1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
|
//===------ WmmaOpsToNVVM.cpp - WMMA LD/ST/Compute to NVVM lowering -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions of patterns to lower GPU Subgroup MMA ops to
// NVVM Dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToNVVM/GPUToNVVMPass.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/IR/TypeUtilities.h"
using namespace mlir;
namespace {
/// Checks if all the operands of the op being lowered are of LLVM Types. The
/// types are expected to be converted by the `LLVMTypeConverter` before the op
/// is actually lowered. If the type of an operands is not already converted it
/// hints a missing typeConversion and failure is returned in that case.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
})) {
return rewriter.notifyMatchFailure(
op, "cannot convert if operands aren't of LLVM type.");
}
return success();
}
/// Error string to emit when an unimplemented WMMA variant is encountered.
static constexpr StringRef kInvalidCaseStr = "Unsupported WMMA variant.";
static NVVM::MMAFrag convertOperand(StringRef operandName) {
if (operandName.equals("AOp"))
return NVVM::MMAFrag::a;
if (operandName.equals("BOp"))
return NVVM::MMAFrag::b;
if (operandName.equals("COp"))
return NVVM::MMAFrag::c;
llvm_unreachable("Unknown operand name");
}
static NVVM::MMATypes getElementType(gpu::MMAMatrixType type) {
if (type.getElementType().isF16())
return NVVM::MMATypes::f16;
if (type.getElementType().isF32())
return type.getOperand().equals("COp") ? NVVM::MMATypes::f32
: NVVM::MMATypes::tf32;
if (type.getElementType().isSignedInteger(8))
return NVVM::MMATypes::s8;
if (type.getElementType().isUnsignedInteger(8))
return NVVM::MMATypes::u8;
// Accumulator type is signless and implies signed.
if (type.getElementType().isInteger(32))
return NVVM::MMATypes::s32;
llvm_unreachable("Unsupported type");
}
/// This class implements the conversion of GPU MMA loadOp to wmma.load op
/// in the NVVM dialect. The conversion not only emits the NVVM op but also
/// emits code that is necessary to store the data in the destination memref
/// after it has been loaded.
struct WmmaLoadOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaLoadMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaLoadMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaLoadMatrixOp subgroupMmaLoadMatrixOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaLoadMatrixOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
// Get the shape of the MMAMatrix type being returned. The shape will
// choose which intrinsic this op will be lowered to.
NVVM::MMALayout layout = subgroupMmaLoadMatrixOp.getTranspose()
? NVVM::MMALayout::col
: NVVM::MMALayout::row;
gpu::MMAMatrixType retType =
cast<gpu::MMAMatrixType>(subgroupMmaLoadMatrixOp.getRes().getType());
ArrayRef<int64_t> retTypeShape = retType.getShape();
int64_t m = 0;
int64_t n = 0;
int64_t k = 0;
NVVM::MMATypes eltype = getElementType(retType);
// NVVM intrinsics require to give mxnxk dimensions, infer the missing
// dimension based on the valid intrinsics available.
if (retType.getOperand().equals("AOp")) {
m = retTypeShape[0];
k = retTypeShape[1];
n = NVVM::WMMALoadOp::inferNDimension(m, k, eltype);
} else if (retType.getOperand().equals("BOp")) {
k = retTypeShape[0];
n = retTypeShape[1];
m = NVVM::WMMALoadOp::inferMDimension(k, n, eltype);
} else if (retType.getOperand().equals("COp")) {
m = retTypeShape[0];
n = retTypeShape[1];
k = NVVM::WMMALoadOp::inferKDimension(m, n, eltype);
}
NVVM::MMAFrag frag = convertOperand(retType.getOperand());
// Check that there is an exisiting instruction for the combination we need.
if (NVVM::WMMALoadOp::getIntrinsicID(m, n, k, layout, eltype, frag) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
Type resType = convertMMAToLLVMType(retType);
Location loc = op->getLoc();
// Create nvvm.mma_load op according to the operand types.
Value dataPtr = getStridedElementPtr(
loc, cast<MemRefType>(subgroupMmaLoadMatrixOp.getSrcMemref().getType()),
adaptor.getSrcMemref(), adaptor.getIndices(), rewriter);
Value leadingDim = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(),
subgroupMmaLoadMatrixOp.getLeadDimensionAttr());
rewriter.replaceOpWithNewOp<NVVM::WMMALoadOp>(
op, resType, dataPtr, leadingDim, m, n, k, layout, eltype, frag);
return success();
}
};
/// This class implements the conversion of GPU MMA storeOp to wmma.store op
/// in the NVVM dialect. The conversion not only emits the NVVM op but also
/// emits code that is necessary to unpack the data in the source and
/// convert the data in the format that is needed by the NVVM op.
struct WmmaStoreOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaStoreMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaStoreMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaStoreMatrixOp subgroupMmaStoreMatrixOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaStoreMatrixOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
SmallVector<Value, 4> storeOpOperands;
// Get the shape of the MMAMatrix type being stored. The shape will
// choose which intrinsic this op will be lowered to.
gpu::MMAMatrixType srcType =
cast<gpu::MMAMatrixType>(subgroupMmaStoreMatrixOp.getSrc().getType());
ArrayRef<int64_t> srcTypeShape = srcType.getShape();
NVVM::MMALayout layout = subgroupMmaStoreMatrixOp.getTranspose()
? NVVM::MMALayout::col
: NVVM::MMALayout::row;
NVVM::MMATypes eltype = getElementType(srcType);
int64_t m = srcTypeShape[0];
int64_t n = srcTypeShape[1];
int64_t k = NVVM::WMMAStoreOp::inferKDimension(m, n, eltype);
if (NVVM::WMMAStoreOp::getIntrinsicID(m, n, k, layout, eltype) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
auto matrixType = cast<LLVM::LLVMStructType>(adaptor.getSrc().getType());
for (unsigned i = 0, e = matrixType.getBody().size(); i < e; ++i) {
Value toUse =
rewriter.create<LLVM::ExtractValueOp>(loc, adaptor.getSrc(), i);
storeOpOperands.push_back(toUse);
}
Value dataPtr = getStridedElementPtr(
loc,
cast<MemRefType>(subgroupMmaStoreMatrixOp.getDstMemref().getType()),
adaptor.getDstMemref(), adaptor.getIndices(), rewriter);
Value leadingDim = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(),
subgroupMmaStoreMatrixOp.getLeadDimensionAttr());
rewriter.replaceOpWithNewOp<NVVM::WMMAStoreOp>(
op, dataPtr, m, n, k, layout, eltype, storeOpOperands, leadingDim);
return success();
}
};
/// This class implements the conversion of GPU MMA computeOp to wmma.mma op
/// in the NVVM dialect.
struct WmmaMmaOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaComputeOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaComputeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaComputeOp subgroupMmaComputeOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Operation *op = subgroupMmaComputeOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
// The wmma.mma intrinsic in llvm requires the operands as individual
// values. So individual elements from the memrefs need to be extracted and
// then passed on to the intrinsic call. Emit llvm ops to extract individual
// values form lowered memrefs.
SmallVector<Value> unpackedOps;
auto unpackOp = [&](Value operand) {
auto structType = cast<LLVM::LLVMStructType>(operand.getType());
for (size_t i = 0, e = structType.getBody().size(); i < e; ++i) {
Value toUse = rewriter.create<LLVM::ExtractValueOp>(loc, operand, i);
unpackedOps.push_back(toUse);
}
};
// Get the shapes of the MMAMatrix type being used. The shapes will
// choose which intrinsic this op will be lowered to.
gpu::MMAMatrixType aType =
cast<gpu::MMAMatrixType>(subgroupMmaComputeOp.getOpA().getType());
ArrayRef<int64_t> aTypeShape = aType.getShape();
gpu::MMAMatrixType cType =
cast<gpu::MMAMatrixType>(subgroupMmaComputeOp.getOpC().getType());
ArrayRef<int64_t> cTypeShape = cType.getShape();
int64_t m = cTypeShape[0];
int64_t n = cTypeShape[1];
int64_t k = aTypeShape[1];
NVVM::MMALayout aLayout = subgroupMmaComputeOp.getATranspose()
? NVVM::MMALayout::col
: NVVM::MMALayout::row;
NVVM::MMALayout bLayout = subgroupMmaComputeOp.getBTranspose()
? NVVM::MMALayout::col
: NVVM::MMALayout::row;
NVVM::MMATypes sourceType = getElementType(aType);
NVVM::MMATypes destType = getElementType(cType);
if (NVVM::WMMAMmaOp::getIntrinsicID(m, n, k, aLayout, bLayout, sourceType,
destType) == 0)
return rewriter.notifyMatchFailure(op, kInvalidCaseStr);
NVVM::MMATypes bElementType = getElementType(
cast<gpu::MMAMatrixType>(subgroupMmaComputeOp.getOpB().getType()));
if (bElementType != sourceType)
return rewriter.notifyMatchFailure(
op, "WMMA compute op input matrix element types must match.");
unpackOp(adaptor.getOpA());
unpackOp(adaptor.getOpB());
unpackOp(adaptor.getOpC());
rewriter.replaceOpWithNewOp<NVVM::WMMAMmaOp>(
op, adaptor.getOpC().getType(), m, n, k, aLayout, bLayout, sourceType,
destType, unpackedOps);
return success();
}
};
/// Convert GPU MMA ConstantMatrixOp to a chain of InsertValueOp.
struct WmmaConstantOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaConstantMatrixOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaConstantMatrixOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaConstantMatrixOp subgroupMmaConstantOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(areAllLLVMTypes(subgroupMmaConstantOp.getOperation(),
adaptor.getOperands(), rewriter)))
return failure();
Location loc = subgroupMmaConstantOp.getLoc();
Value cst = adaptor.getOperands()[0];
LLVM::LLVMStructType type = convertMMAToLLVMType(
cast<gpu::MMAMatrixType>(subgroupMmaConstantOp.getType()));
// If the element type is a vector create a vector from the operand.
if (auto vecType = dyn_cast<VectorType>(type.getBody()[0])) {
Value vecCst = rewriter.create<LLVM::UndefOp>(loc, vecType);
for (int64_t vecEl = 0; vecEl < vecType.getNumElements(); vecEl++) {
Value idx = rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(), vecEl);
vecCst = rewriter.create<LLVM::InsertElementOp>(loc, vecType, vecCst,
cst, idx);
}
cst = vecCst;
}
Value matrixStruct = rewriter.create<LLVM::UndefOp>(loc, type);
for (size_t i : llvm::seq(size_t(0), type.getBody().size())) {
matrixStruct =
rewriter.create<LLVM::InsertValueOp>(loc, matrixStruct, cst, i);
}
rewriter.replaceOp(subgroupMmaConstantOp, matrixStruct);
return success();
}
};
static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs,
Value rhs, bool isMin) {
auto floatType = cast<FloatType>(getElementTypeOrSelf(lhs.getType()));
Type i1Type = builder.getI1Type();
if (auto vecType = dyn_cast<VectorType>(lhs.getType()))
i1Type = VectorType::get(vecType.getShape(), i1Type);
Value cmp = builder.create<LLVM::FCmpOp>(
loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt,
lhs, rhs);
Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs);
Value isNan = builder.create<LLVM::FCmpOp>(
loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs);
Value nan = builder.create<LLVM::ConstantOp>(
loc, lhs.getType(),
builder.getFloatAttr(floatType,
APFloat::getQNaN(floatType.getFloatSemantics())));
return builder.create<LLVM::SelectOp>(loc, isNan, nan, sel);
}
static Value createScalarOp(OpBuilder &builder, Location loc,
gpu::MMAElementwiseOp op,
ArrayRef<Value> operands) {
switch (op) {
case gpu::MMAElementwiseOp::ADDF:
return builder.create<LLVM::FAddOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::MULF:
return builder.create<LLVM::FMulOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::DIVF:
return builder.create<LLVM::FDivOp>(loc, operands[0].getType(), operands);
case gpu::MMAElementwiseOp::MAXF:
return createMinMaxF(builder, loc, operands[0], operands[1],
/*isMin=*/false);
case gpu::MMAElementwiseOp::MINF:
return createMinMaxF(builder, loc, operands[0], operands[1],
/*isMin=*/true);
default:
llvm_unreachable("unknown op");
}
}
/// Convert GPU MMA elementwise ops to extract + op + insert.
struct WmmaElementwiseOpToNVVMLowering
: public ConvertOpToLLVMPattern<gpu::SubgroupMmaElementwiseOp> {
using ConvertOpToLLVMPattern<
gpu::SubgroupMmaElementwiseOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::SubgroupMmaElementwiseOp subgroupMmaElementwiseOp,
OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
if (failed(areAllLLVMTypes(subgroupMmaElementwiseOp.getOperation(),
adaptor.getOperands(), rewriter)))
return failure();
Location loc = subgroupMmaElementwiseOp.getLoc();
size_t numOperands = adaptor.getOperands().size();
LLVM::LLVMStructType destType = convertMMAToLLVMType(
cast<gpu::MMAMatrixType>(subgroupMmaElementwiseOp.getType()));
Value matrixStruct = rewriter.create<LLVM::UndefOp>(loc, destType);
for (size_t i = 0, e = destType.getBody().size(); i < e; ++i) {
SmallVector<Value> extractedOperands;
for (size_t opIdx = 0; opIdx < numOperands; opIdx++) {
extractedOperands.push_back(rewriter.create<LLVM::ExtractValueOp>(
loc, adaptor.getOperands()[opIdx], i));
}
Value element =
createScalarOp(rewriter, loc, subgroupMmaElementwiseOp.getOpType(),
extractedOperands);
matrixStruct =
rewriter.create<LLVM::InsertValueOp>(loc, matrixStruct, element, i);
}
rewriter.replaceOp(subgroupMmaElementwiseOp, matrixStruct);
return success();
}
};
} // namespace
/// Return the LLVMStructureType corresponding to the MMAMatrixType `type`.
LLVM::LLVMStructType mlir::convertMMAToLLVMType(gpu::MMAMatrixType type) {
NVVM::MMAFrag frag = convertOperand(type.getOperand());
NVVM::MMATypes eltType = getElementType(type);
auto nRow = type.getShape()[0];
auto nCol = type.getShape()[1];
std::pair<Type, unsigned> typeInfo =
NVVM::inferMMAType(eltType, frag, nRow, nCol, type.getContext());
return LLVM::LLVMStructType::getLiteral(
type.getContext(), SmallVector<Type, 8>(typeInfo.second, typeInfo.first));
}
void mlir::populateGpuWMMAToNVVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<WmmaLoadOpToNVVMLowering, WmmaMmaOpToNVVMLowering,
WmmaStoreOpToNVVMLowering, WmmaConstantOpToNVVMLowering,
WmmaElementwiseOpToNVVMLowering>(converter);
}
|