1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
//===- AllocLikeConversion.cpp - LLVM conversion for alloc operations -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
using namespace mlir;
namespace {
// TODO: Fix the LLVM utilities for looking up functions to take Operation*
// with SymbolTable trait instead of ModuleOp and make similar change here. This
// allows call sites to use getParentWithTrait<OpTrait::SymbolTable> instead
// of getParentOfType<ModuleOp> to pass down the operation.
LLVM::LLVMFuncOp getNotalignedAllocFn(LLVMTypeConverter *typeConverter,
ModuleOp module, Type indexType) {
bool useGenericFn = typeConverter->getOptions().useGenericFunctions;
if (useGenericFn)
return LLVM::lookupOrCreateGenericAllocFn(
module, indexType, typeConverter->useOpaquePointers());
return LLVM::lookupOrCreateMallocFn(module, indexType,
typeConverter->useOpaquePointers());
}
LLVM::LLVMFuncOp getAlignedAllocFn(LLVMTypeConverter *typeConverter,
ModuleOp module, Type indexType) {
bool useGenericFn = typeConverter->getOptions().useGenericFunctions;
if (useGenericFn)
return LLVM::lookupOrCreateGenericAlignedAllocFn(
module, indexType, typeConverter->useOpaquePointers());
return LLVM::lookupOrCreateAlignedAllocFn(module, indexType,
typeConverter->useOpaquePointers());
}
} // end namespace
Value AllocationOpLLVMLowering::createAligned(
ConversionPatternRewriter &rewriter, Location loc, Value input,
Value alignment) {
Value one = createIndexAttrConstant(rewriter, loc, alignment.getType(), 1);
Value bump = rewriter.create<LLVM::SubOp>(loc, alignment, one);
Value bumped = rewriter.create<LLVM::AddOp>(loc, input, bump);
Value mod = rewriter.create<LLVM::URemOp>(loc, bumped, alignment);
return rewriter.create<LLVM::SubOp>(loc, bumped, mod);
}
static Value castAllocFuncResult(ConversionPatternRewriter &rewriter,
Location loc, Value allocatedPtr,
MemRefType memRefType, Type elementPtrType,
LLVMTypeConverter &typeConverter) {
auto allocatedPtrTy = cast<LLVM::LLVMPointerType>(allocatedPtr.getType());
unsigned memrefAddrSpace = *typeConverter.getMemRefAddressSpace(memRefType);
if (allocatedPtrTy.getAddressSpace() != memrefAddrSpace)
allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc,
typeConverter.getPointerType(allocatedPtrTy.getElementType(),
memrefAddrSpace),
allocatedPtr);
if (!typeConverter.useOpaquePointers())
allocatedPtr =
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
return allocatedPtr;
}
std::tuple<Value, Value> AllocationOpLLVMLowering::allocateBufferManuallyAlign(
ConversionPatternRewriter &rewriter, Location loc, Value sizeBytes,
Operation *op, Value alignment) const {
if (alignment) {
// Adjust the allocation size to consider alignment.
sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
}
MemRefType memRefType = getMemRefResultType(op);
// Allocate the underlying buffer.
Type elementPtrType = this->getElementPtrType(memRefType);
LLVM::LLVMFuncOp allocFuncOp = getNotalignedAllocFn(
getTypeConverter(), op->getParentOfType<ModuleOp>(), getIndexType());
auto results = rewriter.create<LLVM::CallOp>(loc, allocFuncOp, sizeBytes);
Value allocatedPtr =
castAllocFuncResult(rewriter, loc, results.getResult(), memRefType,
elementPtrType, *getTypeConverter());
Value alignedPtr = allocatedPtr;
if (alignment) {
// Compute the aligned pointer.
Value allocatedInt =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
Value alignmentInt = createAligned(rewriter, loc, allocatedInt, alignment);
alignedPtr =
rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
}
return std::make_tuple(allocatedPtr, alignedPtr);
}
unsigned AllocationOpLLVMLowering::getMemRefEltSizeInBytes(
MemRefType memRefType, Operation *op,
const DataLayout *defaultLayout) const {
const DataLayout *layout = defaultLayout;
if (const DataLayoutAnalysis *analysis =
getTypeConverter()->getDataLayoutAnalysis()) {
layout = &analysis->getAbove(op);
}
Type elementType = memRefType.getElementType();
if (auto memRefElementType = dyn_cast<MemRefType>(elementType))
return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
*layout);
if (auto memRefElementType = dyn_cast<UnrankedMemRefType>(elementType))
return getTypeConverter()->getUnrankedMemRefDescriptorSize(
memRefElementType, *layout);
return layout->getTypeSize(elementType);
}
bool AllocationOpLLVMLowering::isMemRefSizeMultipleOf(
MemRefType type, uint64_t factor, Operation *op,
const DataLayout *defaultLayout) const {
uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op, defaultLayout);
for (unsigned i = 0, e = type.getRank(); i < e; i++) {
if (type.isDynamicDim(i))
continue;
sizeDivisor = sizeDivisor * type.getDimSize(i);
}
return sizeDivisor % factor == 0;
}
Value AllocationOpLLVMLowering::allocateBufferAutoAlign(
ConversionPatternRewriter &rewriter, Location loc, Value sizeBytes,
Operation *op, const DataLayout *defaultLayout, int64_t alignment) const {
Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
MemRefType memRefType = getMemRefResultType(op);
// Function aligned_alloc requires size to be a multiple of alignment; we pad
// the size to the next multiple if necessary.
if (!isMemRefSizeMultipleOf(memRefType, alignment, op, defaultLayout))
sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
Type elementPtrType = this->getElementPtrType(memRefType);
LLVM::LLVMFuncOp allocFuncOp = getAlignedAllocFn(
getTypeConverter(), op->getParentOfType<ModuleOp>(), getIndexType());
auto results = rewriter.create<LLVM::CallOp>(
loc, allocFuncOp, ValueRange({allocAlignment, sizeBytes}));
return castAllocFuncResult(rewriter, loc, results.getResult(), memRefType,
elementPtrType, *getTypeConverter());
}
void AllocLikeOpLLVMLowering::setRequiresNumElements() {
requiresNumElements = true;
}
LogicalResult AllocLikeOpLLVMLowering::matchAndRewrite(
Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const {
MemRefType memRefType = getMemRefResultType(op);
if (!isConvertibleAndHasIdentityMaps(memRefType))
return rewriter.notifyMatchFailure(op, "incompatible memref type");
auto loc = op->getLoc();
// Get actual sizes of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands. In case of
// zero-dimensional memref, assume a scalar (size 1).
SmallVector<Value, 4> sizes;
SmallVector<Value, 4> strides;
Value size;
this->getMemRefDescriptorSizes(loc, memRefType, operands, rewriter, sizes,
strides, size, !requiresNumElements);
// Allocate the underlying buffer.
auto [allocatedPtr, alignedPtr] =
this->allocateBuffer(rewriter, loc, size, op);
// Create the MemRef descriptor.
auto memRefDescriptor = this->createMemRefDescriptor(
loc, memRefType, allocatedPtr, alignedPtr, sizes, strides, rewriter);
// Return the final value of the descriptor.
rewriter.replaceOp(op, {memRefDescriptor});
return success();
}
|