1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780
|
//===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert MLIR Func and builtin dialects
// into the LLVM IR dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributeInterfaces.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormatVariadic.h"
#include <algorithm>
#include <functional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTFUNCTOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define PASS_NAME "convert-func-to-llvm"
static constexpr StringRef varargsAttrName = "func.varargs";
static constexpr StringRef linkageAttrName = "llvm.linkage";
static constexpr StringRef barePtrAttrName = "llvm.bareptr";
/// Return `true` if the `op` should use bare pointer calling convention.
static bool shouldUseBarePtrCallConv(Operation *op,
LLVMTypeConverter *typeConverter) {
return (op && op->hasAttr(barePtrAttrName)) ||
typeConverter->getOptions().useBarePtrCallConv;
}
/// Only retain those attributes that are not constructed by
/// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument
/// attributes.
static void filterFuncAttributes(func::FuncOp func, bool filterArgAndResAttrs,
SmallVectorImpl<NamedAttribute> &result) {
for (const NamedAttribute &attr : func->getAttrs()) {
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
attr.getName() == func.getFunctionTypeAttrName() ||
attr.getName() == linkageAttrName ||
attr.getName() == varargsAttrName ||
attr.getName() == LLVM::LLVMDialect::getReadnoneAttrName() ||
(filterArgAndResAttrs &&
(attr.getName() == func.getArgAttrsAttrName() ||
attr.getName() == func.getResAttrsAttrName())))
continue;
result.push_back(attr);
}
}
/// Adds a an empty set of argument attributes for the newly added argument in
/// front of the existing ones.
static void prependEmptyArgAttr(OpBuilder &builder,
SmallVectorImpl<NamedAttribute> &newFuncAttrs,
func::FuncOp func) {
auto argAttrs = func.getArgAttrs();
// Nothing to do when there were no arg attrs beforehand.
if (!argAttrs)
return;
size_t numArguments = func.getNumArguments();
SmallVector<Attribute> newArgAttrs;
newArgAttrs.reserve(numArguments + 1);
// Insert empty dictionary for the new argument.
newArgAttrs.push_back(builder.getDictionaryAttr({}));
llvm::append_range(newArgAttrs, *argAttrs);
auto newNamedAttr = builder.getNamedAttr(func.getArgAttrsAttrName(),
builder.getArrayAttr(newArgAttrs));
newFuncAttrs.push_back(newNamedAttr);
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. This function can be called from C
/// by passing a pointer to a C struct corresponding to a memref descriptor.
/// Similarly, returned memrefs are passed via pointers to a C struct that is
/// passed as additional argument.
/// Internally, the auxiliary function unpacks the descriptor into individual
/// components and forwards them to `newFuncOp` and forwards the results to
/// the extra arguments.
static void wrapForExternalCallers(OpBuilder &rewriter, Location loc,
LLVMTypeConverter &typeConverter,
func::FuncOp funcOp,
LLVM::LLVMFuncOp newFuncOp) {
auto type = funcOp.getFunctionType();
auto [wrapperFuncType, resultStructType] =
typeConverter.convertFunctionTypeCWrapper(type);
SmallVector<NamedAttribute, 4> attributes;
// Only modify the argument and result attributes when the result is now an
// argument.
if (resultStructType)
prependEmptyArgAttr(rewriter, attributes, funcOp);
filterFuncAttributes(
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
attributes);
auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
wrapperFuncType, LLVM::Linkage::External, /*dsoLocal=*/false,
/*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr, attributes);
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock());
SmallVector<Value, 8> args;
size_t argOffset = resultStructType ? 1 : 0;
for (auto [index, argType] : llvm::enumerate(type.getInputs())) {
Value arg = wrapperFuncOp.getArgument(index + argOffset);
if (auto memrefType = dyn_cast<MemRefType>(argType)) {
Value loaded = rewriter.create<LLVM::LoadOp>(
loc, typeConverter.convertType(memrefType), arg);
MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args);
continue;
}
if (isa<UnrankedMemRefType>(argType)) {
Value loaded = rewriter.create<LLVM::LoadOp>(
loc, typeConverter.convertType(argType), arg);
UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args);
continue;
}
args.push_back(arg);
}
auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args);
if (resultStructType) {
rewriter.create<LLVM::StoreOp>(loc, call.getResult(),
wrapperFuncOp.getArgument(0));
rewriter.create<LLVM::ReturnOp>(loc, ValueRange{});
} else {
rewriter.create<LLVM::ReturnOp>(loc, call.getResults());
}
}
/// Creates an auxiliary function with pointer-to-memref-descriptor-struct
/// arguments instead of unpacked arguments. Creates a body for the (external)
/// `newFuncOp` that allocates a memref descriptor on stack, packs the
/// individual arguments into this descriptor and passes a pointer to it into
/// the auxiliary function. If the result of the function cannot be directly
/// returned, we write it to a special first argument that provides a pointer
/// to a corresponding struct. This auxiliary external function is now
/// compatible with functions defined in C using pointers to C structs
/// corresponding to a memref descriptor.
static void wrapExternalFunction(OpBuilder &builder, Location loc,
LLVMTypeConverter &typeConverter,
func::FuncOp funcOp,
LLVM::LLVMFuncOp newFuncOp) {
OpBuilder::InsertionGuard guard(builder);
auto [wrapperType, resultStructType] =
typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType());
// This conversion can only fail if it could not convert one of the argument
// types. But since it has been applied to a non-wrapper function before, it
// should have failed earlier and not reach this point at all.
assert(wrapperType && "unexpected type conversion failure");
SmallVector<NamedAttribute, 4> attributes;
// Only modify the argument and result attributes when the result is now an
// argument.
if (resultStructType)
prependEmptyArgAttr(builder, attributes, funcOp);
filterFuncAttributes(
funcOp, /*filterArgAndResAttrs=*/static_cast<bool>(resultStructType),
attributes);
// Create the auxiliary function.
auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>(
loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(),
wrapperType, LLVM::Linkage::External, /*dsoLocal=*/false,
/*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr, attributes);
// The wrapper that we synthetize here should only be visible in this module.
newFuncOp.setLinkage(LLVM::Linkage::Private);
builder.setInsertionPointToStart(newFuncOp.addEntryBlock());
// Get a ValueRange containing arguments.
FunctionType type = funcOp.getFunctionType();
SmallVector<Value, 8> args;
args.reserve(type.getNumInputs());
ValueRange wrapperArgsRange(newFuncOp.getArguments());
if (resultStructType) {
// Allocate the struct on the stack and pass the pointer.
Type resultType = cast<LLVM::LLVMFunctionType>(wrapperType).getParamType(0);
Value one = builder.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(builder.getIndexType()),
builder.getIntegerAttr(builder.getIndexType(), 1));
Value result =
builder.create<LLVM::AllocaOp>(loc, resultType, resultStructType, one);
args.push_back(result);
}
// Iterate over the inputs of the original function and pack values into
// memref descriptors if the original type is a memref.
for (Type input : type.getInputs()) {
Value arg;
int numToDrop = 1;
auto memRefType = dyn_cast<MemRefType>(input);
auto unrankedMemRefType = dyn_cast<UnrankedMemRefType>(input);
if (memRefType || unrankedMemRefType) {
numToDrop = memRefType
? MemRefDescriptor::getNumUnpackedValues(memRefType)
: UnrankedMemRefDescriptor::getNumUnpackedValues();
Value packed =
memRefType
? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType,
wrapperArgsRange.take_front(numToDrop))
: UnrankedMemRefDescriptor::pack(
builder, loc, typeConverter, unrankedMemRefType,
wrapperArgsRange.take_front(numToDrop));
auto ptrTy = typeConverter.getPointerType(packed.getType());
Value one = builder.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(builder.getIndexType()),
builder.getIntegerAttr(builder.getIndexType(), 1));
Value allocated = builder.create<LLVM::AllocaOp>(
loc, ptrTy, packed.getType(), one, /*alignment=*/0);
builder.create<LLVM::StoreOp>(loc, packed, allocated);
arg = allocated;
} else {
arg = wrapperArgsRange[0];
}
args.push_back(arg);
wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop);
}
assert(wrapperArgsRange.empty() && "did not map some of the arguments");
auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args);
if (resultStructType) {
Value result =
builder.create<LLVM::LoadOp>(loc, resultStructType, args.front());
builder.create<LLVM::ReturnOp>(loc, result);
} else {
builder.create<LLVM::ReturnOp>(loc, call.getResults());
}
}
/// Modifies the body of the function to construct the `MemRefDescriptor` from
/// the bare pointer calling convention lowering of `memref` types.
static void modifyFuncOpToUseBarePtrCallingConv(
ConversionPatternRewriter &rewriter, Location loc,
LLVMTypeConverter &typeConverter, LLVM::LLVMFuncOp funcOp,
TypeRange oldArgTypes) {
if (funcOp.getBody().empty())
return;
// Promote bare pointers from memref arguments to memref descriptors at the
// beginning of the function so that all the memrefs in the function have a
// uniform representation.
Block *entryBlock = &funcOp.getBody().front();
auto blockArgs = entryBlock->getArguments();
assert(blockArgs.size() == oldArgTypes.size() &&
"The number of arguments and types doesn't match");
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(entryBlock);
for (auto it : llvm::zip(blockArgs, oldArgTypes)) {
BlockArgument arg = std::get<0>(it);
Type argTy = std::get<1>(it);
// Unranked memrefs are not supported in the bare pointer calling
// convention. We should have bailed out before in the presence of
// unranked memrefs.
assert(!isa<UnrankedMemRefType>(argTy) &&
"Unranked memref is not supported");
auto memrefTy = dyn_cast<MemRefType>(argTy);
if (!memrefTy)
continue;
// Replace barePtr with a placeholder (undef), promote barePtr to a ranked
// or unranked memref descriptor and replace placeholder with the last
// instruction of the memref descriptor.
// TODO: The placeholder is needed to avoid replacing barePtr uses in the
// MemRef descriptor instructions. We may want to have a utility in the
// rewriter to properly handle this use case.
Location loc = funcOp.getLoc();
auto placeholder = rewriter.create<LLVM::UndefOp>(
loc, typeConverter.convertType(memrefTy));
rewriter.replaceUsesOfBlockArgument(arg, placeholder);
Value desc = MemRefDescriptor::fromStaticShape(rewriter, loc, typeConverter,
memrefTy, arg);
rewriter.replaceOp(placeholder, {desc});
}
}
namespace {
struct FuncOpConversionBase : public ConvertOpToLLVMPattern<func::FuncOp> {
protected:
using ConvertOpToLLVMPattern<func::FuncOp>::ConvertOpToLLVMPattern;
// Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided
// to this legalization pattern.
LLVM::LLVMFuncOp
convertFuncOpToLLVMFuncOp(func::FuncOp funcOp,
ConversionPatternRewriter &rewriter) const {
// Convert the original function arguments. They are converted using the
// LLVMTypeConverter provided to this legalization pattern.
auto varargsAttr = funcOp->getAttrOfType<BoolAttr>(varargsAttrName);
TypeConverter::SignatureConversion result(funcOp.getNumArguments());
auto llvmType = getTypeConverter()->convertFunctionSignature(
funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(),
shouldUseBarePtrCallConv(funcOp, getTypeConverter()), result);
if (!llvmType)
return nullptr;
// Propagate argument/result attributes to all converted arguments/result
// obtained after converting a given original argument/result.
SmallVector<NamedAttribute, 4> attributes;
filterFuncAttributes(funcOp, /*filterArgAndResAttrs=*/true, attributes);
if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) {
assert(!resAttrDicts.empty() && "expected array to be non-empty");
auto newResAttrDicts =
(funcOp.getNumResults() == 1)
? resAttrDicts
: rewriter.getArrayAttr(rewriter.getDictionaryAttr({}));
attributes.push_back(
rewriter.getNamedAttr(funcOp.getResAttrsAttrName(), newResAttrDicts));
}
if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) {
SmallVector<Attribute, 4> newArgAttrs(
cast<LLVM::LLVMFunctionType>(llvmType).getNumParams());
for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) {
// Some LLVM IR attribute have a type attached to them. During FuncOp ->
// LLVMFuncOp conversion these types may have changed. Account for that
// change by converting attributes' types as well.
SmallVector<NamedAttribute, 4> convertedAttrs;
auto attrsDict = cast<DictionaryAttr>(argAttrDicts[i]);
convertedAttrs.reserve(attrsDict.size());
for (const NamedAttribute &attr : attrsDict) {
const auto convert = [&](const NamedAttribute &attr) {
return TypeAttr::get(getTypeConverter()->convertType(
cast<TypeAttr>(attr.getValue()).getValue()));
};
if (attr.getName().getValue() ==
LLVM::LLVMDialect::getByValAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getByValAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getByRefAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getByRefAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getStructRetAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getStructRetAttrName(), convert(attr)));
} else if (attr.getName().getValue() ==
LLVM::LLVMDialect::getInAllocaAttrName()) {
convertedAttrs.push_back(rewriter.getNamedAttr(
LLVM::LLVMDialect::getInAllocaAttrName(), convert(attr)));
} else {
convertedAttrs.push_back(attr);
}
}
auto mapping = result.getInputMapping(i);
assert(mapping && "unexpected deletion of function argument");
// Only attach the new argument attributes if there is a one-to-one
// mapping from old to new types. Otherwise, attributes might be
// attached to types that they do not support.
if (mapping->size == 1) {
newArgAttrs[mapping->inputNo] =
DictionaryAttr::get(rewriter.getContext(), convertedAttrs);
continue;
}
// TODO: Implement custom handling for types that expand to multiple
// function arguments.
for (size_t j = 0; j < mapping->size; ++j)
newArgAttrs[mapping->inputNo + j] =
DictionaryAttr::get(rewriter.getContext(), {});
}
attributes.push_back(rewriter.getNamedAttr(
funcOp.getArgAttrsAttrName(), rewriter.getArrayAttr(newArgAttrs)));
}
// Create an LLVM function, use external linkage by default until MLIR
// functions have linkage.
LLVM::Linkage linkage = LLVM::Linkage::External;
if (funcOp->hasAttr(linkageAttrName)) {
auto attr =
dyn_cast<mlir::LLVM::LinkageAttr>(funcOp->getAttr(linkageAttrName));
if (!attr) {
funcOp->emitError() << "Contains " << linkageAttrName
<< " attribute not of type LLVM::LinkageAttr";
return nullptr;
}
linkage = attr.getLinkage();
}
// Create a memory effect attribute corresponding to readnone.
StringRef readnoneAttrName = LLVM::LLVMDialect::getReadnoneAttrName();
LLVM::MemoryEffectsAttr memoryAttr = {};
if (funcOp->hasAttr(readnoneAttrName)) {
auto attr = funcOp->getAttrOfType<UnitAttr>(readnoneAttrName);
if (!attr) {
funcOp->emitError() << "Contains " << readnoneAttrName
<< " attribute not of type UnitAttr";
return nullptr;
}
memoryAttr = LLVM::MemoryEffectsAttr::get(rewriter.getContext(),
{LLVM::ModRefInfo::NoModRef,
LLVM::ModRefInfo::NoModRef,
LLVM::ModRefInfo::NoModRef});
}
auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
funcOp.getLoc(), funcOp.getName(), llvmType, linkage,
/*dsoLocal=*/false, /*cconv=*/LLVM::CConv::C, /*comdat=*/nullptr,
attributes);
// If the memory attribute was created, add it to the function.
if (memoryAttr)
newFuncOp.setMemoryAttr(memoryAttr);
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
newFuncOp.end());
if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter,
&result)))
return nullptr;
return newFuncOp;
}
};
/// FuncOp legalization pattern that converts MemRef arguments to pointers to
/// MemRef descriptors (LLVM struct data types) containing all the MemRef type
/// information.
struct FuncOpConversion : public FuncOpConversionBase {
FuncOpConversion(LLVMTypeConverter &converter)
: FuncOpConversionBase(converter) {}
LogicalResult
matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter);
if (!newFuncOp)
return failure();
if (!shouldUseBarePtrCallConv(funcOp, this->getTypeConverter())) {
if (funcOp->getAttrOfType<UnitAttr>(
LLVM::LLVMDialect::getEmitCWrapperAttrName())) {
if (newFuncOp.isVarArg())
return funcOp->emitError("C interface for variadic functions is not "
"supported yet.");
if (newFuncOp.isExternal())
wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(),
funcOp, newFuncOp);
else
wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(),
funcOp, newFuncOp);
}
} else {
modifyFuncOpToUseBarePtrCallingConv(rewriter, funcOp.getLoc(),
*getTypeConverter(), newFuncOp,
funcOp.getFunctionType().getInputs());
}
rewriter.eraseOp(funcOp);
return success();
}
};
struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> {
using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto type = typeConverter->convertType(op.getResult().getType());
if (!type || !LLVM::isCompatibleType(type))
return rewriter.notifyMatchFailure(op, "failed to convert result type");
auto newOp =
rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue());
for (const NamedAttribute &attr : op->getAttrs()) {
if (attr.getName().strref() == "value")
continue;
newOp->setAttr(attr.getName(), attr.getValue());
}
rewriter.replaceOp(op, newOp->getResults());
return success();
}
};
// A CallOp automatically promotes MemRefType to a sequence of alloca/store and
// passes the pointer to the MemRef across function boundaries.
template <typename CallOpType>
struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> {
using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern;
using Super = CallOpInterfaceLowering<CallOpType>;
using Base = ConvertOpToLLVMPattern<CallOpType>;
LogicalResult matchAndRewriteImpl(CallOpType callOp,
typename CallOpType::Adaptor adaptor,
ConversionPatternRewriter &rewriter,
bool useBarePtrCallConv = false) const {
// Pack the result types into a struct.
Type packedResult = nullptr;
unsigned numResults = callOp.getNumResults();
auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes());
if (numResults != 0) {
if (!(packedResult = this->getTypeConverter()->packFunctionResults(
resultTypes, useBarePtrCallConv)))
return failure();
}
if (useBarePtrCallConv) {
for (auto it : callOp->getOperands()) {
Type operandType = it.getType();
if (isa<UnrankedMemRefType>(operandType)) {
// Unranked memref is not supported in the bare pointer calling
// convention.
return failure();
}
}
}
auto promoted = this->getTypeConverter()->promoteOperands(
callOp.getLoc(), /*opOperands=*/callOp->getOperands(),
adaptor.getOperands(), rewriter, useBarePtrCallConv);
auto newOp = rewriter.create<LLVM::CallOp>(
callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(),
promoted, callOp->getAttrs());
SmallVector<Value, 4> results;
if (numResults < 2) {
// If < 2 results, packing did not do anything and we can just return.
results.append(newOp.result_begin(), newOp.result_end());
} else {
// Otherwise, it had been converted to an operation producing a structure.
// Extract individual results from the structure and return them as list.
results.reserve(numResults);
for (unsigned i = 0; i < numResults; ++i) {
results.push_back(rewriter.create<LLVM::ExtractValueOp>(
callOp.getLoc(), newOp->getResult(0), i));
}
}
if (useBarePtrCallConv) {
// For the bare-ptr calling convention, promote memref results to
// descriptors.
assert(results.size() == resultTypes.size() &&
"The number of arguments and types doesn't match");
this->getTypeConverter()->promoteBarePtrsToDescriptors(
rewriter, callOp.getLoc(), resultTypes, results);
} else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(),
resultTypes, results,
/*toDynamic=*/false))) {
return failure();
}
rewriter.replaceOp(callOp, results);
return success();
}
};
struct CallOpLowering : public CallOpInterfaceLowering<func::CallOp> {
using Super::Super;
LogicalResult
matchAndRewrite(func::CallOp callOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
bool useBarePtrCallConv = false;
if (Operation *callee = SymbolTable::lookupNearestSymbolFrom(
callOp, callOp.getCalleeAttr())) {
useBarePtrCallConv = shouldUseBarePtrCallConv(callee, getTypeConverter());
}
return matchAndRewriteImpl(callOp, adaptor, rewriter, useBarePtrCallConv);
}
};
struct CallIndirectOpLowering
: public CallOpInterfaceLowering<func::CallIndirectOp> {
using Super::Super;
LogicalResult
matchAndRewrite(func::CallIndirectOp callIndirectOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
return matchAndRewriteImpl(callIndirectOp, adaptor, rewriter);
}
};
struct UnrealizedConversionCastOpLowering
: public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> {
using ConvertOpToLLVMPattern<
UnrealizedConversionCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
SmallVector<Type> convertedTypes;
if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(),
convertedTypes)) &&
convertedTypes == adaptor.getInputs().getTypes()) {
rewriter.replaceOp(op, adaptor.getInputs());
return success();
}
convertedTypes.clear();
if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(),
convertedTypes)) &&
convertedTypes == op.getOutputs().getType()) {
rewriter.replaceOp(op, adaptor.getInputs());
return success();
}
return failure();
}
};
// Special lowering pattern for `ReturnOps`. Unlike all other operations,
// `ReturnOp` interacts with the function signature and must have as many
// operands as the function has return values. Because in LLVM IR, functions
// can only return 0 or 1 value, we pack multiple values into a structure type.
// Emit `UndefOp` followed by `InsertValueOp`s to create such structure if
// necessary before returning it
struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> {
using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op.getLoc();
unsigned numArguments = op.getNumOperands();
SmallVector<Value, 4> updatedOperands;
auto funcOp = op->getParentOfType<LLVM::LLVMFuncOp>();
bool useBarePtrCallConv =
shouldUseBarePtrCallConv(funcOp, this->getTypeConverter());
if (useBarePtrCallConv) {
// For the bare-ptr calling convention, extract the aligned pointer to
// be returned from the memref descriptor.
for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) {
Type oldTy = std::get<0>(it).getType();
Value newOperand = std::get<1>(it);
if (isa<MemRefType>(oldTy) && getTypeConverter()->canConvertToBarePtr(
cast<BaseMemRefType>(oldTy))) {
MemRefDescriptor memrefDesc(newOperand);
newOperand = memrefDesc.allocatedPtr(rewriter, loc);
} else if (isa<UnrankedMemRefType>(oldTy)) {
// Unranked memref is not supported in the bare pointer calling
// convention.
return failure();
}
updatedOperands.push_back(newOperand);
}
} else {
updatedOperands = llvm::to_vector<4>(adaptor.getOperands());
(void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(),
updatedOperands,
/*toDynamic=*/true);
}
// If ReturnOp has 0 or 1 operand, create it and return immediately.
if (numArguments <= 1) {
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(
op, TypeRange(), updatedOperands, op->getAttrs());
return success();
}
// Otherwise, we need to pack the arguments into an LLVM struct type before
// returning.
auto packedType = getTypeConverter()->packFunctionResults(
op.getOperandTypes(), useBarePtrCallConv);
if (!packedType) {
return rewriter.notifyMatchFailure(op, "could not convert result types");
}
Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType);
for (auto [idx, operand] : llvm::enumerate(updatedOperands)) {
packed = rewriter.create<LLVM::InsertValueOp>(loc, packed, operand, idx);
}
rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed,
op->getAttrs());
return success();
}
};
} // namespace
void mlir::populateFuncToLLVMFuncOpConversionPattern(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<FuncOpConversion>(converter);
}
void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
populateFuncToLLVMFuncOpConversionPattern(converter, patterns);
// clang-format off
patterns.add<
CallIndirectOpLowering,
CallOpLowering,
ConstantOpLowering,
ReturnOpLowering>(converter);
// clang-format on
}
namespace {
/// A pass converting Func operations into the LLVM IR dialect.
struct ConvertFuncToLLVMPass
: public impl::ConvertFuncToLLVMPassBase<ConvertFuncToLLVMPass> {
using Base::Base;
/// Run the dialect converter on the module.
void runOnOperation() override {
if (failed(LLVM::LLVMDialect::verifyDataLayoutString(
this->dataLayout, [this](const Twine &message) {
getOperation().emitError() << message.str();
}))) {
signalPassFailure();
return;
}
ModuleOp m = getOperation();
const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
LowerToLLVMOptions options(&getContext(),
dataLayoutAnalysis.getAtOrAbove(m));
options.useBarePtrCallConv = useBarePtrCallConv;
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
options.dataLayout = llvm::DataLayout(this->dataLayout);
options.useOpaquePointers = useOpaquePointers;
LLVMTypeConverter typeConverter(&getContext(), options,
&dataLayoutAnalysis);
RewritePatternSet patterns(&getContext());
populateFuncToLLVMConversionPatterns(typeConverter, patterns);
// TODO: Remove these in favor of their dedicated conversion passes.
arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns);
LLVMConversionTarget target(getContext());
if (failed(applyPartialConversion(m, target, std::move(patterns))))
signalPassFailure();
m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(),
StringAttr::get(m.getContext(), this->dataLayout));
}
};
} // namespace
|