1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
|
//===-- MathToLibm.cpp - conversion from Math to libm calls ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MathToLibm/MathToLibm.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Math/IR/Math.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTMATHTOLIBM
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
// Pattern to convert vector operations to scalar operations. This is needed as
// libm calls require scalars.
template <typename Op>
struct VecOpToScalarOp : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};
// Pattern to promote an op of a smaller floating point type to F32.
template <typename Op>
struct PromoteOpToF32 : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
};
// Pattern to convert scalar math operations to calls to libm functions.
// Additionally the libm function signatures are declared.
template <typename Op>
struct ScalarOpToLibmCall : public OpRewritePattern<Op> {
public:
using OpRewritePattern<Op>::OpRewritePattern;
ScalarOpToLibmCall<Op>(MLIRContext *context, StringRef floatFunc,
StringRef doubleFunc)
: OpRewritePattern<Op>(context), floatFunc(floatFunc),
doubleFunc(doubleFunc){};
LogicalResult matchAndRewrite(Op op, PatternRewriter &rewriter) const final;
private:
std::string floatFunc, doubleFunc;
};
template <typename OpTy>
void populatePatternsForOp(RewritePatternSet &patterns, MLIRContext *ctx,
StringRef floatFunc, StringRef doubleFunc) {
patterns.add<VecOpToScalarOp<OpTy>, PromoteOpToF32<OpTy>>(ctx);
patterns.add<ScalarOpToLibmCall<OpTy>>(ctx, floatFunc, doubleFunc);
}
} // namespace
template <typename Op>
LogicalResult
VecOpToScalarOp<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
auto opType = op.getType();
auto loc = op.getLoc();
auto vecType = dyn_cast<VectorType>(opType);
if (!vecType)
return failure();
if (!vecType.hasRank())
return failure();
auto shape = vecType.getShape();
int64_t numElements = vecType.getNumElements();
Value result = rewriter.create<arith::ConstantOp>(
loc, DenseElementsAttr::get(
vecType, FloatAttr::get(vecType.getElementType(), 0.0)));
SmallVector<int64_t> strides = computeStrides(shape);
for (auto linearIndex = 0; linearIndex < numElements; ++linearIndex) {
SmallVector<int64_t> positions = delinearize(linearIndex, strides);
SmallVector<Value> operands;
for (auto input : op->getOperands())
operands.push_back(
rewriter.create<vector::ExtractOp>(loc, input, positions));
Value scalarOp =
rewriter.create<Op>(loc, vecType.getElementType(), operands);
result =
rewriter.create<vector::InsertOp>(loc, scalarOp, result, positions);
}
rewriter.replaceOp(op, {result});
return success();
}
template <typename Op>
LogicalResult
PromoteOpToF32<Op>::matchAndRewrite(Op op, PatternRewriter &rewriter) const {
auto opType = op.getType();
if (!isa<Float16Type, BFloat16Type>(opType))
return failure();
auto loc = op.getLoc();
auto f32 = rewriter.getF32Type();
auto extendedOperands = llvm::to_vector(
llvm::map_range(op->getOperands(), [&](Value operand) -> Value {
return rewriter.create<arith::ExtFOp>(loc, f32, operand);
}));
auto newOp = rewriter.create<Op>(loc, f32, extendedOperands);
rewriter.replaceOpWithNewOp<arith::TruncFOp>(op, opType, newOp);
return success();
}
template <typename Op>
LogicalResult
ScalarOpToLibmCall<Op>::matchAndRewrite(Op op,
PatternRewriter &rewriter) const {
auto module = SymbolTable::getNearestSymbolTable(op);
auto type = op.getType();
if (!isa<Float32Type, Float64Type>(type))
return failure();
auto name = type.getIntOrFloatBitWidth() == 64 ? doubleFunc : floatFunc;
auto opFunc = dyn_cast_or_null<SymbolOpInterface>(
SymbolTable::lookupSymbolIn(module, name));
// Forward declare function if it hasn't already been
if (!opFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(&module->getRegion(0).front());
auto opFunctionTy = FunctionType::get(
rewriter.getContext(), op->getOperandTypes(), op->getResultTypes());
opFunc = rewriter.create<func::FuncOp>(rewriter.getUnknownLoc(), name,
opFunctionTy);
opFunc.setPrivate();
// By definition Math dialect operations imply LLVM's "readnone"
// function attribute, so we can set it here to provide more
// optimization opportunities (e.g. LICM) for backends targeting LLVM IR.
// This will have to be changed, when strict FP behavior is supported
// by Math dialect.
opFunc->setAttr(LLVM::LLVMDialect::getReadnoneAttrName(),
UnitAttr::get(rewriter.getContext()));
}
assert(isa<FunctionOpInterface>(SymbolTable::lookupSymbolIn(module, name)));
rewriter.replaceOpWithNewOp<func::CallOp>(op, name, op.getType(),
op->getOperands());
return success();
}
void mlir::populateMathToLibmConversionPatterns(RewritePatternSet &patterns) {
MLIRContext *ctx = patterns.getContext();
populatePatternsForOp<math::Atan2Op>(patterns, ctx, "atan2f", "atan2");
populatePatternsForOp<math::AtanOp>(patterns, ctx, "atanf", "atan");
populatePatternsForOp<math::CbrtOp>(patterns, ctx, "cbrtf", "cbrt");
populatePatternsForOp<math::CeilOp>(patterns, ctx, "ceilf", "ceil");
populatePatternsForOp<math::CosOp>(patterns, ctx, "cosf", "cos");
populatePatternsForOp<math::ErfOp>(patterns, ctx, "erff", "erf");
populatePatternsForOp<math::ExpM1Op>(patterns, ctx, "expm1f", "expm1");
populatePatternsForOp<math::FloorOp>(patterns, ctx, "floorf", "floor");
populatePatternsForOp<math::Log1pOp>(patterns, ctx, "log1pf", "log1p");
populatePatternsForOp<math::RoundEvenOp>(patterns, ctx, "roundevenf",
"roundeven");
populatePatternsForOp<math::RoundOp>(patterns, ctx, "roundf", "round");
populatePatternsForOp<math::SinOp>(patterns, ctx, "sinf", "sin");
populatePatternsForOp<math::TanOp>(patterns, ctx, "tanf", "tan");
populatePatternsForOp<math::TanhOp>(patterns, ctx, "tanhf", "tanh");
populatePatternsForOp<math::TruncOp>(patterns, ctx, "truncf", "trunc");
}
namespace {
struct ConvertMathToLibmPass
: public impl::ConvertMathToLibmBase<ConvertMathToLibmPass> {
void runOnOperation() override;
};
} // namespace
void ConvertMathToLibmPass::runOnOperation() {
auto module = getOperation();
RewritePatternSet patterns(&getContext());
populateMathToLibmConversionPatterns(patterns);
ConversionTarget target(getContext());
target.addLegalDialect<arith::ArithDialect, BuiltinDialect, func::FuncDialect,
vector::VectorDialect>();
target.addIllegalDialect<math::MathDialect>();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertMathToLibmPass() {
return std::make_unique<ConvertMathToLibmPass>();
}
|