = bufferization.dealloc (%arg0 : memref<2xf32>) if (%arg1)
/// ```
/// is lowered to
/// ```
/// scf.if %arg1 {
/// memref.dealloc %arg0 : memref<2xf32>
/// }
/// %0 = arith.constant false
/// ```
LogicalResult
rewriteOneMemrefNoRetainCase(bufferization::DeallocOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
rewriter.create<scf::IfOp>(op.getLoc(), adaptor.getConditions()[0],
[&](OpBuilder &builder, Location loc) {
builder.create<memref::DeallocOp>(
loc, adaptor.getMemrefs()[0]);
builder.create<scf::YieldOp>(loc);
});
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op,
rewriter.getBoolAttr(false));
return success();
}
/// Lowering that supports all features the dealloc operation has to offer. It
/// computes the base pointer of each memref (as an index), stores them in a
/// new memref and passes it to the helper function generated in
/// 'buildDeallocationHelperFunction'. The two return values are used as
/// condition for the scf if operation containing the memref deallocate and as
/// replacement for the original bufferization dealloc respectively.
///
/// Example:
/// ```
/// %0:2 = bufferization.dealloc (%arg0, %arg1 : memref<2xf32>, memref<5xf32>)
/// if (%arg3, %arg4) retain (%arg2 : memref<1xf32>)
/// ```
/// lowers to (simplified):
/// ```
/// %c0 = arith.constant 0 : index
/// %c1 = arith.constant 1 : index
/// %alloc = memref.alloc() : memref<2xindex>
/// %alloc_0 = memref.alloc() : memref<1xindex>
/// %intptr = memref.extract_aligned_pointer_as_index %arg0
/// memref.store %intptr, %alloc[%c0] : memref<2xindex>
/// %intptr_1 = memref.extract_aligned_pointer_as_index %arg1
/// memref.store %intptr_1, %alloc[%c1] : memref<2xindex>
/// %intptr_2 = memref.extract_aligned_pointer_as_index %arg2
/// memref.store %intptr_2, %alloc_0[%c0] : memref<1xindex>
/// %cast = memref.cast %alloc : memref<2xindex> to memref<?xindex>
/// %cast_4 = memref.cast %alloc_0 : memref<1xindex> to memref<?xindex>
/// %0:2 = call @dealloc_helper(%cast, %cast_4, %c0)
/// %1 = arith.andi %0#0, %arg3 : i1
/// %2 = arith.andi %0#1, %arg3 : i1
/// scf.if %1 {
/// memref.dealloc %arg0 : memref<2xf32>
/// }
/// %3:2 = call @dealloc_helper(%cast, %cast_4, %c1)
/// %4 = arith.andi %3#0, %arg4 : i1
/// %5 = arith.andi %3#1, %arg4 : i1
/// scf.if %4 {
/// memref.dealloc %arg1 : memref<5xf32>
/// }
/// memref.dealloc %alloc : memref<2xindex>
/// memref.dealloc %alloc_0 : memref<1xindex>
/// // replace %0#0 with %2
/// // replace %0#1 with %5
/// ```
LogicalResult rewriteGeneralCase(bufferization::DeallocOp op,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
// Allocate two memrefs holding the base pointer indices of the list of
// memrefs to be deallocated and the ones to be retained. These can then be
// passed to the helper function and the for-loops can iterate over them.
// Without storing them to memrefs, we could not use for-loops but only a
// completely unrolled version of it, potentially leading to code-size
// blow-up.
Value toDeallocMemref = rewriter.create<memref::AllocOp>(
op.getLoc(), MemRefType::get({(int64_t)adaptor.getMemrefs().size()},
rewriter.getIndexType()));
Value toRetainMemref = rewriter.create<memref::AllocOp>(
op.getLoc(), MemRefType::get({(int64_t)adaptor.getRetained().size()},
rewriter.getIndexType()));
auto getConstValue = [&](uint64_t value) -> Value {
return rewriter.create<arith::ConstantOp>(op.getLoc(),
rewriter.getIndexAttr(value));
};
// Extract the base pointers of the memrefs as indices to check for aliasing
// at runtime.
for (auto [i, toDealloc] : llvm::enumerate(adaptor.getMemrefs())) {
Value memrefAsIdx =
rewriter.create<memref::ExtractAlignedPointerAsIndexOp>(op.getLoc(),
toDealloc);
rewriter.create<memref::StoreOp>(op.getLoc(), memrefAsIdx,
toDeallocMemref, getConstValue(i));
}
for (auto [i, toRetain] : llvm::enumerate(adaptor.getRetained())) {
Value memrefAsIdx =
rewriter.create<memref::ExtractAlignedPointerAsIndexOp>(op.getLoc(),
toRetain);
rewriter.create<memref::StoreOp>(op.getLoc(), memrefAsIdx, toRetainMemref,
getConstValue(i));
}
// Cast the allocated memrefs to dynamic shape because we want only one
// helper function no matter how many operands the bufferization.dealloc
// has.
Value castedDeallocMemref = rewriter.create<memref::CastOp>(
op->getLoc(),
MemRefType::get({ShapedType::kDynamic}, rewriter.getIndexType()),
toDeallocMemref);
Value castedRetainMemref = rewriter.create<memref::CastOp>(
op->getLoc(),
MemRefType::get({ShapedType::kDynamic}, rewriter.getIndexType()),
toRetainMemref);
SmallVector<Value> replacements;
for (unsigned i = 0, e = adaptor.getMemrefs().size(); i < e; ++i) {
auto callOp = rewriter.create<func::CallOp>(
op.getLoc(), deallocHelperFunc,
SmallVector<Value>{castedDeallocMemref, castedRetainMemref,
getConstValue(i)});
Value shouldDealloc = rewriter.create<arith::AndIOp>(
op.getLoc(), callOp.getResult(0), adaptor.getConditions()[i]);
Value ownership = rewriter.create<arith::AndIOp>(
op.getLoc(), callOp.getResult(1), adaptor.getConditions()[i]);
replacements.push_back(ownership);
rewriter.create<scf::IfOp>(
op.getLoc(), shouldDealloc, [&](OpBuilder &builder, Location loc) {
builder.create<memref::DeallocOp>(loc, adaptor.getMemrefs()[i]);
builder.create<scf::YieldOp>(loc);
});
}
// Deallocate above allocated memrefs again to avoid memory leaks.
// Deallocation will not be run on code after this stage.
rewriter.create<memref::DeallocOp>(op.getLoc(), toDeallocMemref);
rewriter.create<memref::DeallocOp>(op.getLoc(), toRetainMemref);
rewriter.replaceOp(op, replacements);
return success();
}
public:
DeallocOpConversion(MLIRContext *context, func::FuncOp deallocHelperFunc)
: OpConversionPattern<bufferization::DeallocOp>(context),
deallocHelperFunc(deallocHelperFunc) {}
LogicalResult
matchAndRewrite(bufferization::DeallocOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Lower the trivial case.
if (adaptor.getMemrefs().empty())
return rewriter.eraseOp(op), success();
if (adaptor.getMemrefs().size() == 1 && adaptor.getRetained().empty())
return rewriteOneMemrefNoRetainCase(op, adaptor, rewriter);
return rewriteGeneralCase(op, adaptor, rewriter);
}
/// Build a helper function per compilation unit that can be called at
/// bufferization dealloc sites to determine aliasing and ownership.
///
/// The generated function takes two memrefs of indices and one index value as
/// arguments and returns two boolean values:
/// * The first memref argument A should contain the result of the
/// extract_aligned_pointer_as_index operation applied to the memrefs to be
/// deallocated
/// * The second memref argument B should contain the result of the
/// extract_aligned_pointer_as_index operation applied to the memrefs to be
/// retained
/// * The index argument I represents the currently processed index of
/// memref A and is needed because aliasing with all previously deallocated
/// memrefs has to be checked to avoid double deallocation
/// * The first result indicates whether the memref at position I should be
/// deallocated
/// * The second result provides the updated ownership value corresponding
/// the the memref at position I
///
/// This helper function is supposed to be called for each element in the list
/// of memrefs to be deallocated to determine the deallocation need and new
/// ownership indicator, but does not perform the deallocation itself.
///
/// The first scf for loop in the body computes whether the memref at index I
/// aliases with any memref in the list of retained memrefs.
/// The second loop additionally checks whether one of the previously
/// deallocated memrefs aliases with the currently processed one.
///
/// Generated code:
/// ```
/// func.func @dealloc_helper(%arg0: memref<?xindex>,
/// %arg1: memref<?xindex>,
/// %arg2: index) -> (i1, i1) {
/// %c0 = arith.constant 0 : index
/// %c1 = arith.constant 1 : index
/// %true = arith.constant true
/// %dim = memref.dim %arg1, %c0 : memref<?xindex>
/// %0 = memref.load %arg0[%arg2] : memref<?xindex>
/// %1 = scf.for %i = %c0 to %dim step %c1 iter_args(%arg4 = %true) -> (i1){
/// %4 = memref.load %arg1[%i] : memref<?xindex>
/// %5 = arith.cmpi ne, %4, %0 : index
/// %6 = arith.andi %arg4, %5 : i1
/// scf.yield %6 : i1
/// }
/// %2 = scf.for %i = %c0 to %arg2 step %c1 iter_args(%arg4 = %1) -> (i1) {
/// %4 = memref.load %arg0[%i] : memref<?xindex>
/// %5 = arith.cmpi ne, %4, %0 : index
/// %6 = arith.andi %arg4, %5 : i1
/// scf.yield %6 : i1
/// }
/// %3 = arith.xori %1, %true : i1
/// return %2, %3 : i1, i1
/// }
/// ```
static func::FuncOp
buildDeallocationHelperFunction(OpBuilder &builder, Location loc,
SymbolTable &symbolTable) {
Type idxType = builder.getIndexType();
Type memrefArgType = MemRefType::get({ShapedType::kDynamic}, idxType);
SmallVector<Type> argTypes{memrefArgType, memrefArgType, idxType};
builder.clearInsertionPoint();
// Generate the func operation itself.
auto helperFuncOp = func::FuncOp::create(
loc, "dealloc_helper",
builder.getFunctionType(argTypes,
{builder.getI1Type(), builder.getI1Type()}));
symbolTable.insert(helperFuncOp);
auto &block = helperFuncOp.getFunctionBody().emplaceBlock();
block.addArguments(argTypes, SmallVector<Location>(argTypes.size(), loc));
builder.setInsertionPointToStart(&block);
Value toDeallocMemref = helperFuncOp.getArguments()[0];
Value toRetainMemref = helperFuncOp.getArguments()[1];
Value idxArg = helperFuncOp.getArguments()[2];
// Insert some prerequisites.
Value c0 = builder.create<arith::ConstantOp>(loc, builder.getIndexAttr(0));
Value c1 = builder.create<arith::ConstantOp>(loc, builder.getIndexAttr(1));
Value trueValue =
builder.create<arith::ConstantOp>(loc, builder.getBoolAttr(true));
Value toRetainSize = builder.create<memref::DimOp>(loc, toRetainMemref, c0);
Value toDealloc =
builder.create<memref::LoadOp>(loc, toDeallocMemref, idxArg);
// Build the first for loop that computes aliasing with retained memrefs.
Value noRetainAlias =
builder
.create<scf::ForOp>(
loc, c0, toRetainSize, c1, trueValue,
[&](OpBuilder &builder, Location loc, Value i,
ValueRange iterArgs) {
Value retainValue =
builder.create<memref::LoadOp>(loc, toRetainMemref, i);
Value doesntAlias = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ne, retainValue, toDealloc);
Value yieldValue = builder.create<arith::AndIOp>(
loc, iterArgs[0], doesntAlias);
builder.create<scf::YieldOp>(loc, yieldValue);
})
.getResult(0);
// Build the second for loop that adds aliasing with previously deallocated
// memrefs.
Value noAlias =
builder
.create<scf::ForOp>(
loc, c0, idxArg, c1, noRetainAlias,
[&](OpBuilder &builder, Location loc, Value i,
ValueRange iterArgs) {
Value prevDeallocValue =
builder.create<memref::LoadOp>(loc, toDeallocMemref, i);
Value doesntAlias = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ne, prevDeallocValue,
toDealloc);
Value yieldValue = builder.create<arith::AndIOp>(
loc, iterArgs[0], doesntAlias);
builder.create<scf::YieldOp>(loc, yieldValue);
})
.getResult(0);
Value ownership =
builder.create<arith::XOrIOp>(loc, noRetainAlias, trueValue);
builder.create<func::ReturnOp>(loc, SmallVector<Value>{noAlias, ownership});
return helperFuncOp;
}
private:
func::FuncOp deallocHelperFunc;
};
} // namespace
namespace {
struct BufferizationToMemRefPass
: public impl::ConvertBufferizationToMemRefBase<BufferizationToMemRefPass> {
BufferizationToMemRefPass() = default;
void runOnOperation() override {
ModuleOp module = cast<ModuleOp>(getOperation());
OpBuilder builder =
OpBuilder::atBlockBegin(&module.getBodyRegion().front());
SymbolTable symbolTable(module);
// Build dealloc helper function if there are deallocs.
func::FuncOp helperFuncOp;
getOperation()->walk([&](bufferization::DeallocOp deallocOp) {
if (deallocOp.getMemrefs().size() > 1 ||
!deallocOp.getRetained().empty()) {
helperFuncOp = DeallocOpConversion::buildDeallocationHelperFunction(
builder, getOperation()->getLoc(), symbolTable);
return WalkResult::interrupt();
}
return WalkResult::advance();
});
RewritePatternSet patterns(&getContext());
patterns.add<CloneOpConversion>(patterns.getContext());
patterns.add<DeallocOpConversion>(patterns.getContext(), helperFuncOp);
ConversionTarget target(getContext());
target.addLegalDialect<memref::MemRefDialect, arith::ArithDialect,
scf::SCFDialect, func::FuncDialect>();
target.addIllegalDialect<bufferization::BufferizationDialect>();
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // namespace
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createBufferizationToMemRefPass() {
return std::make_unique<BufferizationToMemRefPass>();
}
|