1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
|
//===- MathToFuncs.cpp - Math to outlined implementation conversion -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToFuncs/MathToFuncs.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOFUNCS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
#define DEBUG_TYPE "math-to-funcs"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
namespace {
// Pattern to convert vector operations to scalar operations.
template <typename Op>
struct VecOpToScalarOp : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};
// Callback type for getting pre-generated FuncOp implementing
// an operation of the given type.
using GetFuncCallbackTy = function_ref<func::FuncOp(Operation *, Type)>;
// Pattern to convert scalar IPowIOp into a call of outlined
// software implementation.
class IPowIOpLowering : public OpRewritePattern<math::IPowIOp> {
public:
IPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
: OpRewritePattern<math::IPowIOp>(context), getFuncOpCallback(cb) {}
/// Convert IPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of IPowI are linearized.
LogicalResult matchAndRewrite(math::IPowIOp op,
PatternRewriter &rewriter) const final;
private:
GetFuncCallbackTy getFuncOpCallback;
};
// Pattern to convert scalar FPowIOp into a call of outlined
// software implementation.
class FPowIOpLowering : public OpRewritePattern<math::FPowIOp> {
public:
FPowIOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
: OpRewritePattern<math::FPowIOp>(context), getFuncOpCallback(cb) {}
/// Convert FPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of FPowI are linearized.
LogicalResult matchAndRewrite(math::FPowIOp op,
PatternRewriter &rewriter) const final;
private:
GetFuncCallbackTy getFuncOpCallback;
};
// Pattern to convert scalar ctlz into a call of outlined software
// implementation.
class CtlzOpLowering : public OpRewritePattern<math::CountLeadingZerosOp> {
public:
CtlzOpLowering(MLIRContext *context, GetFuncCallbackTy cb)
: OpRewritePattern<math::CountLeadingZerosOp>(context),
getFuncOpCallback(cb) {}
/// Convert ctlz into a call to a local function implementing
/// the count leading zeros operation.
LogicalResult matchAndRewrite(math::CountLeadingZerosOp op,
PatternRewriter &rewriter) const final;
private:
GetFuncCallbackTy getFuncOpCallback;
};
} // namespace
template <typename Op>
LogicalResult
VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
Type opType = op.getType();
Location loc = op.getLoc();
auto vecType = dyn_cast<VectorType>(opType);
if (!vecType)
return rewriter.notifyMatchFailure(op, "not a vector operation");
if (!vecType.hasRank())
return rewriter.notifyMatchFailure(op, "unknown vector rank");
ArrayRef<int64_t> shape = vecType.getShape();
int64_t numElements = vecType.getNumElements();
Type resultElementType = vecType.getElementType();
Attribute initValueAttr;
if (isa<FloatType>(resultElementType))
initValueAttr = FloatAttr::get(resultElementType, 0.0);
else
initValueAttr = IntegerAttr::get(resultElementType, 0);
Value result = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(vecType, initValueAttr));
SmallVector<int64_t> strides = computeStrides(shape);
for (int64_t linearIndex = 0; linearIndex < numElements; ++linearIndex) {
SmallVector<int64_t> positions = delinearize(linearIndex, strides);
SmallVector<Value> operands;
for (Value input : op->getOperands())
operands.push_back(
rewriter.create<vector::ExtractOp>(loc, input, positions));
Value scalarOp =
rewriter.create<Op>(loc, vecType.getElementType(), operands);
result =
rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions);
}
rewriter.replaceOp(op, result);
return success();
}
static FunctionType getElementalFuncTypeForOp(Operation *op) {
SmallVector<Type, 1> resultTys(op->getNumResults());
SmallVector<Type, 2> inputTys(op->getNumOperands());
std::transform(op->result_type_begin(), op->result_type_end(),
resultTys.begin(),
[](Type ty) { return getElementTypeOrSelf(ty); });
std::transform(op->operand_type_begin(), op->operand_type_end(),
inputTys.begin(),
[](Type ty) { return getElementTypeOrSelf(ty); });
return FunctionType::get(op->getContext(), inputTys, resultTys);
}
/// Create linkonce_odr function to implement the power function with
/// the given \p elementType type inside \p module. The \p elementType
/// must be IntegerType, an the created function has
/// 'IntegerType (*)(IntegerType, IntegerType)' function type.
///
/// template <typename T>
/// T __mlir_math_ipowi_*(T b, T p) {
/// if (p == T(0))
/// return T(1);
/// if (p < T(0)) {
/// if (b == T(0))
/// return T(1) / T(0); // trigger div-by-zero
/// if (b == T(1))
/// return T(1);
/// if (b == T(-1)) {
/// if (p & T(1))
/// return T(-1);
/// return T(1);
/// }
/// return T(0);
/// }
/// T result = T(1);
/// while (true) {
/// if (p & T(1))
/// result *= b;
/// p >>= T(1);
/// if (p == T(0))
/// return result;
/// b *= b;
/// }
/// }
static func::FuncOp createElementIPowIFunc(ModuleOp *module, Type elementType) {
assert(isa<IntegerType>(elementType) &&
"non-integer element type for IPowIOp");
ImplicitLocOpBuilder builder =
ImplicitLocOpBuilder::atBlockEnd(module->getLoc(), module->getBody());
std::string funcName("__mlir_math_ipowi");
llvm::raw_string_ostream nameOS(funcName);
nameOS << '_' << elementType;
FunctionType funcType = FunctionType::get(
builder.getContext(), {elementType, elementType}, elementType);
auto funcOp = builder.create<func::FuncOp>(funcName, funcType);
LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
Attribute linkage =
LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
funcOp->setAttr("llvm.linkage", linkage);
funcOp.setPrivate();
Block *entryBlock = funcOp.addEntryBlock();
Region *funcBody = entryBlock->getParent();
Value bArg = funcOp.getArgument(0);
Value pArg = funcOp.getArgument(1);
builder.setInsertionPointToEnd(entryBlock);
Value zeroValue = builder.create<arith::ConstantOp>(
elementType, builder.getIntegerAttr(elementType, 0));
Value oneValue = builder.create<arith::ConstantOp>(
elementType, builder.getIntegerAttr(elementType, 1));
Value minusOneValue = builder.create<arith::ConstantOp>(
elementType,
builder.getIntegerAttr(elementType,
APInt(elementType.getIntOrFloatBitWidth(), -1ULL,
/*isSigned=*/true)));
// if (p == T(0))
// return T(1);
auto pIsZero =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, zeroValue);
Block *thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(oneValue);
Block *fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (p == T(0)).
builder.setInsertionPointToEnd(pIsZero->getBlock());
builder.create<cf::CondBranchOp>(pIsZero, thenBlock, fallthroughBlock);
// if (p < T(0)) {
builder.setInsertionPointToEnd(fallthroughBlock);
auto pIsNeg =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, pArg, zeroValue);
// if (b == T(0))
builder.createBlock(funcBody);
auto bIsZero =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, bArg, zeroValue);
// return T(1) / T(0);
thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(
builder.create<arith::DivSIOp>(oneValue, zeroValue).getResult());
fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (b == T(0)).
builder.setInsertionPointToEnd(bIsZero->getBlock());
builder.create<cf::CondBranchOp>(bIsZero, thenBlock, fallthroughBlock);
// if (b == T(1))
builder.setInsertionPointToEnd(fallthroughBlock);
auto bIsOne =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, bArg, oneValue);
// return T(1);
thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(oneValue);
fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (b == T(1)).
builder.setInsertionPointToEnd(bIsOne->getBlock());
builder.create<cf::CondBranchOp>(bIsOne, thenBlock, fallthroughBlock);
// if (b == T(-1)) {
builder.setInsertionPointToEnd(fallthroughBlock);
auto bIsMinusOne = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
bArg, minusOneValue);
// if (p & T(1))
builder.createBlock(funcBody);
auto pIsOdd = builder.create<arith::CmpIOp>(
arith::CmpIPredicate::ne, builder.create<arith::AndIOp>(pArg, oneValue),
zeroValue);
// return T(-1);
thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(minusOneValue);
fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (p & T(1)).
builder.setInsertionPointToEnd(pIsOdd->getBlock());
builder.create<cf::CondBranchOp>(pIsOdd, thenBlock, fallthroughBlock);
// return T(1);
// } // b == T(-1)
builder.setInsertionPointToEnd(fallthroughBlock);
builder.create<func::ReturnOp>(oneValue);
fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (b == T(-1)).
builder.setInsertionPointToEnd(bIsMinusOne->getBlock());
builder.create<cf::CondBranchOp>(bIsMinusOne, pIsOdd->getBlock(),
fallthroughBlock);
// return T(0);
// } // (p < T(0))
builder.setInsertionPointToEnd(fallthroughBlock);
builder.create<func::ReturnOp>(zeroValue);
Block *loopHeader = builder.createBlock(
funcBody, funcBody->end(), {elementType, elementType, elementType},
{builder.getLoc(), builder.getLoc(), builder.getLoc()});
// Set up conditional branch for (p < T(0)).
builder.setInsertionPointToEnd(pIsNeg->getBlock());
// Set initial values of 'result', 'b' and 'p' for the loop.
builder.create<cf::CondBranchOp>(pIsNeg, bIsZero->getBlock(), loopHeader,
ValueRange{oneValue, bArg, pArg});
// T result = T(1);
// while (true) {
// if (p & T(1))
// result *= b;
// p >>= T(1);
// if (p == T(0))
// return result;
// b *= b;
// }
Value resultTmp = loopHeader->getArgument(0);
Value baseTmp = loopHeader->getArgument(1);
Value powerTmp = loopHeader->getArgument(2);
builder.setInsertionPointToEnd(loopHeader);
// if (p & T(1))
auto powerTmpIsOdd = builder.create<arith::CmpIOp>(
arith::CmpIPredicate::ne,
builder.create<arith::AndIOp>(powerTmp, oneValue), zeroValue);
thenBlock = builder.createBlock(funcBody);
// result *= b;
Value newResultTmp = builder.create<arith::MulIOp>(resultTmp, baseTmp);
fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), elementType,
builder.getLoc());
builder.setInsertionPointToEnd(thenBlock);
builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock);
// Set up conditional branch for (p & T(1)).
builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock());
builder.create<cf::CondBranchOp>(powerTmpIsOdd, thenBlock, fallthroughBlock,
resultTmp);
// Merged 'result'.
newResultTmp = fallthroughBlock->getArgument(0);
// p >>= T(1);
builder.setInsertionPointToEnd(fallthroughBlock);
Value newPowerTmp = builder.create<arith::ShRUIOp>(powerTmp, oneValue);
// if (p == T(0))
auto newPowerIsZero = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
newPowerTmp, zeroValue);
// return result;
thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(newResultTmp);
fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (p == T(0)).
builder.setInsertionPointToEnd(newPowerIsZero->getBlock());
builder.create<cf::CondBranchOp>(newPowerIsZero, thenBlock, fallthroughBlock);
// b *= b;
// }
builder.setInsertionPointToEnd(fallthroughBlock);
Value newBaseTmp = builder.create<arith::MulIOp>(baseTmp, baseTmp);
// Pass new values for 'result', 'b' and 'p' to the loop header.
builder.create<cf::BranchOp>(
ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader);
return funcOp;
}
/// Convert IPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of IPowI are linearized.
LogicalResult
IPowIOpLowering::matchAndRewrite(math::IPowIOp op,
PatternRewriter &rewriter) const {
auto baseType = dyn_cast<IntegerType>(op.getOperands()[0].getType());
if (!baseType)
return rewriter.notifyMatchFailure(op, "non-integer base operand");
// The outlined software implementation must have been already
// generated.
func::FuncOp elementFunc = getFuncOpCallback(op, baseType);
if (!elementFunc)
return rewriter.notifyMatchFailure(op, "missing software implementation");
rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands());
return success();
}
/// Create linkonce_odr function to implement the power function with
/// the given \p funcType type inside \p module. The \p funcType must be
/// 'FloatType (*)(FloatType, IntegerType)' function type.
///
/// template <typename T>
/// Tb __mlir_math_fpowi_*(Tb b, Tp p) {
/// if (p == Tp{0})
/// return Tb{1};
/// bool isNegativePower{p < Tp{0}}
/// bool isMin{p == std::numeric_limits<Tp>::min()};
/// if (isMin) {
/// p = std::numeric_limits<Tp>::max();
/// } else if (isNegativePower) {
/// p = -p;
/// }
/// Tb result = Tb{1};
/// Tb origBase = Tb{b};
/// while (true) {
/// if (p & Tp{1})
/// result *= b;
/// p >>= Tp{1};
/// if (p == Tp{0})
/// break;
/// b *= b;
/// }
/// if (isMin) {
/// result *= origBase;
/// }
/// if (isNegativePower) {
/// result = Tb{1} / result;
/// }
/// return result;
/// }
static func::FuncOp createElementFPowIFunc(ModuleOp *module,
FunctionType funcType) {
auto baseType = cast<FloatType>(funcType.getInput(0));
auto powType = cast<IntegerType>(funcType.getInput(1));
ImplicitLocOpBuilder builder =
ImplicitLocOpBuilder::atBlockEnd(module->getLoc(), module->getBody());
std::string funcName("__mlir_math_fpowi");
llvm::raw_string_ostream nameOS(funcName);
nameOS << '_' << baseType;
nameOS << '_' << powType;
auto funcOp = builder.create<func::FuncOp>(funcName, funcType);
LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
Attribute linkage =
LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
funcOp->setAttr("llvm.linkage", linkage);
funcOp.setPrivate();
Block *entryBlock = funcOp.addEntryBlock();
Region *funcBody = entryBlock->getParent();
Value bArg = funcOp.getArgument(0);
Value pArg = funcOp.getArgument(1);
builder.setInsertionPointToEnd(entryBlock);
Value oneBValue = builder.create<arith::ConstantOp>(
baseType, builder.getFloatAttr(baseType, 1.0));
Value zeroPValue = builder.create<arith::ConstantOp>(
powType, builder.getIntegerAttr(powType, 0));
Value onePValue = builder.create<arith::ConstantOp>(
powType, builder.getIntegerAttr(powType, 1));
Value minPValue = builder.create<arith::ConstantOp>(
powType, builder.getIntegerAttr(powType, llvm::APInt::getSignedMinValue(
powType.getWidth())));
Value maxPValue = builder.create<arith::ConstantOp>(
powType, builder.getIntegerAttr(powType, llvm::APInt::getSignedMaxValue(
powType.getWidth())));
// if (p == Tp{0})
// return Tb{1};
auto pIsZero =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, zeroPValue);
Block *thenBlock = builder.createBlock(funcBody);
builder.create<func::ReturnOp>(oneBValue);
Block *fallthroughBlock = builder.createBlock(funcBody);
// Set up conditional branch for (p == Tp{0}).
builder.setInsertionPointToEnd(pIsZero->getBlock());
builder.create<cf::CondBranchOp>(pIsZero, thenBlock, fallthroughBlock);
builder.setInsertionPointToEnd(fallthroughBlock);
// bool isNegativePower{p < Tp{0}}
auto pIsNeg = builder.create<arith::CmpIOp>(arith::CmpIPredicate::sle, pArg,
zeroPValue);
// bool isMin{p == std::numeric_limits<Tp>::min()};
auto pIsMin =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, pArg, minPValue);
// if (isMin) {
// p = std::numeric_limits<Tp>::max();
// } else if (isNegativePower) {
// p = -p;
// }
Value negP = builder.create<arith::SubIOp>(zeroPValue, pArg);
auto pInit = builder.create<arith::SelectOp>(pIsNeg, negP, pArg);
pInit = builder.create<arith::SelectOp>(pIsMin, maxPValue, pInit);
// Tb result = Tb{1};
// Tb origBase = Tb{b};
// while (true) {
// if (p & Tp{1})
// result *= b;
// p >>= Tp{1};
// if (p == Tp{0})
// break;
// b *= b;
// }
Block *loopHeader = builder.createBlock(
funcBody, funcBody->end(), {baseType, baseType, powType},
{builder.getLoc(), builder.getLoc(), builder.getLoc()});
// Set initial values of 'result', 'b' and 'p' for the loop.
builder.setInsertionPointToEnd(pInit->getBlock());
builder.create<cf::BranchOp>(loopHeader, ValueRange{oneBValue, bArg, pInit});
// Create loop body.
Value resultTmp = loopHeader->getArgument(0);
Value baseTmp = loopHeader->getArgument(1);
Value powerTmp = loopHeader->getArgument(2);
builder.setInsertionPointToEnd(loopHeader);
// if (p & Tp{1})
auto powerTmpIsOdd = builder.create<arith::CmpIOp>(
arith::CmpIPredicate::ne,
builder.create<arith::AndIOp>(powerTmp, onePValue), zeroPValue);
thenBlock = builder.createBlock(funcBody);
// result *= b;
Value newResultTmp = builder.create<arith::MulFOp>(resultTmp, baseTmp);
fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
builder.getLoc());
builder.setInsertionPointToEnd(thenBlock);
builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock);
// Set up conditional branch for (p & Tp{1}).
builder.setInsertionPointToEnd(powerTmpIsOdd->getBlock());
builder.create<cf::CondBranchOp>(powerTmpIsOdd, thenBlock, fallthroughBlock,
resultTmp);
// Merged 'result'.
newResultTmp = fallthroughBlock->getArgument(0);
// p >>= Tp{1};
builder.setInsertionPointToEnd(fallthroughBlock);
Value newPowerTmp = builder.create<arith::ShRUIOp>(powerTmp, onePValue);
// if (p == Tp{0})
auto newPowerIsZero = builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq,
newPowerTmp, zeroPValue);
// break;
//
// The conditional branch is finalized below with a jump to
// the loop exit block.
fallthroughBlock = builder.createBlock(funcBody);
// b *= b;
// }
builder.setInsertionPointToEnd(fallthroughBlock);
Value newBaseTmp = builder.create<arith::MulFOp>(baseTmp, baseTmp);
// Pass new values for 'result', 'b' and 'p' to the loop header.
builder.create<cf::BranchOp>(
ValueRange{newResultTmp, newBaseTmp, newPowerTmp}, loopHeader);
// Set up conditional branch for early loop exit:
// if (p == Tp{0})
// break;
Block *loopExit = builder.createBlock(funcBody, funcBody->end(), baseType,
builder.getLoc());
builder.setInsertionPointToEnd(newPowerIsZero->getBlock());
builder.create<cf::CondBranchOp>(newPowerIsZero, loopExit, newResultTmp,
fallthroughBlock, ValueRange{});
// if (isMin) {
// result *= origBase;
// }
newResultTmp = loopExit->getArgument(0);
thenBlock = builder.createBlock(funcBody);
fallthroughBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
builder.getLoc());
builder.setInsertionPointToEnd(loopExit);
builder.create<cf::CondBranchOp>(pIsMin, thenBlock, fallthroughBlock,
newResultTmp);
builder.setInsertionPointToEnd(thenBlock);
newResultTmp = builder.create<arith::MulFOp>(newResultTmp, bArg);
builder.create<cf::BranchOp>(newResultTmp, fallthroughBlock);
/// if (isNegativePower) {
/// result = Tb{1} / result;
/// }
newResultTmp = fallthroughBlock->getArgument(0);
thenBlock = builder.createBlock(funcBody);
Block *returnBlock = builder.createBlock(funcBody, funcBody->end(), baseType,
builder.getLoc());
builder.setInsertionPointToEnd(fallthroughBlock);
builder.create<cf::CondBranchOp>(pIsNeg, thenBlock, returnBlock,
newResultTmp);
builder.setInsertionPointToEnd(thenBlock);
newResultTmp = builder.create<arith::DivFOp>(oneBValue, newResultTmp);
builder.create<cf::BranchOp>(newResultTmp, returnBlock);
// return result;
builder.setInsertionPointToEnd(returnBlock);
builder.create<func::ReturnOp>(returnBlock->getArgument(0));
return funcOp;
}
/// Convert FPowI into a call to a local function implementing
/// the power operation. The local function computes a scalar result,
/// so vector forms of FPowI are linearized.
LogicalResult
FPowIOpLowering::matchAndRewrite(math::FPowIOp op,
PatternRewriter &rewriter) const {
if (dyn_cast<VectorType>(op.getType()))
return rewriter.notifyMatchFailure(op, "non-scalar operation");
FunctionType funcType = getElementalFuncTypeForOp(op);
// The outlined software implementation must have been already
// generated.
func::FuncOp elementFunc = getFuncOpCallback(op, funcType);
if (!elementFunc)
return rewriter.notifyMatchFailure(op, "missing software implementation");
rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperands());
return success();
}
/// Create function to implement the ctlz function the given \p elementType type
/// inside \p module. The \p elementType must be IntegerType, an the created
/// function has 'IntegerType (*)(IntegerType)' function type.
///
/// template <typename T>
/// T __mlir_math_ctlz_*(T x) {
/// bits = sizeof(x) * 8;
/// if (x == 0)
/// return bits;
///
/// uint32_t n = 0;
/// for (int i = 1; i < bits; ++i) {
/// if (x < 0) continue;
/// n++;
/// x <<= 1;
/// }
/// return n;
/// }
///
/// Converts to (for i32):
///
/// func.func private @__mlir_math_ctlz_i32(%arg: i32) -> i32 {
/// %c_32 = arith.constant 32 : index
/// %c_0 = arith.constant 0 : i32
/// %arg_eq_zero = arith.cmpi eq, %arg, %c_0 : i1
/// %out = scf.if %arg_eq_zero {
/// scf.yield %c_32 : i32
/// } else {
/// %c_1index = arith.constant 1 : index
/// %c_1i32 = arith.constant 1 : i32
/// %n = arith.constant 0 : i32
/// %arg_out, %n_out = scf.for %i = %c_1index to %c_32 step %c_1index
/// iter_args(%arg_iter = %arg, %n_iter = %n) -> (i32, i32) {
/// %cond = arith.cmpi slt, %arg_iter, %c_0 : i32
/// %yield_val = scf.if %cond {
/// scf.yield %arg_iter, %n_iter : i32, i32
/// } else {
/// %arg_next = arith.shli %arg_iter, %c_1i32 : i32
/// %n_next = arith.addi %n_iter, %c_1i32 : i32
/// scf.yield %arg_next, %n_next : i32, i32
/// }
/// scf.yield %yield_val: i32, i32
/// }
/// scf.yield %n_out : i32
/// }
/// return %out: i32
/// }
static func::FuncOp createCtlzFunc(ModuleOp *module, Type elementType) {
if (!isa<IntegerType>(elementType)) {
LLVM_DEBUG({
DBGS() << "non-integer element type for CtlzFunc; type was: ";
elementType.print(llvm::dbgs());
});
llvm_unreachable("non-integer element type");
}
int64_t bitWidth = elementType.getIntOrFloatBitWidth();
Location loc = module->getLoc();
ImplicitLocOpBuilder builder =
ImplicitLocOpBuilder::atBlockEnd(loc, module->getBody());
std::string funcName("__mlir_math_ctlz");
llvm::raw_string_ostream nameOS(funcName);
nameOS << '_' << elementType;
FunctionType funcType =
FunctionType::get(builder.getContext(), {elementType}, elementType);
auto funcOp = builder.create<func::FuncOp>(funcName, funcType);
// LinkonceODR ensures that there is only one implementation of this function
// across all math.ctlz functions that are lowered in this way.
LLVM::linkage::Linkage inlineLinkage = LLVM::linkage::Linkage::LinkonceODR;
Attribute linkage =
LLVM::LinkageAttr::get(builder.getContext(), inlineLinkage);
funcOp->setAttr("llvm.linkage", linkage);
funcOp.setPrivate();
// set the insertion point to the start of the function
Block *funcBody = funcOp.addEntryBlock();
builder.setInsertionPointToStart(funcBody);
Value arg = funcOp.getArgument(0);
Type indexType = builder.getIndexType();
Value bitWidthValue = builder.create<arith::ConstantOp>(
elementType, builder.getIntegerAttr(elementType, bitWidth));
Value zeroValue = builder.create<arith::ConstantOp>(
elementType, builder.getIntegerAttr(elementType, 0));
Value inputEqZero =
builder.create<arith::CmpIOp>(arith::CmpIPredicate::eq, arg, zeroValue);
// if input == 0, return bit width, else enter loop.
scf::IfOp ifOp = builder.create<scf::IfOp>(
elementType, inputEqZero, /*addThenBlock=*/true, /*addElseBlock=*/true);
ifOp.getThenBodyBuilder().create<scf::YieldOp>(loc, bitWidthValue);
auto elseBuilder =
ImplicitLocOpBuilder::atBlockEnd(loc, &ifOp.getElseRegion().front());
Value oneIndex = elseBuilder.create<arith::ConstantOp>(
indexType, elseBuilder.getIndexAttr(1));
Value oneValue = elseBuilder.create<arith::ConstantOp>(
elementType, elseBuilder.getIntegerAttr(elementType, 1));
Value bitWidthIndex = elseBuilder.create<arith::ConstantOp>(
indexType, elseBuilder.getIndexAttr(bitWidth));
Value nValue = elseBuilder.create<arith::ConstantOp>(
elementType, elseBuilder.getIntegerAttr(elementType, 0));
auto loop = elseBuilder.create<scf::ForOp>(
oneIndex, bitWidthIndex, oneIndex,
// Initial values for two loop induction variables, the arg which is being
// shifted left in each iteration, and the n value which tracks the count
// of leading zeros.
ValueRange{arg, nValue},
// Callback to build the body of the for loop
// if (arg < 0) {
// continue;
// } else {
// n++;
// arg <<= 1;
// }
[&](OpBuilder &b, Location loc, Value iv, ValueRange args) {
Value argIter = args[0];
Value nIter = args[1];
Value argIsNonNegative = b.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, argIter, zeroValue);
scf::IfOp ifOp = b.create<scf::IfOp>(
loc, argIsNonNegative,
[&](OpBuilder &b, Location loc) {
// If arg is negative, continue (effectively, break)
b.create<scf::YieldOp>(loc, ValueRange{argIter, nIter});
},
[&](OpBuilder &b, Location loc) {
// Otherwise, increment n and shift arg left.
Value nNext = b.create<arith::AddIOp>(loc, nIter, oneValue);
Value argNext = b.create<arith::ShLIOp>(loc, argIter, oneValue);
b.create<scf::YieldOp>(loc, ValueRange{argNext, nNext});
});
b.create<scf::YieldOp>(loc, ifOp.getResults());
});
elseBuilder.create<scf::YieldOp>(loop.getResult(1));
builder.create<func::ReturnOp>(ifOp.getResult(0));
return funcOp;
}
/// Convert ctlz into a call to a local function implementing the ctlz
/// operation.
LogicalResult CtlzOpLowering::matchAndRewrite(math::CountLeadingZerosOp op,
PatternRewriter &rewriter) const {
if (dyn_cast<VectorType>(op.getType()))
return rewriter.notifyMatchFailure(op, "non-scalar operation");
Type type = getElementTypeOrSelf(op.getResult().getType());
func::FuncOp elementFunc = getFuncOpCallback(op, type);
if (!elementFunc)
return rewriter.notifyMatchFailure(op, [&](::mlir::Diagnostic &diag) {
diag << "Missing software implementation for op " << op->getName()
<< " and type " << type;
});
rewriter.replaceOpWithNewOp<func::CallOp>(op, elementFunc, op.getOperand());
return success();
}
namespace {
struct ConvertMathToFuncsPass
: public impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass> {
ConvertMathToFuncsPass() = default;
ConvertMathToFuncsPass(const ConvertMathToFuncsOptions &options)
: impl::ConvertMathToFuncsBase<ConvertMathToFuncsPass>(options) {}
void runOnOperation() override;
private:
// Return true, if this FPowI operation must be converted
// because the width of its exponent's type is greater than
// or equal to minWidthOfFPowIExponent option value.
bool isFPowIConvertible(math::FPowIOp op);
// Generate outlined implementations for power operations
// and store them in funcImpls map.
void generateOpImplementations();
// A map between pairs of (operation, type) deduced from operations that this
// pass will convert, and the corresponding outlined software implementations
// of these operations for the given type.
DenseMap<std::pair<OperationName, Type>, func::FuncOp> funcImpls;
};
} // namespace
bool ConvertMathToFuncsPass::isFPowIConvertible(math::FPowIOp op) {
auto expTy =
dyn_cast<IntegerType>(getElementTypeOrSelf(op.getRhs().getType()));
return (expTy && expTy.getWidth() >= minWidthOfFPowIExponent);
}
void ConvertMathToFuncsPass::generateOpImplementations() {
ModuleOp module = getOperation();
module.walk([&](Operation *op) {
TypeSwitch<Operation *>(op)
.Case<math::CountLeadingZerosOp>([&](math::CountLeadingZerosOp op) {
if (!convertCtlz)
return;
Type resultType = getElementTypeOrSelf(op.getResult().getType());
// Generate the software implementation of this operation,
// if it has not been generated yet.
auto key = std::pair(op->getName(), resultType);
auto entry = funcImpls.try_emplace(key, func::FuncOp{});
if (entry.second)
entry.first->second = createCtlzFunc(&module, resultType);
})
.Case<math::IPowIOp>([&](math::IPowIOp op) {
Type resultType = getElementTypeOrSelf(op.getResult().getType());
// Generate the software implementation of this operation,
// if it has not been generated yet.
auto key = std::pair(op->getName(), resultType);
auto entry = funcImpls.try_emplace(key, func::FuncOp{});
if (entry.second)
entry.first->second = createElementIPowIFunc(&module, resultType);
})
.Case<math::FPowIOp>([&](math::FPowIOp op) {
if (!isFPowIConvertible(op))
return;
FunctionType funcType = getElementalFuncTypeForOp(op);
// Generate the software implementation of this operation,
// if it has not been generated yet.
// FPowI implementations are mapped via the FunctionType
// created from the operation's result and operands.
auto key = std::pair(op->getName(), funcType);
auto entry = funcImpls.try_emplace(key, func::FuncOp{});
if (entry.second)
entry.first->second = createElementFPowIFunc(&module, funcType);
});
});
}
void ConvertMathToFuncsPass::runOnOperation() {
ModuleOp module = getOperation();
// Create outlined implementations for power operations.
generateOpImplementations();
RewritePatternSet patterns(&getContext());
patterns.add<VecOpToScalarOp<math::IPowIOp>, VecOpToScalarOp<math::FPowIOp>,
VecOpToScalarOp<math::CountLeadingZerosOp>>(
patterns.getContext());
// For the given Type Returns FuncOp stored in funcImpls map.
auto getFuncOpByType = [&](Operation *op, Type type) -> func::FuncOp {
auto it = funcImpls.find(std::pair(op->getName(), type));
if (it == funcImpls.end())
return {};
return it->second;
};
patterns.add<IPowIOpLowering, FPowIOpLowering>(patterns.getContext(),
getFuncOpByType);
if (convertCtlz)
patterns.add<CtlzOpLowering>(patterns.getContext(), getFuncOpByType);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithDialect, cf::ControlFlowDialect,
func::FuncDialect, scf::SCFDialect,
vector::VectorDialect>();
target.addIllegalOp<math::IPowIOp>();
if (convertCtlz)
target.addIllegalOp<math::CountLeadingZerosOp>();
target.addDynamicallyLegalOp<math::FPowIOp>(
[this](math::FPowIOp op) { return !isFPowIConvertible(op); });
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
|