1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
|
//===- GPUOpsLowering.cpp - GPU FuncOp / ReturnOp lowering ----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "GPUOpsLowering.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/ADT/SmallVectorExtras.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
LogicalResult
GPUFuncOpLowering::matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuFuncOp.getLoc();
SmallVector<LLVM::GlobalOp, 3> workgroupBuffers;
workgroupBuffers.reserve(gpuFuncOp.getNumWorkgroupAttributions());
for (const auto &en : llvm::enumerate(gpuFuncOp.getWorkgroupAttributions())) {
BlockArgument attribution = en.value();
auto type = dyn_cast<MemRefType>(attribution.getType());
assert(type && type.hasStaticShape() && "unexpected type in attribution");
uint64_t numElements = type.getNumElements();
auto elementType =
cast<Type>(typeConverter->convertType(type.getElementType()));
auto arrayType = LLVM::LLVMArrayType::get(elementType, numElements);
std::string name = std::string(
llvm::formatv("__wg_{0}_{1}", gpuFuncOp.getName(), en.index()));
uint64_t alignment = 0;
if (auto alignAttr =
dyn_cast_or_null<IntegerAttr>(gpuFuncOp.getWorkgroupAttributionAttr(
en.index(), LLVM::LLVMDialect::getAlignAttrName())))
alignment = alignAttr.getInt();
auto globalOp = rewriter.create<LLVM::GlobalOp>(
gpuFuncOp.getLoc(), arrayType, /*isConstant=*/false,
LLVM::Linkage::Internal, name, /*value=*/Attribute(), alignment,
workgroupAddrSpace);
workgroupBuffers.push_back(globalOp);
}
// Remap proper input types.
TypeConverter::SignatureConversion signatureConversion(
gpuFuncOp.front().getNumArguments());
Type funcType = getTypeConverter()->convertFunctionSignature(
gpuFuncOp.getFunctionType(), /*isVariadic=*/false,
getTypeConverter()->getOptions().useBarePtrCallConv, signatureConversion);
if (!funcType) {
return rewriter.notifyMatchFailure(gpuFuncOp, [&](Diagnostic &diag) {
diag << "failed to convert function signature type for: "
<< gpuFuncOp.getFunctionType();
});
}
// Create the new function operation. Only copy those attributes that are
// not specific to function modeling.
SmallVector<NamedAttribute, 4> attributes;
for (const auto &attr : gpuFuncOp->getAttrs()) {
if (attr.getName() == SymbolTable::getSymbolAttrName() ||
attr.getName() == gpuFuncOp.getFunctionTypeAttrName() ||
attr.getName() ==
gpu::GPUFuncOp::getNumWorkgroupAttributionsAttrName() ||
attr.getName() == gpuFuncOp.getWorkgroupAttribAttrsAttrName() ||
attr.getName() == gpuFuncOp.getPrivateAttribAttrsAttrName())
continue;
attributes.push_back(attr);
}
// Add a dialect specific kernel attribute in addition to GPU kernel
// attribute. The former is necessary for further translation while the
// latter is expected by gpu.launch_func.
if (gpuFuncOp.isKernel())
attributes.emplace_back(kernelAttributeName, rewriter.getUnitAttr());
auto llvmFuncOp = rewriter.create<LLVM::LLVMFuncOp>(
gpuFuncOp.getLoc(), gpuFuncOp.getName(), funcType,
LLVM::Linkage::External, /*dsoLocal=*/false, /*cconv=*/LLVM::CConv::C,
/*comdat=*/nullptr, attributes);
{
// Insert operations that correspond to converted workgroup and private
// memory attributions to the body of the function. This must operate on
// the original function, before the body region is inlined in the new
// function to maintain the relation between block arguments and the
// parent operation that assigns their semantics.
OpBuilder::InsertionGuard guard(rewriter);
// Rewrite workgroup memory attributions to addresses of global buffers.
rewriter.setInsertionPointToStart(&gpuFuncOp.front());
unsigned numProperArguments = gpuFuncOp.getNumArguments();
for (const auto &en : llvm::enumerate(workgroupBuffers)) {
LLVM::GlobalOp global = en.value();
Value address = rewriter.create<LLVM::AddressOfOp>(
loc,
getTypeConverter()->getPointerType(global.getType(),
global.getAddrSpace()),
global.getSymNameAttr());
auto elementType =
cast<LLVM::LLVMArrayType>(global.getType()).getElementType();
Value memory = rewriter.create<LLVM::GEPOp>(
loc,
getTypeConverter()->getPointerType(elementType,
global.getAddrSpace()),
global.getType(), address, ArrayRef<LLVM::GEPArg>{0, 0});
// Build a memref descriptor pointing to the buffer to plug with the
// existing memref infrastructure. This may use more registers than
// otherwise necessary given that memref sizes are fixed, but we can try
// and canonicalize that away later.
Value attribution = gpuFuncOp.getWorkgroupAttributions()[en.index()];
auto type = cast<MemRefType>(attribution.getType());
auto descr = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), type, memory);
signatureConversion.remapInput(numProperArguments + en.index(), descr);
}
// Rewrite private memory attributions to alloca'ed buffers.
unsigned numWorkgroupAttributions = gpuFuncOp.getNumWorkgroupAttributions();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
for (const auto &en : llvm::enumerate(gpuFuncOp.getPrivateAttributions())) {
Value attribution = en.value();
auto type = cast<MemRefType>(attribution.getType());
assert(type && type.hasStaticShape() && "unexpected type in attribution");
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
Type elementType = typeConverter->convertType(type.getElementType());
auto ptrType =
getTypeConverter()->getPointerType(elementType, allocaAddrSpace);
Value numElements = rewriter.create<LLVM::ConstantOp>(
gpuFuncOp.getLoc(), int64Ty, type.getNumElements());
uint64_t alignment = 0;
if (auto alignAttr =
dyn_cast_or_null<IntegerAttr>(gpuFuncOp.getPrivateAttributionAttr(
en.index(), LLVM::LLVMDialect::getAlignAttrName())))
alignment = alignAttr.getInt();
Value allocated = rewriter.create<LLVM::AllocaOp>(
gpuFuncOp.getLoc(), ptrType, elementType, numElements, alignment);
auto descr = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), type, allocated);
signatureConversion.remapInput(
numProperArguments + numWorkgroupAttributions + en.index(), descr);
}
}
// Move the region to the new function, update the entry block signature.
rewriter.inlineRegionBefore(gpuFuncOp.getBody(), llvmFuncOp.getBody(),
llvmFuncOp.end());
if (failed(rewriter.convertRegionTypes(&llvmFuncOp.getBody(), *typeConverter,
&signatureConversion)))
return failure();
// If bare memref pointers are being used, remap them back to memref
// descriptors This must be done after signature conversion to get rid of the
// unrealized casts.
if (getTypeConverter()->getOptions().useBarePtrCallConv) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&llvmFuncOp.getBody().front());
for (const auto &en : llvm::enumerate(gpuFuncOp.getArgumentTypes())) {
auto memrefTy = dyn_cast<MemRefType>(en.value());
if (!memrefTy)
continue;
assert(memrefTy.hasStaticShape() &&
"Bare pointer convertion used with dynamically-shaped memrefs");
// Use a placeholder when replacing uses of the memref argument to prevent
// circular replacements.
auto remapping = signatureConversion.getInputMapping(en.index());
assert(remapping && remapping->size == 1 &&
"Type converter should produce 1-to-1 mapping for bare memrefs");
BlockArgument newArg =
llvmFuncOp.getBody().getArgument(remapping->inputNo);
auto placeholder = rewriter.create<LLVM::UndefOp>(
loc, getTypeConverter()->convertType(memrefTy));
rewriter.replaceUsesOfBlockArgument(newArg, placeholder);
Value desc = MemRefDescriptor::fromStaticShape(
rewriter, loc, *getTypeConverter(), memrefTy, newArg);
rewriter.replaceOp(placeholder, {desc});
}
}
rewriter.eraseOp(gpuFuncOp);
return success();
}
static SmallString<16> getUniqueFormatGlobalName(gpu::GPUModuleOp moduleOp) {
const char formatStringPrefix[] = "printfFormat_";
// Get a unique global name.
unsigned stringNumber = 0;
SmallString<16> stringConstName;
do {
stringConstName.clear();
(formatStringPrefix + Twine(stringNumber++)).toStringRef(stringConstName);
} while (moduleOp.lookupSymbol(stringConstName));
return stringConstName;
}
template <typename T>
static LLVM::LLVMFuncOp getOrDefineFunction(T &moduleOp, const Location loc,
ConversionPatternRewriter &rewriter,
StringRef name,
LLVM::LLVMFunctionType type) {
LLVM::LLVMFuncOp ret;
if (!(ret = moduleOp.template lookupSymbol<LLVM::LLVMFuncOp>(name))) {
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
ret = rewriter.create<LLVM::LLVMFuncOp>(loc, name, type,
LLVM::Linkage::External);
}
return ret;
}
LogicalResult GPUPrintfOpToHIPLowering::matchAndRewrite(
gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuPrintfOp->getLoc();
mlir::Type llvmI8 = typeConverter->convertType(rewriter.getI8Type());
mlir::Type i8Ptr = getTypeConverter()->getPointerType(llvmI8);
mlir::Type llvmI32 = typeConverter->convertType(rewriter.getI32Type());
mlir::Type llvmI64 = typeConverter->convertType(rewriter.getI64Type());
// Note: this is the GPUModule op, not the ModuleOp that surrounds it
// This ensures that global constants and declarations are placed within
// the device code, not the host code
auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();
auto ocklBegin =
getOrDefineFunction(moduleOp, loc, rewriter, "__ockl_printf_begin",
LLVM::LLVMFunctionType::get(llvmI64, {llvmI64}));
LLVM::LLVMFuncOp ocklAppendArgs;
if (!adaptor.getArgs().empty()) {
ocklAppendArgs = getOrDefineFunction(
moduleOp, loc, rewriter, "__ockl_printf_append_args",
LLVM::LLVMFunctionType::get(
llvmI64, {llvmI64, /*numArgs*/ llvmI32, llvmI64, llvmI64, llvmI64,
llvmI64, llvmI64, llvmI64, llvmI64, /*isLast*/ llvmI32}));
}
auto ocklAppendStringN = getOrDefineFunction(
moduleOp, loc, rewriter, "__ockl_printf_append_string_n",
LLVM::LLVMFunctionType::get(
llvmI64,
{llvmI64, i8Ptr, /*length (bytes)*/ llvmI64, /*isLast*/ llvmI32}));
/// Start the printf hostcall
Value zeroI64 = rewriter.create<LLVM::ConstantOp>(loc, llvmI64, 0);
auto printfBeginCall = rewriter.create<LLVM::CallOp>(loc, ocklBegin, zeroI64);
Value printfDesc = printfBeginCall.getResult();
// Get a unique global name for the format.
SmallString<16> stringConstName = getUniqueFormatGlobalName(moduleOp);
llvm::SmallString<20> formatString(adaptor.getFormat());
formatString.push_back('\0'); // Null terminate for C
size_t formatStringSize = formatString.size_in_bytes();
auto globalType = LLVM::LLVMArrayType::get(llvmI8, formatStringSize);
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
loc, globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString));
}
// Get a pointer to the format string's first element and pass it to printf()
Value globalPtr = rewriter.create<LLVM::AddressOfOp>(
loc,
getTypeConverter()->getPointerType(globalType, global.getAddrSpace()),
global.getSymNameAttr());
Value stringStart = rewriter.create<LLVM::GEPOp>(
loc, i8Ptr, globalType, globalPtr, ArrayRef<LLVM::GEPArg>{0, 0});
Value stringLen =
rewriter.create<LLVM::ConstantOp>(loc, llvmI64, formatStringSize);
Value oneI32 = rewriter.create<LLVM::ConstantOp>(loc, llvmI32, 1);
Value zeroI32 = rewriter.create<LLVM::ConstantOp>(loc, llvmI32, 0);
auto appendFormatCall = rewriter.create<LLVM::CallOp>(
loc, ocklAppendStringN,
ValueRange{printfDesc, stringStart, stringLen,
adaptor.getArgs().empty() ? oneI32 : zeroI32});
printfDesc = appendFormatCall.getResult();
// __ockl_printf_append_args takes 7 values per append call
constexpr size_t argsPerAppend = 7;
size_t nArgs = adaptor.getArgs().size();
for (size_t group = 0; group < nArgs; group += argsPerAppend) {
size_t bound = std::min(group + argsPerAppend, nArgs);
size_t numArgsThisCall = bound - group;
SmallVector<mlir::Value, 2 + argsPerAppend + 1> arguments;
arguments.push_back(printfDesc);
arguments.push_back(
rewriter.create<LLVM::ConstantOp>(loc, llvmI32, numArgsThisCall));
for (size_t i = group; i < bound; ++i) {
Value arg = adaptor.getArgs()[i];
if (auto floatType = dyn_cast<FloatType>(arg.getType())) {
if (!floatType.isF64())
arg = rewriter.create<LLVM::FPExtOp>(
loc, typeConverter->convertType(rewriter.getF64Type()), arg);
arg = rewriter.create<LLVM::BitcastOp>(loc, llvmI64, arg);
}
if (arg.getType().getIntOrFloatBitWidth() != 64)
arg = rewriter.create<LLVM::ZExtOp>(loc, llvmI64, arg);
arguments.push_back(arg);
}
// Pad out to 7 arguments since the hostcall always needs 7
for (size_t extra = numArgsThisCall; extra < argsPerAppend; ++extra) {
arguments.push_back(zeroI64);
}
auto isLast = (bound == nArgs) ? oneI32 : zeroI32;
arguments.push_back(isLast);
auto call = rewriter.create<LLVM::CallOp>(loc, ocklAppendArgs, arguments);
printfDesc = call.getResult();
}
rewriter.eraseOp(gpuPrintfOp);
return success();
}
LogicalResult GPUPrintfOpToLLVMCallLowering::matchAndRewrite(
gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuPrintfOp->getLoc();
mlir::Type llvmI8 = typeConverter->convertType(rewriter.getIntegerType(8));
mlir::Type i8Ptr = getTypeConverter()->getPointerType(llvmI8, addressSpace);
// Note: this is the GPUModule op, not the ModuleOp that surrounds it
// This ensures that global constants and declarations are placed within
// the device code, not the host code
auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();
auto printfType = LLVM::LLVMFunctionType::get(rewriter.getI32Type(), {i8Ptr},
/*isVarArg=*/true);
LLVM::LLVMFuncOp printfDecl =
getOrDefineFunction(moduleOp, loc, rewriter, "printf", printfType);
// Get a unique global name for the format.
SmallString<16> stringConstName = getUniqueFormatGlobalName(moduleOp);
llvm::SmallString<20> formatString(adaptor.getFormat());
formatString.push_back('\0'); // Null terminate for C
auto globalType =
LLVM::LLVMArrayType::get(llvmI8, formatString.size_in_bytes());
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
loc, globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString), /*allignment=*/0, addressSpace);
}
// Get a pointer to the format string's first element
Value globalPtr = rewriter.create<LLVM::AddressOfOp>(
loc,
getTypeConverter()->getPointerType(globalType, global.getAddrSpace()),
global.getSymNameAttr());
Value stringStart = rewriter.create<LLVM::GEPOp>(
loc, i8Ptr, globalType, globalPtr, ArrayRef<LLVM::GEPArg>{0, 0});
// Construct arguments and function call
auto argsRange = adaptor.getArgs();
SmallVector<Value, 4> printfArgs;
printfArgs.reserve(argsRange.size() + 1);
printfArgs.push_back(stringStart);
printfArgs.append(argsRange.begin(), argsRange.end());
rewriter.create<LLVM::CallOp>(loc, printfDecl, printfArgs);
rewriter.eraseOp(gpuPrintfOp);
return success();
}
LogicalResult GPUPrintfOpToVPrintfLowering::matchAndRewrite(
gpu::PrintfOp gpuPrintfOp, gpu::PrintfOpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = gpuPrintfOp->getLoc();
mlir::Type llvmI8 = typeConverter->convertType(rewriter.getIntegerType(8));
mlir::Type i8Ptr = LLVM::LLVMPointerType::get(llvmI8);
// Note: this is the GPUModule op, not the ModuleOp that surrounds it
// This ensures that global constants and declarations are placed within
// the device code, not the host code
auto moduleOp = gpuPrintfOp->getParentOfType<gpu::GPUModuleOp>();
auto vprintfType =
LLVM::LLVMFunctionType::get(rewriter.getI32Type(), {i8Ptr, i8Ptr});
LLVM::LLVMFuncOp vprintfDecl =
getOrDefineFunction(moduleOp, loc, rewriter, "vprintf", vprintfType);
// Get a unique global name for the format.
SmallString<16> stringConstName = getUniqueFormatGlobalName(moduleOp);
llvm::SmallString<20> formatString(adaptor.getFormat());
formatString.push_back('\0'); // Null terminate for C
auto globalType =
LLVM::LLVMArrayType::get(llvmI8, formatString.size_in_bytes());
LLVM::GlobalOp global;
{
ConversionPatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(moduleOp.getBody());
global = rewriter.create<LLVM::GlobalOp>(
loc, globalType,
/*isConstant=*/true, LLVM::Linkage::Internal, stringConstName,
rewriter.getStringAttr(formatString), /*allignment=*/0);
}
// Get a pointer to the format string's first element
Value globalPtr = rewriter.create<LLVM::AddressOfOp>(loc, global);
Value stringStart = rewriter.create<LLVM::GEPOp>(
loc, i8Ptr, globalPtr, ArrayRef<LLVM::GEPArg>{0, 0});
SmallVector<Type> types;
SmallVector<Value> args;
// Promote and pack the arguments into a stack allocation.
for (Value arg : adaptor.getArgs()) {
Type type = arg.getType();
Value promotedArg = arg;
assert(type.isIntOrFloat());
if (isa<FloatType>(type)) {
type = rewriter.getF64Type();
promotedArg = rewriter.create<LLVM::FPExtOp>(loc, type, arg);
}
types.push_back(type);
args.push_back(promotedArg);
}
Type structType =
LLVM::LLVMStructType::getLiteral(gpuPrintfOp.getContext(), types);
Type structPtrType = LLVM::LLVMPointerType::get(structType);
Value one = rewriter.create<LLVM::ConstantOp>(loc, rewriter.getI64Type(),
rewriter.getIndexAttr(1));
Value tempAlloc = rewriter.create<LLVM::AllocaOp>(loc, structPtrType, one,
/*alignment=*/0);
for (auto [index, arg] : llvm::enumerate(args)) {
Value ptr = rewriter.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(arg.getType()), tempAlloc,
ArrayRef<LLVM::GEPArg>{0, index});
rewriter.create<LLVM::StoreOp>(loc, arg, ptr);
}
tempAlloc = rewriter.create<LLVM::BitcastOp>(loc, i8Ptr, tempAlloc);
std::array<Value, 2> printfArgs = {stringStart, tempAlloc};
rewriter.create<LLVM::CallOp>(loc, vprintfDecl, printfArgs);
rewriter.eraseOp(gpuPrintfOp);
return success();
}
/// Unrolls op if it's operating on vectors.
LogicalResult impl::scalarizeVectorOp(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter,
LLVMTypeConverter &converter) {
TypeRange operandTypes(operands);
if (llvm::none_of(operandTypes,
[](Type type) { return isa<VectorType>(type); })) {
return rewriter.notifyMatchFailure(op, "expected vector operand");
}
if (op->getNumRegions() != 0 || op->getNumSuccessors() != 0)
return rewriter.notifyMatchFailure(op, "expected no region/successor");
if (op->getNumResults() != 1)
return rewriter.notifyMatchFailure(op, "expected single result");
VectorType vectorType = dyn_cast<VectorType>(op->getResult(0).getType());
if (!vectorType)
return rewriter.notifyMatchFailure(op, "expected vector result");
Location loc = op->getLoc();
Value result = rewriter.create<LLVM::UndefOp>(loc, vectorType);
Type indexType = converter.convertType(rewriter.getIndexType());
StringAttr name = op->getName().getIdentifier();
Type elementType = vectorType.getElementType();
for (int64_t i = 0; i < vectorType.getNumElements(); ++i) {
Value index = rewriter.create<LLVM::ConstantOp>(loc, indexType, i);
auto extractElement = [&](Value operand) -> Value {
if (!isa<VectorType>(operand.getType()))
return operand;
return rewriter.create<LLVM::ExtractElementOp>(loc, operand, index);
};
auto scalarOperands = llvm::map_to_vector(operands, extractElement);
Operation *scalarOp =
rewriter.create(loc, name, scalarOperands, elementType, op->getAttrs());
result = rewriter.create<LLVM::InsertElementOp>(
loc, result, scalarOp->getResult(0), index);
}
rewriter.replaceOp(op, result);
return success();
}
static IntegerAttr wrapNumericMemorySpace(MLIRContext *ctx, unsigned space) {
return IntegerAttr::get(IntegerType::get(ctx, 64), space);
}
void mlir::populateGpuMemorySpaceAttributeConversions(
TypeConverter &typeConverter, const MemorySpaceMapping &mapping) {
typeConverter.addTypeAttributeConversion(
[mapping](BaseMemRefType type, gpu::AddressSpaceAttr memorySpaceAttr) {
gpu::AddressSpace memorySpace = memorySpaceAttr.getValue();
unsigned addressSpace = mapping(memorySpace);
return wrapNumericMemorySpace(memorySpaceAttr.getContext(),
addressSpace);
});
}
|