File: AllocLikeConversion.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (192 lines) | stat: -rw-r--r-- 8,143 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
//===- AllocLikeConversion.cpp - LLVM conversion for alloc operations -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"

using namespace mlir;

namespace {
// TODO: Fix the LLVM utilities for looking up functions to take Operation*
// with SymbolTable trait instead of ModuleOp and make similar change here. This
// allows call sites to use getParentWithTrait<OpTrait::SymbolTable> instead
// of getParentOfType<ModuleOp> to pass down the operation.
LLVM::LLVMFuncOp getNotalignedAllocFn(LLVMTypeConverter *typeConverter,
                                      ModuleOp module, Type indexType) {
  bool useGenericFn = typeConverter->getOptions().useGenericFunctions;

  if (useGenericFn)
    return LLVM::lookupOrCreateGenericAllocFn(
        module, indexType, typeConverter->useOpaquePointers());

  return LLVM::lookupOrCreateMallocFn(module, indexType,
                                      typeConverter->useOpaquePointers());
}

LLVM::LLVMFuncOp getAlignedAllocFn(LLVMTypeConverter *typeConverter,
                                   ModuleOp module, Type indexType) {
  bool useGenericFn = typeConverter->getOptions().useGenericFunctions;

  if (useGenericFn)
    return LLVM::lookupOrCreateGenericAlignedAllocFn(
        module, indexType, typeConverter->useOpaquePointers());

  return LLVM::lookupOrCreateAlignedAllocFn(module, indexType,
                                            typeConverter->useOpaquePointers());
}

} // end namespace

Value AllocationOpLLVMLowering::createAligned(
    ConversionPatternRewriter &rewriter, Location loc, Value input,
    Value alignment) {
  Value one = createIndexAttrConstant(rewriter, loc, alignment.getType(), 1);
  Value bump = rewriter.create<LLVM::SubOp>(loc, alignment, one);
  Value bumped = rewriter.create<LLVM::AddOp>(loc, input, bump);
  Value mod = rewriter.create<LLVM::URemOp>(loc, bumped, alignment);
  return rewriter.create<LLVM::SubOp>(loc, bumped, mod);
}

static Value castAllocFuncResult(ConversionPatternRewriter &rewriter,
                                 Location loc, Value allocatedPtr,
                                 MemRefType memRefType, Type elementPtrType,
                                 LLVMTypeConverter &typeConverter) {
  auto allocatedPtrTy = cast<LLVM::LLVMPointerType>(allocatedPtr.getType());
  unsigned memrefAddrSpace = *typeConverter.getMemRefAddressSpace(memRefType);
  if (allocatedPtrTy.getAddressSpace() != memrefAddrSpace)
    allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
        loc,
        typeConverter.getPointerType(allocatedPtrTy.getElementType(),
                                     memrefAddrSpace),
        allocatedPtr);

  if (!typeConverter.useOpaquePointers())
    allocatedPtr =
        rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
  return allocatedPtr;
}

std::tuple<Value, Value> AllocationOpLLVMLowering::allocateBufferManuallyAlign(
    ConversionPatternRewriter &rewriter, Location loc, Value sizeBytes,
    Operation *op, Value alignment) const {
  if (alignment) {
    // Adjust the allocation size to consider alignment.
    sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
  }

  MemRefType memRefType = getMemRefResultType(op);
  // Allocate the underlying buffer.
  Type elementPtrType = this->getElementPtrType(memRefType);
  LLVM::LLVMFuncOp allocFuncOp = getNotalignedAllocFn(
      getTypeConverter(), op->getParentOfType<ModuleOp>(), getIndexType());
  auto results = rewriter.create<LLVM::CallOp>(loc, allocFuncOp, sizeBytes);

  Value allocatedPtr =
      castAllocFuncResult(rewriter, loc, results.getResult(), memRefType,
                          elementPtrType, *getTypeConverter());

  Value alignedPtr = allocatedPtr;
  if (alignment) {
    // Compute the aligned pointer.
    Value allocatedInt =
        rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
    Value alignmentInt = createAligned(rewriter, loc, allocatedInt, alignment);
    alignedPtr =
        rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
  }

  return std::make_tuple(allocatedPtr, alignedPtr);
}

unsigned AllocationOpLLVMLowering::getMemRefEltSizeInBytes(
    MemRefType memRefType, Operation *op,
    const DataLayout *defaultLayout) const {
  const DataLayout *layout = defaultLayout;
  if (const DataLayoutAnalysis *analysis =
          getTypeConverter()->getDataLayoutAnalysis()) {
    layout = &analysis->getAbove(op);
  }
  Type elementType = memRefType.getElementType();
  if (auto memRefElementType = dyn_cast<MemRefType>(elementType))
    return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
                                                       *layout);
  if (auto memRefElementType = dyn_cast<UnrankedMemRefType>(elementType))
    return getTypeConverter()->getUnrankedMemRefDescriptorSize(
        memRefElementType, *layout);
  return layout->getTypeSize(elementType);
}

bool AllocationOpLLVMLowering::isMemRefSizeMultipleOf(
    MemRefType type, uint64_t factor, Operation *op,
    const DataLayout *defaultLayout) const {
  uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op, defaultLayout);
  for (unsigned i = 0, e = type.getRank(); i < e; i++) {
    if (type.isDynamicDim(i))
      continue;
    sizeDivisor = sizeDivisor * type.getDimSize(i);
  }
  return sizeDivisor % factor == 0;
}

Value AllocationOpLLVMLowering::allocateBufferAutoAlign(
    ConversionPatternRewriter &rewriter, Location loc, Value sizeBytes,
    Operation *op, const DataLayout *defaultLayout, int64_t alignment) const {
  Value allocAlignment = createIndexConstant(rewriter, loc, alignment);

  MemRefType memRefType = getMemRefResultType(op);
  // Function aligned_alloc requires size to be a multiple of alignment; we pad
  // the size to the next multiple if necessary.
  if (!isMemRefSizeMultipleOf(memRefType, alignment, op, defaultLayout))
    sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);

  Type elementPtrType = this->getElementPtrType(memRefType);
  LLVM::LLVMFuncOp allocFuncOp = getAlignedAllocFn(
      getTypeConverter(), op->getParentOfType<ModuleOp>(), getIndexType());
  auto results = rewriter.create<LLVM::CallOp>(
      loc, allocFuncOp, ValueRange({allocAlignment, sizeBytes}));

  return castAllocFuncResult(rewriter, loc, results.getResult(), memRefType,
                             elementPtrType, *getTypeConverter());
}

void AllocLikeOpLLVMLowering::setRequiresNumElements() {
  requiresNumElements = true;
}

LogicalResult AllocLikeOpLLVMLowering::matchAndRewrite(
    Operation *op, ArrayRef<Value> operands,
    ConversionPatternRewriter &rewriter) const {
  MemRefType memRefType = getMemRefResultType(op);
  if (!isConvertibleAndHasIdentityMaps(memRefType))
    return rewriter.notifyMatchFailure(op, "incompatible memref type");
  auto loc = op->getLoc();

  // Get actual sizes of the memref as values: static sizes are constant
  // values and dynamic sizes are passed to 'alloc' as operands.  In case of
  // zero-dimensional memref, assume a scalar (size 1).
  SmallVector<Value, 4> sizes;
  SmallVector<Value, 4> strides;
  Value size;

  this->getMemRefDescriptorSizes(loc, memRefType, operands, rewriter, sizes,
                                 strides, size, !requiresNumElements);

  // Allocate the underlying buffer.
  auto [allocatedPtr, alignedPtr] =
      this->allocateBuffer(rewriter, loc, size, op);

  // Create the MemRef descriptor.
  auto memRefDescriptor = this->createMemRefDescriptor(
      loc, memRefType, allocatedPtr, alignedPtr, sizes, strides, rewriter);

  // Return the final value of the descriptor.
  rewriter.replaceOp(op, {memRefDescriptor});
  return success();
}