1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
//===- GPUToSPIRVPass.cpp - GPU to SPIR-V Passes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert a kernel function in the GPU Dialect
// into a spirv.module operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRVPass.h"
#include "mlir/Conversion/ArithToSPIRV/ArithToSPIRV.h"
#include "mlir/Conversion/FuncToSPIRV/FuncToSPIRV.h"
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h"
#include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUTOSPIRV
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Pass to lower GPU Dialect to SPIR-V. The pass only converts the gpu.func ops
/// inside gpu.module ops. i.e., the function that are referenced in
/// gpu.launch_func ops. For each such function
///
/// 1) Create a spirv::ModuleOp, and clone the function into spirv::ModuleOp
/// (the original function is still needed by the gpu::LaunchKernelOp, so cannot
/// replace it).
///
/// 2) Lower the body of the spirv::ModuleOp.
class GPUToSPIRVPass : public impl::ConvertGPUToSPIRVBase<GPUToSPIRVPass> {
public:
explicit GPUToSPIRVPass(bool mapMemorySpace)
: mapMemorySpace(mapMemorySpace) {}
void runOnOperation() override;
private:
bool mapMemorySpace;
};
} // namespace
void GPUToSPIRVPass::runOnOperation() {
MLIRContext *context = &getContext();
ModuleOp module = getOperation();
SmallVector<Operation *, 1> gpuModules;
OpBuilder builder(context);
module.walk([&](gpu::GPUModuleOp moduleOp) {
// Clone each GPU kernel module for conversion, given that the GPU
// launch op still needs the original GPU kernel module.
builder.setInsertionPoint(moduleOp.getOperation());
gpuModules.push_back(builder.clone(*moduleOp.getOperation()));
});
// Run conversion for each module independently as they can have different
// TargetEnv attributes.
for (Operation *gpuModule : gpuModules) {
// Map MemRef memory space to SPIR-V storage class first if requested.
if (mapMemorySpace) {
std::unique_ptr<ConversionTarget> target =
spirv::getMemorySpaceToStorageClassTarget(*context);
spirv::MemorySpaceToStorageClassMap memorySpaceMap =
spirv::mapMemorySpaceToVulkanStorageClass;
spirv::MemorySpaceToStorageClassConverter converter(memorySpaceMap);
RewritePatternSet patterns(context);
spirv::populateMemorySpaceToStorageClassPatterns(converter, patterns);
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
}
auto targetAttr = spirv::lookupTargetEnvOrDefault(gpuModule);
std::unique_ptr<ConversionTarget> target =
SPIRVConversionTarget::get(targetAttr);
SPIRVConversionOptions options;
options.use64bitIndex = this->use64bitIndex;
SPIRVTypeConverter typeConverter(targetAttr, options);
typeConverter.addConversion([&](gpu::MMAMatrixType type) -> Type {
return convertMMAToSPIRVType(type);
});
RewritePatternSet patterns(context);
populateGPUToSPIRVPatterns(typeConverter, patterns);
populateGpuWMMAToSPIRVConversionPatterns(typeConverter, patterns);
// TODO: Change SPIR-V conversion to be progressive and remove the following
// patterns.
mlir::arith::populateArithToSPIRVPatterns(typeConverter, patterns);
populateMemRefToSPIRVPatterns(typeConverter, patterns);
populateFuncToSPIRVPatterns(typeConverter, patterns);
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
}
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertGPUToSPIRVPass(bool mapMemorySpace) {
return std::make_unique<GPUToSPIRVPass>(mapMemorySpace);
}
|