1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
|
//===- LowerGpuOpsToNVVMOps.cpp - MLIR GPU to NVVM lowering passes --------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to generate NVVMIR operations for higher-level
// GPU operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "../GPUCommon/GPUOpsLowering.h"
#include "../GPUCommon/IndexIntrinsicsOpLowering.h"
#include "../GPUCommon/OpToFuncCallLowering.h"
#include <optional>
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUOPSTONVVMOPS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Convert gpu dialect shfl mode enum to the equivalent nvvm one.
static NVVM::ShflKind convertShflKind(gpu::ShuffleMode mode) {
switch (mode) {
case gpu::ShuffleMode::XOR:
return NVVM::ShflKind::bfly;
case gpu::ShuffleMode::UP:
return NVVM::ShflKind::up;
case gpu::ShuffleMode::DOWN:
return NVVM::ShflKind::down;
case gpu::ShuffleMode::IDX:
return NVVM::ShflKind::idx;
}
llvm_unreachable("unknown shuffle mode");
}
static std::optional<NVVM::ReduxKind>
convertReduxKind(gpu::AllReduceOperation mode) {
switch (mode) {
case gpu::AllReduceOperation::ADD:
return NVVM::ReduxKind::ADD;
case gpu::AllReduceOperation::AND:
return NVVM::ReduxKind::AND;
case gpu::AllReduceOperation::MAX:
return NVVM::ReduxKind::MAX;
case gpu::AllReduceOperation::MIN:
return NVVM::ReduxKind::MIN;
case gpu::AllReduceOperation::OR:
return NVVM::ReduxKind::OR;
case gpu::AllReduceOperation::XOR:
return NVVM::ReduxKind::XOR;
case gpu::AllReduceOperation::MUL:
return std::nullopt;
}
return std::nullopt;
}
/// This pass lowers gpu.subgroup_reduce op into to the nvvm.redux op. The op
/// must be run by the entire subgroup, otherwise it is undefined behaviour.
struct GPUSubgroupReduceOpLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupReduceOp> {
using ConvertOpToLLVMPattern<gpu::SubgroupReduceOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupReduceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (!op.getUniform())
return rewriter.notifyMatchFailure(
op, "cannot be lowered to redux as the op must be run "
"uniformly (entire subgroup).");
if (!op.getValue().getType().isInteger(32))
return rewriter.notifyMatchFailure(op, "unsupported data type");
std::optional<NVVM::ReduxKind> mode = convertReduxKind(op.getOp());
if (!mode.has_value())
return rewriter.notifyMatchFailure(
op, "unsupported reduction mode for redux");
Location loc = op->getLoc();
auto int32Type = IntegerType::get(rewriter.getContext(), 32);
Value offset = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1);
auto reduxOp = rewriter.create<NVVM::ReduxOp>(loc, int32Type, op.getValue(),
mode.value(), offset);
rewriter.replaceOp(op, reduxOp->getResult(0));
return success();
}
};
struct GPUShuffleOpLowering : public ConvertOpToLLVMPattern<gpu::ShuffleOp> {
using ConvertOpToLLVMPattern<gpu::ShuffleOp>::ConvertOpToLLVMPattern;
/// Lowers a shuffle to the corresponding NVVM op.
///
/// Convert the `width` argument into an activeMask (a bitmask which specifies
/// which threads participate in the shuffle) and a maskAndClamp (specifying
/// the highest lane which participates in the shuffle).
///
/// %one = llvm.constant(1 : i32) : i32
/// %minus_one = llvm.constant(-1 : i32) : i32
/// %thirty_two = llvm.constant(32 : i32) : i32
/// %num_lanes = llvm.sub %thirty_two, %width : i32
/// %active_mask = llvm.lshr %minus_one, %num_lanes : i32
/// %mask_and_clamp = llvm.sub %width, %one : i32
/// %shfl = nvvm.shfl.sync.bfly %active_mask, %value, %offset,
/// %mask_and_clamp : !llvm<"{ float, i1 }">
/// %shfl_value = llvm.extractvalue %shfl[0] :
/// !llvm<"{ float, i1 }">
/// %shfl_pred = llvm.extractvalue %shfl[1] :
/// !llvm<"{ float, i1 }">
LogicalResult
matchAndRewrite(gpu::ShuffleOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Location loc = op->getLoc();
auto valueTy = adaptor.getValue().getType();
auto int32Type = IntegerType::get(rewriter.getContext(), 32);
auto predTy = IntegerType::get(rewriter.getContext(), 1);
auto resultTy = LLVM::LLVMStructType::getLiteral(rewriter.getContext(),
{valueTy, predTy});
Value one = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 1);
Value minusOne = rewriter.create<LLVM::ConstantOp>(loc, int32Type, -1);
Value thirtyTwo = rewriter.create<LLVM::ConstantOp>(loc, int32Type, 32);
Value numLeadInactiveLane = rewriter.create<LLVM::SubOp>(
loc, int32Type, thirtyTwo, adaptor.getWidth());
// Bit mask of active lanes: `(-1) >> (32 - activeWidth)`.
Value activeMask = rewriter.create<LLVM::LShrOp>(loc, int32Type, minusOne,
numLeadInactiveLane);
Value maskAndClamp;
if (op.getMode() == gpu::ShuffleMode::UP) {
// Clamp lane: `32 - activeWidth`
maskAndClamp = numLeadInactiveLane;
} else {
// Clamp lane: `activeWidth - 1`
maskAndClamp =
rewriter.create<LLVM::SubOp>(loc, int32Type, adaptor.getWidth(), one);
}
auto returnValueAndIsValidAttr = rewriter.getUnitAttr();
Value shfl = rewriter.create<NVVM::ShflOp>(
loc, resultTy, activeMask, adaptor.getValue(), adaptor.getOffset(),
maskAndClamp, convertShflKind(op.getMode()), returnValueAndIsValidAttr);
Value shflValue = rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 0);
Value isActiveSrcLane = rewriter.create<LLVM::ExtractValueOp>(loc, shfl, 1);
rewriter.replaceOp(op, {shflValue, isActiveSrcLane});
return success();
}
};
struct GPULaneIdOpToNVVM : ConvertOpToLLVMPattern<gpu::LaneIdOp> {
using ConvertOpToLLVMPattern<gpu::LaneIdOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::LaneIdOp op, gpu::LaneIdOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = op->getLoc();
MLIRContext *context = rewriter.getContext();
Value newOp = rewriter.create<NVVM::LaneIdOp>(loc, rewriter.getI32Type());
// Truncate or extend the result depending on the index bitwidth specified
// by the LLVMTypeConverter options.
const unsigned indexBitwidth = getTypeConverter()->getIndexTypeBitwidth();
if (indexBitwidth > 32) {
newOp = rewriter.create<LLVM::SExtOp>(
loc, IntegerType::get(context, indexBitwidth), newOp);
} else if (indexBitwidth < 32) {
newOp = rewriter.create<LLVM::TruncOp>(
loc, IntegerType::get(context, indexBitwidth), newOp);
}
rewriter.replaceOp(op, {newOp});
return success();
}
};
/// Import the GPU Ops to NVVM Patterns.
#include "GPUToNVVM.cpp.inc"
/// A pass that replaces all occurrences of GPU device operations with their
/// corresponding NVVM equivalent.
///
/// This pass only handles device code and is not meant to be run on GPU host
/// code.
struct LowerGpuOpsToNVVMOpsPass
: public impl::ConvertGpuOpsToNVVMOpsBase<LowerGpuOpsToNVVMOpsPass> {
LowerGpuOpsToNVVMOpsPass() = default;
LowerGpuOpsToNVVMOpsPass(unsigned indexBitwidth, bool hasRedux = false) {
this->indexBitwidth = indexBitwidth;
this->hasRedux = hasRedux;
}
void runOnOperation() override {
gpu::GPUModuleOp m = getOperation();
// Request C wrapper emission.
for (auto func : m.getOps<func::FuncOp>()) {
func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
UnitAttr::get(&getContext()));
}
// Customize the bitwidth used for the device side index computations.
LowerToLLVMOptions options(
m.getContext(),
DataLayout(cast<DataLayoutOpInterface>(m.getOperation())));
if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
options.overrideIndexBitwidth(indexBitwidth);
options.useOpaquePointers = useOpaquePointers;
options.useBarePtrCallConv = useBarePtrCallConv;
// Apply in-dialect lowering. In-dialect lowering will replace
// ops which need to be lowered further, which is not supported by a
// single conversion pass.
{
RewritePatternSet patterns(m.getContext());
populateGpuRewritePatterns(patterns);
if (failed(applyPatternsAndFoldGreedily(m, std::move(patterns))))
return signalPassFailure();
}
LLVMTypeConverter converter(m.getContext(), options);
// NVVM uses alloca in the default address space to represent private
// memory allocations, so drop private annotations. NVVM uses address
// space 3 for shared memory. NVVM uses the default address space to
// represent global memory.
populateGpuMemorySpaceAttributeConversions(
converter, [](gpu::AddressSpace space) -> unsigned {
switch (space) {
case gpu::AddressSpace::Global:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kGlobalMemorySpace);
case gpu::AddressSpace::Workgroup:
return static_cast<unsigned>(
NVVM::NVVMMemorySpace::kSharedMemorySpace);
case gpu::AddressSpace::Private:
return 0;
}
llvm_unreachable("unknown address space enum value");
return 0;
});
// Lowering for MMAMatrixType.
converter.addConversion([&](gpu::MMAMatrixType type) -> Type {
return convertMMAToLLVMType(type);
});
RewritePatternSet llvmPatterns(m.getContext());
arith::populateArithToLLVMConversionPatterns(converter, llvmPatterns);
cf::populateControlFlowToLLVMConversionPatterns(converter, llvmPatterns);
populateFuncToLLVMConversionPatterns(converter, llvmPatterns);
populateFinalizeMemRefToLLVMConversionPatterns(converter, llvmPatterns);
populateGpuToNVVMConversionPatterns(converter, llvmPatterns);
populateGpuWMMAToNVVMConversionPatterns(converter, llvmPatterns);
if (this->hasRedux)
populateGpuSubgroupReduceOpLoweringPattern(converter, llvmPatterns);
LLVMConversionTarget target(getContext());
configureGpuToNVVMConversionLegality(target);
if (failed(applyPartialConversion(m, target, std::move(llvmPatterns))))
signalPassFailure();
}
};
} // namespace
void mlir::configureGpuToNVVMConversionLegality(ConversionTarget &target) {
target.addIllegalOp<func::FuncOp>();
target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
target.addIllegalDialect<gpu::GPUDialect>();
target.addIllegalOp<LLVM::CosOp, LLVM::ExpOp, LLVM::Exp2Op, LLVM::FAbsOp,
LLVM::FCeilOp, LLVM::FFloorOp, LLVM::LogOp, LLVM::Log10Op,
LLVM::Log2Op, LLVM::PowOp, LLVM::SinOp, LLVM::SqrtOp>();
// TODO: Remove once we support replacing non-root ops.
target.addLegalOp<gpu::YieldOp, gpu::GPUModuleOp, gpu::ModuleEndOp>();
}
template <typename OpTy>
static void populateOpPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns, StringRef f32Func,
StringRef f64Func) {
patterns.add<ScalarizeVectorOpLowering<OpTy>>(converter);
patterns.add<OpToFuncCallLowering<OpTy>>(converter, f32Func, f64Func);
}
void mlir::populateGpuSubgroupReduceOpLoweringPattern(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<GPUSubgroupReduceOpLowering>(converter);
}
void mlir::populateGpuToNVVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns) {
populateWithGenerated(patterns);
patterns.add<GPUPrintfOpToVPrintfLowering>(converter);
patterns
.add<GPUIndexIntrinsicOpLowering<gpu::ThreadIdOp, NVVM::ThreadIdXOp,
NVVM::ThreadIdYOp, NVVM::ThreadIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockDimOp, NVVM::BlockDimXOp,
NVVM::BlockDimYOp, NVVM::BlockDimZOp>,
GPUIndexIntrinsicOpLowering<gpu::BlockIdOp, NVVM::BlockIdXOp,
NVVM::BlockIdYOp, NVVM::BlockIdZOp>,
GPUIndexIntrinsicOpLowering<gpu::GridDimOp, NVVM::GridDimXOp,
NVVM::GridDimYOp, NVVM::GridDimZOp>,
GPULaneIdOpToNVVM, GPUShuffleOpLowering, GPUReturnOpLowering>(
converter);
// Explicitly drop memory space when lowering private memory
// attributions since NVVM models it as `alloca`s in the default
// memory space and does not support `alloca`s with addrspace(5).
patterns.add<GPUFuncOpLowering>(
converter, /*allocaAddrSpace=*/0,
/*workgroupAddrSpace=*/
static_cast<unsigned>(NVVM::NVVMMemorySpace::kSharedMemorySpace),
StringAttr::get(&converter.getContext(),
NVVM::NVVMDialect::getKernelFuncAttrName()));
populateOpPatterns<math::AbsFOp>(converter, patterns, "__nv_fabsf",
"__nv_fabs");
populateOpPatterns<math::AtanOp>(converter, patterns, "__nv_atanf",
"__nv_atan");
populateOpPatterns<math::Atan2Op>(converter, patterns, "__nv_atan2f",
"__nv_atan2");
populateOpPatterns<math::CbrtOp>(converter, patterns, "__nv_cbrtf",
"__nv_cbrt");
populateOpPatterns<math::CeilOp>(converter, patterns, "__nv_ceilf",
"__nv_ceil");
populateOpPatterns<math::CosOp>(converter, patterns, "__nv_cosf", "__nv_cos");
populateOpPatterns<math::ExpOp>(converter, patterns, "__nv_expf", "__nv_exp");
populateOpPatterns<math::Exp2Op>(converter, patterns, "__nv_exp2f",
"__nv_exp2");
populateOpPatterns<math::ExpM1Op>(converter, patterns, "__nv_expm1f",
"__nv_expm1");
populateOpPatterns<math::FloorOp>(converter, patterns, "__nv_floorf",
"__nv_floor");
populateOpPatterns<math::LogOp>(converter, patterns, "__nv_logf", "__nv_log");
populateOpPatterns<math::Log1pOp>(converter, patterns, "__nv_log1pf",
"__nv_log1p");
populateOpPatterns<math::Log10Op>(converter, patterns, "__nv_log10f",
"__nv_log10");
populateOpPatterns<math::Log2Op>(converter, patterns, "__nv_log2f",
"__nv_log2");
populateOpPatterns<math::PowFOp>(converter, patterns, "__nv_powf",
"__nv_pow");
populateOpPatterns<math::RsqrtOp>(converter, patterns, "__nv_rsqrtf",
"__nv_rsqrt");
populateOpPatterns<math::SinOp>(converter, patterns, "__nv_sinf", "__nv_sin");
populateOpPatterns<math::SqrtOp>(converter, patterns, "__nv_sqrtf",
"__nv_sqrt");
populateOpPatterns<math::TanhOp>(converter, patterns, "__nv_tanhf",
"__nv_tanh");
populateOpPatterns<math::TanOp>(converter, patterns, "__nv_tanf", "__nv_tan");
}
std::unique_ptr<OperationPass<gpu::GPUModuleOp>>
mlir::createLowerGpuOpsToNVVMOpsPass(unsigned indexBitwidth, bool hasRedux) {
return std::make_unique<LowerGpuOpsToNVVMOpsPass>(indexBitwidth, hasRedux);
}
|