1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
//===-- ComplexToLibm.cpp - conversion from Complex to libm calls ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/ComplexToLibm/ComplexToLibm.h"
#include "mlir/Dialect/Complex/IR/Complex.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTCOMPLEXTOLIBM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
// Functor to resolve the function name corresponding to the given complex
// result type.
struct ComplexTypeResolver {
std::optional<bool> operator()(Type type) const {
auto complexType = cast<ComplexType>(type);
auto elementType = complexType.getElementType();
if (!isa<Float32Type, Float64Type>(elementType))
return {};
return elementType.getIntOrFloatBitWidth() == 64;
}
};
// Functor to resolve the function name corresponding to the given float result
// type.
struct FloatTypeResolver {
std::optional<bool> operator()(Type type) const {
auto elementType = cast<FloatType>(type);
if (!isa<Float32Type, Float64Type>(elementType))
return {};
return elementType.getIntOrFloatBitWidth() == 64;
}
};
// Pattern to convert scalar complex operations to calls to libm functions.
// Additionally the libm function signatures are declared.
// TypeResolver is a functor returning the libm function name according to the
// expected type double or float.
template <typename Op, typename TypeResolver = ComplexTypeResolver>
struct ScalarOpToLibmCall : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
ScalarOpToLibmCall<Op, TypeResolver>(MLIRContext *context,
StringRef floatFunc,
StringRef doubleFunc,
PatternBenefit benefit)
: OpRewritePattern<Op>(context, benefit), floatFunc(floatFunc),
doubleFunc(doubleFunc){};
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
private:
std::string floatFunc, doubleFunc;
};
} // namespace
template <typename Op, typename TypeResolver>
LogicalResult ScalarOpToLibmCall<Op, TypeResolver>::matchAndRewrite(
Op op, PatternRewriter &rewriter) const {
auto module = SymbolTable::getNearestSymbolTable(op);
auto isDouble = TypeResolver()(op.getType());
if (!isDouble.has_value())
return failure();
auto name = *isDouble ? doubleFunc : floatFunc;
auto opFunc = dyn_cast_or_null<SymbolOpInterface>(
SymbolTable::lookupSymbolIn(module, name));
// Forward declare function if it hasn't already been
if (!opFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&module->getRegion(0).front());
auto opFunctionTy = FunctionType::get(
rewriter.getContext(), op->getOperandTypes(), op->getResultTypes());
opFunc = rewriter.create<func::FuncOp>(rewriter.getUnknownLoc(), name,
opFunctionTy);
opFunc.setPrivate();
}
assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name)));
rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(),
op->getOperands());
return success();
}
void mlir::populateComplexToLibmConversionPatterns(RewritePatternSet &patterns,
PatternBenefit benefit) {
patterns.add<ScalarOpToLibmCall<complex::PowOp>>(patterns.getContext(),
"cpowf", "cpow", benefit);
patterns.add<ScalarOpToLibmCall<complex::SqrtOp>>(patterns.getContext(),
"csqrtf", "csqrt", benefit);
patterns.add<ScalarOpToLibmCall<complex::TanhOp>>(patterns.getContext(),
"ctanhf", "ctanh", benefit);
patterns.add<ScalarOpToLibmCall<complex::CosOp>>(patterns.getContext(),
"ccosf", "ccos", benefit);
patterns.add<ScalarOpToLibmCall<complex::SinOp>>(patterns.getContext(),
"csinf", "csin", benefit);
patterns.add<ScalarOpToLibmCall<complex::ConjOp>>(patterns.getContext(),
"conjf", "conj", benefit);
patterns.add<ScalarOpToLibmCall<complex::LogOp>>(patterns.getContext(),
"clogf", "clog", benefit);
patterns.add<ScalarOpToLibmCall<complex::AbsOp, FloatTypeResolver>>(
patterns.getContext(), "cabsf", "cabs", benefit);
patterns.add<ScalarOpToLibmCall<complex::AngleOp, FloatTypeResolver>>(
patterns.getContext(), "cargf", "carg", benefit);
}
namespace {
struct ConvertComplexToLibmPass
: public impl::ConvertComplexToLibmBase<ConvertComplexToLibmPass> {
void runOnOperation() override;
};
} // namespace
void ConvertComplexToLibmPass::runOnOperation() {
auto module = getOperation();
RewritePatternSet patterns(&getContext());
populateComplexToLibmConversionPatterns(patterns, /*benefit=*/1);
ConversionTarget target(getContext());
target.addLegalDialect<func::FuncDialect>();
target.addIllegalOp<complex::PowOp, complex::SqrtOp, complex::TanhOp,
complex::CosOp, complex::SinOp, complex::ConjOp,
complex::LogOp, complex::AbsOp, complex::AngleOp>();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertComplexToLibmPass() {
return std::make_unique<ConvertComplexToLibmPass>();
}
|