File: MemRefToLLVM.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1924 lines) | stat: -rw-r--r-- 82,662 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
//===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"

#include "mlir/Analysis/DataLayoutAnalysis.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include <optional>

namespace mlir {
#define GEN_PASS_DEF_FINALIZEMEMREFTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {

bool isStaticStrideOrOffset(int64_t strideOrOffset) {
  return !ShapedType::isDynamic(strideOrOffset);
}

LLVM::LLVMFuncOp getFreeFn(LLVMTypeConverter *typeConverter, ModuleOp module) {
  bool useGenericFn = typeConverter->getOptions().useGenericFunctions;

  if (useGenericFn)
    return LLVM::lookupOrCreateGenericFreeFn(
        module, typeConverter->useOpaquePointers());

  return LLVM::lookupOrCreateFreeFn(module, typeConverter->useOpaquePointers());
}

struct AllocOpLowering : public AllocLikeOpLLVMLowering {
  AllocOpLowering(LLVMTypeConverter &converter)
      : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
                                converter) {}
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value sizeBytes,
                                          Operation *op) const override {
    return allocateBufferManuallyAlign(
        rewriter, loc, sizeBytes, op,
        getAlignment(rewriter, loc, cast<memref::AllocOp>(op)));
  }
};

struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
  AlignedAllocOpLowering(LLVMTypeConverter &converter)
      : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
                                converter) {}
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value sizeBytes,
                                          Operation *op) const override {
    Value ptr = allocateBufferAutoAlign(
        rewriter, loc, sizeBytes, op, &defaultLayout,
        alignedAllocationGetAlignment(rewriter, loc, cast<memref::AllocOp>(op),
                                      &defaultLayout));
    return std::make_tuple(ptr, ptr);
  }

private:
  /// Default layout to use in absence of the corresponding analysis.
  DataLayout defaultLayout;
};

struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
  AllocaOpLowering(LLVMTypeConverter &converter)
      : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
                                converter) {
    setRequiresNumElements();
  }

  /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
  /// is set to null for stack allocations. `accessAlignment` is set if
  /// alignment is needed post allocation (for eg. in conjunction with malloc).
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value size,
                                          Operation *op) const override {

    // With alloca, one gets a pointer to the element type right away.
    // For stack allocations.
    auto allocaOp = cast<memref::AllocaOp>(op);
    auto elementType =
        typeConverter->convertType(allocaOp.getType().getElementType());
    unsigned addrSpace =
        *getTypeConverter()->getMemRefAddressSpace(allocaOp.getType());
    auto elementPtrType =
        getTypeConverter()->getPointerType(elementType, addrSpace);

    auto allocatedElementPtr =
        rewriter.create<LLVM::AllocaOp>(loc, elementPtrType, elementType, size,
                                        allocaOp.getAlignment().value_or(0));

    return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
  }
};

/// The base class for lowering realloc op, to support the implementation of
/// realloc via allocation methods that may or may not support alignment.
/// A derived class should provide an implementation of allocateBuffer using
/// the underline allocation methods.
struct ReallocOpLoweringBase : public AllocationOpLLVMLowering {
  using OpAdaptor = typename memref::ReallocOp::Adaptor;

  ReallocOpLoweringBase(LLVMTypeConverter &converter)
      : AllocationOpLLVMLowering(memref::ReallocOp::getOperationName(),
                                 converter) {}

  /// Allocates the new buffer. Returns the allocated pointer and the
  /// aligned pointer.
  virtual std::tuple<Value, Value>
  allocateBuffer(ConversionPatternRewriter &rewriter, Location loc,
                 Value sizeBytes, memref::ReallocOp op) const = 0;

  LogicalResult
  matchAndRewrite(Operation *op, ArrayRef<Value> operands,
                  ConversionPatternRewriter &rewriter) const final {
    auto reallocOp = cast<memref::ReallocOp>(op);
    return matchAndRewrite(reallocOp,
                           OpAdaptor(operands,
                                     op->getDiscardableAttrDictionary(),
                                     reallocOp.getProperties()),
                           rewriter);
  }

  // A `realloc` is converted as follows:
  //   If new_size > old_size
  //     1. allocates a new buffer
  //     2. copies the content of the old buffer to the new buffer
  //     3. release the old buffer
  //     3. updates the buffer pointers in the memref descriptor
  //   Update the size in the memref descriptor
  // Alignment request is handled by allocating `alignment` more bytes than
  // requested and shifting the aligned pointer relative to the allocated
  // memory.
  LogicalResult matchAndRewrite(memref::ReallocOp op, OpAdaptor adaptor,
                                ConversionPatternRewriter &rewriter) const {
    OpBuilder::InsertionGuard guard(rewriter);
    Location loc = op.getLoc();

    auto computeNumElements =
        [&](MemRefType type, function_ref<Value()> getDynamicSize) -> Value {
      // Compute number of elements.
      Value numElements =
          type.isDynamicDim(0)
              ? getDynamicSize()
              : createIndexConstant(rewriter, loc, type.getDimSize(0));
      Type indexType = getIndexType();
      if (numElements.getType() != indexType)
        numElements = typeConverter->materializeTargetConversion(
            rewriter, loc, indexType, numElements);
      return numElements;
    };

    MemRefDescriptor desc(adaptor.getSource());
    Value oldDesc = desc;

    // Split the block right before the current op into two blocks.
    Block *currentBlock = rewriter.getInsertionBlock();
    Block *block =
        rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
    // Add a block argument by creating an empty block with the argument type
    // and then merging the block into the empty block.
    Block *endBlock = rewriter.createBlock(
        block->getParent(), Region::iterator(block), oldDesc.getType(), loc);
    rewriter.mergeBlocks(block, endBlock, {});
    // Add a new block for the true branch of the conditional statement we will
    // add.
    Block *trueBlock = rewriter.createBlock(
        currentBlock->getParent(), std::next(Region::iterator(currentBlock)));

    rewriter.setInsertionPointToEnd(currentBlock);
    Value src = op.getSource();
    auto srcType = dyn_cast<MemRefType>(src.getType());
    Value srcNumElements = computeNumElements(
        srcType, [&]() -> Value { return desc.size(rewriter, loc, 0); });
    auto dstType = cast<MemRefType>(op.getType());
    Value dstNumElements = computeNumElements(
        dstType, [&]() -> Value { return op.getDynamicResultSize(); });
    Value cond = rewriter.create<LLVM::ICmpOp>(
        loc, IntegerType::get(rewriter.getContext(), 1),
        LLVM::ICmpPredicate::ugt, dstNumElements, srcNumElements);
    rewriter.create<LLVM::CondBrOp>(loc, cond, trueBlock, ArrayRef<Value>(),
                                    endBlock, ValueRange{oldDesc});

    rewriter.setInsertionPointToStart(trueBlock);
    Value sizeInBytes = getSizeInBytes(loc, dstType.getElementType(), rewriter);
    // Compute total byte size.
    auto dstByteSize =
        rewriter.create<LLVM::MulOp>(loc, dstNumElements, sizeInBytes);
    // Since the src and dst memref are guarantee to have the same
    // element type by the verifier, it is safe here to reuse the
    // type size computed from dst memref.
    auto srcByteSize =
        rewriter.create<LLVM::MulOp>(loc, srcNumElements, sizeInBytes);
    // Allocate a new buffer.
    auto [dstRawPtr, dstAlignedPtr] =
        allocateBuffer(rewriter, loc, dstByteSize, op);
    // Copy the data from the old buffer to the new buffer.
    Value srcAlignedPtr = desc.alignedPtr(rewriter, loc);
    auto toVoidPtr = [&](Value ptr) -> Value {
      if (getTypeConverter()->useOpaquePointers())
        return ptr;
      return rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr);
    };
    rewriter.create<LLVM::MemcpyOp>(loc, toVoidPtr(dstAlignedPtr),
                                    toVoidPtr(srcAlignedPtr), srcByteSize,
                                    /*isVolatile=*/false);
    // Deallocate the old buffer.
    LLVM::LLVMFuncOp freeFunc =
        getFreeFn(getTypeConverter(), op->getParentOfType<ModuleOp>());
    rewriter.create<LLVM::CallOp>(loc, freeFunc,
                                  toVoidPtr(desc.allocatedPtr(rewriter, loc)));
    // Replace the old buffer addresses in the MemRefDescriptor with the new
    // buffer addresses.
    desc.setAllocatedPtr(rewriter, loc, dstRawPtr);
    desc.setAlignedPtr(rewriter, loc, dstAlignedPtr);
    rewriter.create<LLVM::BrOp>(loc, Value(desc), endBlock);

    rewriter.setInsertionPoint(op);
    // Update the memref size.
    MemRefDescriptor newDesc(endBlock->getArgument(0));
    newDesc.setSize(rewriter, loc, 0, dstNumElements);
    rewriter.replaceOp(op, {newDesc});
    return success();
  }

private:
  using ConvertToLLVMPattern::matchAndRewrite;
};

struct ReallocOpLowering : public ReallocOpLoweringBase {
  ReallocOpLowering(LLVMTypeConverter &converter)
      : ReallocOpLoweringBase(converter) {}
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value sizeBytes,
                                          memref::ReallocOp op) const override {
    return allocateBufferManuallyAlign(rewriter, loc, sizeBytes, op,
                                       getAlignment(rewriter, loc, op));
  }
};

struct AlignedReallocOpLowering : public ReallocOpLoweringBase {
  AlignedReallocOpLowering(LLVMTypeConverter &converter)
      : ReallocOpLoweringBase(converter) {}
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value sizeBytes,
                                          memref::ReallocOp op) const override {
    Value ptr = allocateBufferAutoAlign(
        rewriter, loc, sizeBytes, op, &defaultLayout,
        alignedAllocationGetAlignment(rewriter, loc, op, &defaultLayout));
    return std::make_tuple(ptr, ptr);
  }

private:
  /// Default layout to use in absence of the corresponding analysis.
  DataLayout defaultLayout;
};

struct AllocaScopeOpLowering
    : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
  using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    OpBuilder::InsertionGuard guard(rewriter);
    Location loc = allocaScopeOp.getLoc();

    // Split the current block before the AllocaScopeOp to create the inlining
    // point.
    auto *currentBlock = rewriter.getInsertionBlock();
    auto *remainingOpsBlock =
        rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
    Block *continueBlock;
    if (allocaScopeOp.getNumResults() == 0) {
      continueBlock = remainingOpsBlock;
    } else {
      continueBlock = rewriter.createBlock(
          remainingOpsBlock, allocaScopeOp.getResultTypes(),
          SmallVector<Location>(allocaScopeOp->getNumResults(),
                                allocaScopeOp.getLoc()));
      rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
    }

    // Inline body region.
    Block *beforeBody = &allocaScopeOp.getBodyRegion().front();
    Block *afterBody = &allocaScopeOp.getBodyRegion().back();
    rewriter.inlineRegionBefore(allocaScopeOp.getBodyRegion(), continueBlock);

    // Save stack and then branch into the body of the region.
    rewriter.setInsertionPointToEnd(currentBlock);
    auto stackSaveOp =
        rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
    rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);

    // Replace the alloca_scope return with a branch that jumps out of the body.
    // Stack restore before leaving the body region.
    rewriter.setInsertionPointToEnd(afterBody);
    auto returnOp =
        cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
    auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
        returnOp, returnOp.getResults(), continueBlock);

    // Insert stack restore before jumping out the body of the region.
    rewriter.setInsertionPoint(branchOp);
    rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);

    // Replace the op with values return from the body region.
    rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());

    return success();
  }
};

struct AssumeAlignmentOpLowering
    : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
  using ConvertOpToLLVMPattern<
      memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
  explicit AssumeAlignmentOpLowering(LLVMTypeConverter &converter)
      : ConvertOpToLLVMPattern<memref::AssumeAlignmentOp>(converter) {}

  LogicalResult
  matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value memref = adaptor.getMemref();
    unsigned alignment = op.getAlignment();
    auto loc = op.getLoc();

    auto srcMemRefType = cast<MemRefType>(op.getMemref().getType());
    Value ptr = getStridedElementPtr(loc, srcMemRefType, memref, /*indices=*/{},
                                     rewriter);

    // Emit llvm.assume(memref & (alignment - 1) == 0).
    //
    // This relies on LLVM's CSE optimization (potentially after SROA), since
    // after CSE all memref instances should get de-duplicated into the same
    // pointer SSA value.
    MemRefDescriptor memRefDescriptor(memref);
    auto intPtrType =
        getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
    Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
    Value mask =
        createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
    Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
    rewriter.create<LLVM::AssumeOp>(
        loc, rewriter.create<LLVM::ICmpOp>(
                 loc, LLVM::ICmpPredicate::eq,
                 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));

    rewriter.eraseOp(op);
    return success();
  }
};

// A `dealloc` is converted into a call to `free` on the underlying data buffer.
// The memref descriptor being an SSA value, there is no need to clean it up
// in any way.
struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
  using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;

  explicit DeallocOpLowering(LLVMTypeConverter &converter)
      : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}

  LogicalResult
  matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Insert the `free` declaration if it is not already present.
    LLVM::LLVMFuncOp freeFunc =
        getFreeFn(getTypeConverter(), op->getParentOfType<ModuleOp>());
    Value allocatedPtr;
    if (auto unrankedTy =
            llvm::dyn_cast<UnrankedMemRefType>(op.getMemref().getType())) {
      Type elementType = unrankedTy.getElementType();
      Type llvmElementTy = getTypeConverter()->convertType(elementType);
      LLVM::LLVMPointerType elementPtrTy = getTypeConverter()->getPointerType(
          llvmElementTy, unrankedTy.getMemorySpaceAsInt());
      allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
          rewriter, op.getLoc(),
          UnrankedMemRefDescriptor(adaptor.getMemref())
              .memRefDescPtr(rewriter, op.getLoc()),
          elementPtrTy);
    } else {
      allocatedPtr = MemRefDescriptor(adaptor.getMemref())
                         .allocatedPtr(rewriter, op.getLoc());
    }
    if (!getTypeConverter()->useOpaquePointers())
      allocatedPtr = rewriter.create<LLVM::BitcastOp>(
          op.getLoc(), getVoidPtrType(), allocatedPtr);

    rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, freeFunc, allocatedPtr);
    return success();
  }
};

// A `dim` is converted to a constant for static sizes and to an access to the
// size stored in the memref descriptor for dynamic sizes.
struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
  using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type operandType = dimOp.getSource().getType();
    if (isa<UnrankedMemRefType>(operandType)) {
      FailureOr<Value> extractedSize = extractSizeOfUnrankedMemRef(
          operandType, dimOp, adaptor.getOperands(), rewriter);
      if (failed(extractedSize))
        return failure();
      rewriter.replaceOp(dimOp, {*extractedSize});
      return success();
    }
    if (isa<MemRefType>(operandType)) {
      rewriter.replaceOp(
          dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
                                            adaptor.getOperands(), rewriter)});
      return success();
    }
    llvm_unreachable("expected MemRefType or UnrankedMemRefType");
  }

private:
  FailureOr<Value>
  extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
                              OpAdaptor adaptor,
                              ConversionPatternRewriter &rewriter) const {
    Location loc = dimOp.getLoc();

    auto unrankedMemRefType = cast<UnrankedMemRefType>(operandType);
    auto scalarMemRefType =
        MemRefType::get({}, unrankedMemRefType.getElementType());
    FailureOr<unsigned> maybeAddressSpace =
        getTypeConverter()->getMemRefAddressSpace(unrankedMemRefType);
    if (failed(maybeAddressSpace)) {
      dimOp.emitOpError("memref memory space must be convertible to an integer "
                        "address space");
      return failure();
    }
    unsigned addressSpace = *maybeAddressSpace;

    // Extract pointer to the underlying ranked descriptor and bitcast it to a
    // memref<element_type> descriptor pointer to minimize the number of GEP
    // operations.
    UnrankedMemRefDescriptor unrankedDesc(adaptor.getSource());
    Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);

    Type elementType = typeConverter->convertType(scalarMemRefType);
    Value scalarMemRefDescPtr;
    if (getTypeConverter()->useOpaquePointers())
      scalarMemRefDescPtr = underlyingRankedDesc;
    else
      scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
          loc, LLVM::LLVMPointerType::get(elementType, addressSpace),
          underlyingRankedDesc);

    // Get pointer to offset field of memref<element_type> descriptor.
    Type indexPtrTy = getTypeConverter()->getPointerType(
        getTypeConverter()->getIndexType(), addressSpace);
    Value offsetPtr = rewriter.create<LLVM::GEPOp>(
        loc, indexPtrTy, elementType, scalarMemRefDescPtr,
        ArrayRef<LLVM::GEPArg>{0, 2});

    // The size value that we have to extract can be obtained using GEPop with
    // `dimOp.index() + 1` index argument.
    Value idxPlusOne = rewriter.create<LLVM::AddOp>(
        loc, createIndexConstant(rewriter, loc, 1), adaptor.getIndex());
    Value sizePtr = rewriter.create<LLVM::GEPOp>(
        loc, indexPtrTy, getTypeConverter()->getIndexType(), offsetPtr,
        idxPlusOne);
    return rewriter
        .create<LLVM::LoadOp>(loc, getTypeConverter()->getIndexType(), sizePtr)
        .getResult();
  }

  std::optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
    if (auto idx = dimOp.getConstantIndex())
      return idx;

    if (auto constantOp = dimOp.getIndex().getDefiningOp<LLVM::ConstantOp>())
      return cast<IntegerAttr>(constantOp.getValue()).getValue().getSExtValue();

    return std::nullopt;
  }

  Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
                                  OpAdaptor adaptor,
                                  ConversionPatternRewriter &rewriter) const {
    Location loc = dimOp.getLoc();

    // Take advantage if index is constant.
    MemRefType memRefType = cast<MemRefType>(operandType);
    if (std::optional<int64_t> index = getConstantDimIndex(dimOp)) {
      int64_t i = *index;
      if (i >= 0 && i < memRefType.getRank()) {
        if (memRefType.isDynamicDim(i)) {
          // extract dynamic size from the memref descriptor.
          MemRefDescriptor descriptor(adaptor.getSource());
          return descriptor.size(rewriter, loc, i);
        }
        // Use constant for static size.
        int64_t dimSize = memRefType.getDimSize(i);
        return createIndexConstant(rewriter, loc, dimSize);
      }
    }
    Value index = adaptor.getIndex();
    int64_t rank = memRefType.getRank();
    MemRefDescriptor memrefDescriptor(adaptor.getSource());
    return memrefDescriptor.size(rewriter, loc, index, rank);
  }
};

/// Common base for load and store operations on MemRefs. Restricts the match
/// to supported MemRef types. Provides functionality to emit code accessing a
/// specific element of the underlying data buffer.
template <typename Derived>
struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
  using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
  using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
  using Base = LoadStoreOpLowering<Derived>;

  LogicalResult match(Derived op) const override {
    MemRefType type = op.getMemRefType();
    return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
  }
};

/// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be
/// retried until it succeeds in atomically storing a new value into memory.
///
///      +---------------------------------+
///      |   <code before the AtomicRMWOp> |
///      |   <compute initial %loaded>     |
///      |   cf.br loop(%loaded)              |
///      +---------------------------------+
///             |
///  -------|   |
///  |      v   v
///  |   +--------------------------------+
///  |   | loop(%loaded):                 |
///  |   |   <body contents>              |
///  |   |   %pair = cmpxchg              |
///  |   |   %ok = %pair[0]               |
///  |   |   %new = %pair[1]              |
///  |   |   cf.cond_br %ok, end, loop(%new) |
///  |   +--------------------------------+
///  |          |        |
///  |-----------        |
///                      v
///      +--------------------------------+
///      | end:                           |
///      |   <code after the AtomicRMWOp> |
///      +--------------------------------+
///
struct GenericAtomicRMWOpLowering
    : public LoadStoreOpLowering<memref::GenericAtomicRMWOp> {
  using Base::Base;

  LogicalResult
  matchAndRewrite(memref::GenericAtomicRMWOp atomicOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = atomicOp.getLoc();
    Type valueType = typeConverter->convertType(atomicOp.getResult().getType());

    // Split the block into initial, loop, and ending parts.
    auto *initBlock = rewriter.getInsertionBlock();
    auto *loopBlock = rewriter.splitBlock(initBlock, Block::iterator(atomicOp));
    loopBlock->addArgument(valueType, loc);

    auto *endBlock =
        rewriter.splitBlock(loopBlock, Block::iterator(atomicOp)++);

    // Compute the loaded value and branch to the loop block.
    rewriter.setInsertionPointToEnd(initBlock);
    auto memRefType = cast<MemRefType>(atomicOp.getMemref().getType());
    auto dataPtr = getStridedElementPtr(loc, memRefType, adaptor.getMemref(),
                                        adaptor.getIndices(), rewriter);
    Value init = rewriter.create<LLVM::LoadOp>(
        loc, typeConverter->convertType(memRefType.getElementType()), dataPtr);
    rewriter.create<LLVM::BrOp>(loc, init, loopBlock);

    // Prepare the body of the loop block.
    rewriter.setInsertionPointToStart(loopBlock);

    // Clone the GenericAtomicRMWOp region and extract the result.
    auto loopArgument = loopBlock->getArgument(0);
    IRMapping mapping;
    mapping.map(atomicOp.getCurrentValue(), loopArgument);
    Block &entryBlock = atomicOp.body().front();
    for (auto &nestedOp : entryBlock.without_terminator()) {
      Operation *clone = rewriter.clone(nestedOp, mapping);
      mapping.map(nestedOp.getResults(), clone->getResults());
    }
    Value result = mapping.lookup(entryBlock.getTerminator()->getOperand(0));

    // Prepare the epilog of the loop block.
    // Append the cmpxchg op to the end of the loop block.
    auto successOrdering = LLVM::AtomicOrdering::acq_rel;
    auto failureOrdering = LLVM::AtomicOrdering::monotonic;
    auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>(
        loc, dataPtr, loopArgument, result, successOrdering, failureOrdering);
    // Extract the %new_loaded and %ok values from the pair.
    Value newLoaded = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 0);
    Value ok = rewriter.create<LLVM::ExtractValueOp>(loc, cmpxchg, 1);

    // Conditionally branch to the end or back to the loop depending on %ok.
    rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(),
                                    loopBlock, newLoaded);

    rewriter.setInsertionPointToEnd(endBlock);

    // The 'result' of the atomic_rmw op is the newly loaded value.
    rewriter.replaceOp(atomicOp, {newLoaded});

    return success();
  }
};

/// Returns the LLVM type of the global variable given the memref type `type`.
static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
                                          LLVMTypeConverter &typeConverter) {
  // LLVM type for a global memref will be a multi-dimension array. For
  // declarations or uninitialized global memrefs, we can potentially flatten
  // this to a 1D array. However, for memref.global's with an initial value,
  // we do not intend to flatten the ElementsAttribute when going from std ->
  // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
  Type elementType = typeConverter.convertType(type.getElementType());
  Type arrayTy = elementType;
  // Shape has the outermost dim at index 0, so need to walk it backwards
  for (int64_t dim : llvm::reverse(type.getShape()))
    arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
  return arrayTy;
}

/// GlobalMemrefOp is lowered to a LLVM Global Variable.
struct GlobalMemrefOpLowering
    : public ConvertOpToLLVMPattern<memref::GlobalOp> {
  using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefType type = global.getType();
    if (!isConvertibleAndHasIdentityMaps(type))
      return failure();

    Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());

    LLVM::Linkage linkage =
        global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;

    Attribute initialValue = nullptr;
    if (!global.isExternal() && !global.isUninitialized()) {
      auto elementsAttr = llvm::cast<ElementsAttr>(*global.getInitialValue());
      initialValue = elementsAttr;

      // For scalar memrefs, the global variable created is of the element type,
      // so unpack the elements attribute to extract the value.
      if (type.getRank() == 0)
        initialValue = elementsAttr.getSplatValue<Attribute>();
    }

    uint64_t alignment = global.getAlignment().value_or(0);
    FailureOr<unsigned> addressSpace =
        getTypeConverter()->getMemRefAddressSpace(type);
    if (failed(addressSpace))
      return global.emitOpError(
          "memory space cannot be converted to an integer address space");
    auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
        global, arrayTy, global.getConstant(), linkage, global.getSymName(),
        initialValue, alignment, *addressSpace);
    if (!global.isExternal() && global.isUninitialized()) {
      Block *blk = new Block();
      newGlobal.getInitializerRegion().push_back(blk);
      rewriter.setInsertionPointToStart(blk);
      Value undef[] = {
          rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
      rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
    }
    return success();
  }
};

/// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
/// the first element stashed into the descriptor. This reuses
/// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
  GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
      : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
                                converter) {}

  /// Buffer "allocation" for memref.get_global op is getting the address of
  /// the global variable referenced.
  std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
                                          Location loc, Value sizeBytes,
                                          Operation *op) const override {
    auto getGlobalOp = cast<memref::GetGlobalOp>(op);
    MemRefType type = cast<MemRefType>(getGlobalOp.getResult().getType());

    // This is called after a type conversion, which would have failed if this
    // call fails.
    unsigned memSpace = *getTypeConverter()->getMemRefAddressSpace(type);

    Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
    Type resTy = getTypeConverter()->getPointerType(arrayTy, memSpace);
    auto addressOf =
        rewriter.create<LLVM::AddressOfOp>(loc, resTy, getGlobalOp.getName());

    // Get the address of the first element in the array by creating a GEP with
    // the address of the GV as the base, and (rank + 1) number of 0 indices.
    Type elementType = typeConverter->convertType(type.getElementType());
    Type elementPtrType =
        getTypeConverter()->getPointerType(elementType, memSpace);

    auto gep = rewriter.create<LLVM::GEPOp>(
        loc, elementPtrType, arrayTy, addressOf,
        SmallVector<LLVM::GEPArg>(type.getRank() + 1, 0));

    // We do not expect the memref obtained using `memref.get_global` to be
    // ever deallocated. Set the allocated pointer to be known bad value to
    // help debug if that ever happens.
    auto intPtrType = getIntPtrType(memSpace);
    Value deadBeefConst =
        createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
    auto deadBeefPtr =
        rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);

    // Both allocated and aligned pointers are same. We could potentially stash
    // a nullptr for the allocated pointer since we do not expect any dealloc.
    return std::make_tuple(deadBeefPtr, gep);
  }
};

// Load operation is lowered to obtaining a pointer to the indexed element
// and loading it.
struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
  using Base::Base;

  LogicalResult
  matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = loadOp.getMemRefType();

    Value dataPtr =
        getStridedElementPtr(loadOp.getLoc(), type, adaptor.getMemref(),
                             adaptor.getIndices(), rewriter);
    rewriter.replaceOpWithNewOp<LLVM::LoadOp>(
        loadOp, typeConverter->convertType(type.getElementType()), dataPtr, 0,
        false, loadOp.getNontemporal());
    return success();
  }
};

// Store operation is lowered to obtaining a pointer to the indexed element,
// and storing the given value to it.
struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
  using Base::Base;

  LogicalResult
  matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = op.getMemRefType();

    Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.getMemref(),
                                         adaptor.getIndices(), rewriter);
    rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.getValue(), dataPtr,
                                               0, false, op.getNontemporal());
    return success();
  }
};

// The prefetch operation is lowered in a way similar to the load operation
// except that the llvm.prefetch operation is used for replacement.
struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
  using Base::Base;

  LogicalResult
  matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto type = prefetchOp.getMemRefType();
    auto loc = prefetchOp.getLoc();

    Value dataPtr = getStridedElementPtr(loc, type, adaptor.getMemref(),
                                         adaptor.getIndices(), rewriter);

    // Replace with llvm.prefetch.
    IntegerAttr isWrite = rewriter.getI32IntegerAttr(prefetchOp.getIsWrite());
    IntegerAttr localityHint = prefetchOp.getLocalityHintAttr();
    IntegerAttr isData =
        rewriter.getI32IntegerAttr(prefetchOp.getIsDataCache());
    rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
                                                localityHint, isData);
    return success();
  }
};

struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
  using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    Type operandType = op.getMemref().getType();
    if (auto unrankedMemRefType = dyn_cast<UnrankedMemRefType>(operandType)) {
      UnrankedMemRefDescriptor desc(adaptor.getMemref());
      rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
      return success();
    }
    if (auto rankedMemRefType = dyn_cast<MemRefType>(operandType)) {
      rewriter.replaceOp(
          op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())});
      return success();
    }
    return failure();
  }
};

struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
  using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;

  LogicalResult match(memref::CastOp memRefCastOp) const override {
    Type srcType = memRefCastOp.getOperand().getType();
    Type dstType = memRefCastOp.getType();

    // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
    // used for type erasure. For now they must preserve underlying element type
    // and require source and result type to have the same rank. Therefore,
    // perform a sanity check that the underlying structs are the same. Once op
    // semantics are relaxed we can revisit.
    if (isa<MemRefType>(srcType) && isa<MemRefType>(dstType))
      return success(typeConverter->convertType(srcType) ==
                     typeConverter->convertType(dstType));

    // At least one of the operands is unranked type
    assert(isa<UnrankedMemRefType>(srcType) ||
           isa<UnrankedMemRefType>(dstType));

    // Unranked to unranked cast is disallowed
    return !(isa<UnrankedMemRefType>(srcType) &&
             isa<UnrankedMemRefType>(dstType))
               ? success()
               : failure();
  }

  void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
               ConversionPatternRewriter &rewriter) const override {
    auto srcType = memRefCastOp.getOperand().getType();
    auto dstType = memRefCastOp.getType();
    auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
    auto loc = memRefCastOp.getLoc();

    // For ranked/ranked case, just keep the original descriptor.
    if (isa<MemRefType>(srcType) && isa<MemRefType>(dstType))
      return rewriter.replaceOp(memRefCastOp, {adaptor.getSource()});

    if (isa<MemRefType>(srcType) && isa<UnrankedMemRefType>(dstType)) {
      // Casting ranked to unranked memref type
      // Set the rank in the destination from the memref type
      // Allocate space on the stack and copy the src memref descriptor
      // Set the ptr in the destination to the stack space
      auto srcMemRefType = cast<MemRefType>(srcType);
      int64_t rank = srcMemRefType.getRank();
      // ptr = AllocaOp sizeof(MemRefDescriptor)
      auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
          loc, adaptor.getSource(), rewriter);

      // voidptr = BitCastOp srcType* to void*
      Value voidPtr;
      if (getTypeConverter()->useOpaquePointers())
        voidPtr = ptr;
      else
        voidPtr = rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr);

      // rank = ConstantOp srcRank
      auto rankVal = rewriter.create<LLVM::ConstantOp>(
          loc, getIndexType(), rewriter.getIndexAttr(rank));
      // undef = UndefOp
      UnrankedMemRefDescriptor memRefDesc =
          UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
      // d1 = InsertValueOp undef, rank, 0
      memRefDesc.setRank(rewriter, loc, rankVal);
      // d2 = InsertValueOp d1, voidptr, 1
      memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
      rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);

    } else if (isa<UnrankedMemRefType>(srcType) && isa<MemRefType>(dstType)) {
      // Casting from unranked type to ranked.
      // The operation is assumed to be doing a correct cast. If the destination
      // type mismatches the unranked the type, it is undefined behavior.
      UnrankedMemRefDescriptor memRefDesc(adaptor.getSource());
      // ptr = ExtractValueOp src, 1
      auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
      // castPtr = BitCastOp i8* to structTy*
      Value castPtr;
      if (getTypeConverter()->useOpaquePointers())
        castPtr = ptr;
      else
        castPtr = rewriter.create<LLVM::BitcastOp>(
            loc, LLVM::LLVMPointerType::get(targetStructType), ptr);

      // struct = LoadOp castPtr
      auto loadOp =
          rewriter.create<LLVM::LoadOp>(loc, targetStructType, castPtr);
      rewriter.replaceOp(memRefCastOp, loadOp.getResult());
    } else {
      llvm_unreachable("Unsupported unranked memref to unranked memref cast");
    }
  }
};

/// Pattern to lower a `memref.copy` to llvm.
///
/// For memrefs with identity layouts, the copy is lowered to the llvm
/// `memcpy` intrinsic. For non-identity layouts, the copy is lowered to a call
/// to the generic `MemrefCopyFn`.
struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
  using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;

  LogicalResult
  lowerToMemCopyIntrinsic(memref::CopyOp op, OpAdaptor adaptor,
                          ConversionPatternRewriter &rewriter) const {
    auto loc = op.getLoc();
    auto srcType = dyn_cast<MemRefType>(op.getSource().getType());

    MemRefDescriptor srcDesc(adaptor.getSource());

    // Compute number of elements.
    Value numElements = rewriter.create<LLVM::ConstantOp>(
        loc, getIndexType(), rewriter.getIndexAttr(1));
    for (int pos = 0; pos < srcType.getRank(); ++pos) {
      auto size = srcDesc.size(rewriter, loc, pos);
      numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size);
    }

    // Get element size.
    auto sizeInBytes = getSizeInBytes(loc, srcType.getElementType(), rewriter);
    // Compute total.
    Value totalSize =
        rewriter.create<LLVM::MulOp>(loc, numElements, sizeInBytes);

    Type elementType = typeConverter->convertType(srcType.getElementType());

    Value srcBasePtr = srcDesc.alignedPtr(rewriter, loc);
    Value srcOffset = srcDesc.offset(rewriter, loc);
    Value srcPtr = rewriter.create<LLVM::GEPOp>(
        loc, srcBasePtr.getType(), elementType, srcBasePtr, srcOffset);
    MemRefDescriptor targetDesc(adaptor.getTarget());
    Value targetBasePtr = targetDesc.alignedPtr(rewriter, loc);
    Value targetOffset = targetDesc.offset(rewriter, loc);
    Value targetPtr = rewriter.create<LLVM::GEPOp>(
        loc, targetBasePtr.getType(), elementType, targetBasePtr, targetOffset);
    rewriter.create<LLVM::MemcpyOp>(loc, targetPtr, srcPtr, totalSize,
                                    /*isVolatile=*/false);
    rewriter.eraseOp(op);

    return success();
  }

  LogicalResult
  lowerToMemCopyFunctionCall(memref::CopyOp op, OpAdaptor adaptor,
                             ConversionPatternRewriter &rewriter) const {
    auto loc = op.getLoc();
    auto srcType = cast<BaseMemRefType>(op.getSource().getType());
    auto targetType = cast<BaseMemRefType>(op.getTarget().getType());

    // First make sure we have an unranked memref descriptor representation.
    auto makeUnranked = [&, this](Value ranked, MemRefType type) {
      auto rank = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
                                                    type.getRank());
      auto *typeConverter = getTypeConverter();
      auto ptr =
          typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);

      Value voidPtr;
      if (getTypeConverter()->useOpaquePointers())
        voidPtr = ptr;
      else
        voidPtr = rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr);

      auto unrankedType =
          UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
      return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
                                            unrankedType,
                                            ValueRange{rank, voidPtr});
    };

    // Save stack position before promoting descriptors
    auto stackSaveOp =
        rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());

    auto srcMemRefType = dyn_cast<MemRefType>(srcType);
    Value unrankedSource =
        srcMemRefType ? makeUnranked(adaptor.getSource(), srcMemRefType)
                      : adaptor.getSource();
    auto targetMemRefType = dyn_cast<MemRefType>(targetType);
    Value unrankedTarget =
        targetMemRefType ? makeUnranked(adaptor.getTarget(), targetMemRefType)
                         : adaptor.getTarget();

    // Now promote the unranked descriptors to the stack.
    auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
                                                 rewriter.getIndexAttr(1));
    auto promote = [&](Value desc) {
      Type ptrType = getTypeConverter()->getPointerType(desc.getType());
      auto allocated =
          rewriter.create<LLVM::AllocaOp>(loc, ptrType, desc.getType(), one);
      rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
      return allocated;
    };

    auto sourcePtr = promote(unrankedSource);
    auto targetPtr = promote(unrankedTarget);

    unsigned typeSize =
        mlir::DataLayout::closest(op).getTypeSize(srcType.getElementType());
    auto elemSize = rewriter.create<LLVM::ConstantOp>(
        loc, getIndexType(), rewriter.getIndexAttr(typeSize));
    auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
        op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
    rewriter.create<LLVM::CallOp>(loc, copyFn,
                                  ValueRange{elemSize, sourcePtr, targetPtr});

    // Restore stack used for descriptors
    rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);

    rewriter.eraseOp(op);

    return success();
  }

  LogicalResult
  matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = cast<BaseMemRefType>(op.getSource().getType());
    auto targetType = cast<BaseMemRefType>(op.getTarget().getType());

    auto isContiguousMemrefType = [&](BaseMemRefType type) {
      auto memrefType = dyn_cast<mlir::MemRefType>(type);
      // We can use memcpy for memrefs if they have an identity layout or are
      // contiguous with an arbitrary offset. Ignore empty memrefs, which is a
      // special case handled by memrefCopy.
      return memrefType &&
             (memrefType.getLayout().isIdentity() ||
              (memrefType.hasStaticShape() && memrefType.getNumElements() > 0 &&
               memref::isStaticShapeAndContiguousRowMajor(memrefType)));
    };

    if (isContiguousMemrefType(srcType) && isContiguousMemrefType(targetType))
      return lowerToMemCopyIntrinsic(op, adaptor, rewriter);

    return lowerToMemCopyFunctionCall(op, adaptor, rewriter);
  }
};

struct MemorySpaceCastOpLowering
    : public ConvertOpToLLVMPattern<memref::MemorySpaceCastOp> {
  using ConvertOpToLLVMPattern<
      memref::MemorySpaceCastOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::MemorySpaceCastOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();

    Type resultType = op.getDest().getType();
    if (auto resultTypeR = dyn_cast<MemRefType>(resultType)) {
      auto resultDescType =
          cast<LLVM::LLVMStructType>(typeConverter->convertType(resultTypeR));
      Type newPtrType = resultDescType.getBody()[0];

      SmallVector<Value> descVals;
      MemRefDescriptor::unpack(rewriter, loc, adaptor.getSource(), resultTypeR,
                               descVals);
      descVals[0] =
          rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[0]);
      descVals[1] =
          rewriter.create<LLVM::AddrSpaceCastOp>(loc, newPtrType, descVals[1]);
      Value result = MemRefDescriptor::pack(rewriter, loc, *getTypeConverter(),
                                            resultTypeR, descVals);
      rewriter.replaceOp(op, result);
      return success();
    }
    if (auto resultTypeU = dyn_cast<UnrankedMemRefType>(resultType)) {
      // Since the type converter won't be doing this for us, get the address
      // space.
      auto sourceType = cast<UnrankedMemRefType>(op.getSource().getType());
      FailureOr<unsigned> maybeSourceAddrSpace =
          getTypeConverter()->getMemRefAddressSpace(sourceType);
      if (failed(maybeSourceAddrSpace))
        return rewriter.notifyMatchFailure(loc,
                                           "non-integer source address space");
      unsigned sourceAddrSpace = *maybeSourceAddrSpace;
      FailureOr<unsigned> maybeResultAddrSpace =
          getTypeConverter()->getMemRefAddressSpace(resultTypeU);
      if (failed(maybeResultAddrSpace))
        return rewriter.notifyMatchFailure(loc,
                                           "non-integer result address space");
      unsigned resultAddrSpace = *maybeResultAddrSpace;

      UnrankedMemRefDescriptor sourceDesc(adaptor.getSource());
      Value rank = sourceDesc.rank(rewriter, loc);
      Value sourceUnderlyingDesc = sourceDesc.memRefDescPtr(rewriter, loc);

      // Create and allocate storage for new memref descriptor.
      auto result = UnrankedMemRefDescriptor::undef(
          rewriter, loc, typeConverter->convertType(resultTypeU));
      result.setRank(rewriter, loc, rank);
      SmallVector<Value, 1> sizes;
      UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
                                             result, resultAddrSpace, sizes);
      Value resultUnderlyingSize = sizes.front();
      Value resultUnderlyingDesc = rewriter.create<LLVM::AllocaOp>(
          loc, getVoidPtrType(), rewriter.getI8Type(), resultUnderlyingSize);
      result.setMemRefDescPtr(rewriter, loc, resultUnderlyingDesc);

      // Copy pointers, performing address space casts.
      Type llvmElementType =
          typeConverter->convertType(sourceType.getElementType());
      LLVM::LLVMPointerType sourceElemPtrType =
          getTypeConverter()->getPointerType(llvmElementType, sourceAddrSpace);
      auto resultElemPtrType =
          getTypeConverter()->getPointerType(llvmElementType, resultAddrSpace);

      Value allocatedPtr = sourceDesc.allocatedPtr(
          rewriter, loc, sourceUnderlyingDesc, sourceElemPtrType);
      Value alignedPtr =
          sourceDesc.alignedPtr(rewriter, loc, *getTypeConverter(),
                                sourceUnderlyingDesc, sourceElemPtrType);
      allocatedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
          loc, resultElemPtrType, allocatedPtr);
      alignedPtr = rewriter.create<LLVM::AddrSpaceCastOp>(
          loc, resultElemPtrType, alignedPtr);

      result.setAllocatedPtr(rewriter, loc, resultUnderlyingDesc,
                             resultElemPtrType, allocatedPtr);
      result.setAlignedPtr(rewriter, loc, *getTypeConverter(),
                           resultUnderlyingDesc, resultElemPtrType, alignedPtr);

      // Copy all the index-valued operands.
      Value sourceIndexVals =
          sourceDesc.offsetBasePtr(rewriter, loc, *getTypeConverter(),
                                   sourceUnderlyingDesc, sourceElemPtrType);
      Value resultIndexVals =
          result.offsetBasePtr(rewriter, loc, *getTypeConverter(),
                               resultUnderlyingDesc, resultElemPtrType);

      int64_t bytesToSkip =
          2 *
          ceilDiv(getTypeConverter()->getPointerBitwidth(resultAddrSpace), 8);
      Value bytesToSkipConst = rewriter.create<LLVM::ConstantOp>(
          loc, getIndexType(), rewriter.getIndexAttr(bytesToSkip));
      Value copySize = rewriter.create<LLVM::SubOp>(
          loc, getIndexType(), resultUnderlyingSize, bytesToSkipConst);
      rewriter.create<LLVM::MemcpyOp>(loc, resultIndexVals, sourceIndexVals,
                                      copySize, /*isVolatile=*/false);

      rewriter.replaceOp(op, ValueRange{result});
      return success();
    }
    return rewriter.notifyMatchFailure(loc, "unexpected memref type");
  }
};

/// Extracts allocated, aligned pointers and offset from a ranked or unranked
/// memref type. In unranked case, the fields are extracted from the underlying
/// ranked descriptor.
static void extractPointersAndOffset(Location loc,
                                     ConversionPatternRewriter &rewriter,
                                     LLVMTypeConverter &typeConverter,
                                     Value originalOperand,
                                     Value convertedOperand,
                                     Value *allocatedPtr, Value *alignedPtr,
                                     Value *offset = nullptr) {
  Type operandType = originalOperand.getType();
  if (isa<MemRefType>(operandType)) {
    MemRefDescriptor desc(convertedOperand);
    *allocatedPtr = desc.allocatedPtr(rewriter, loc);
    *alignedPtr = desc.alignedPtr(rewriter, loc);
    if (offset != nullptr)
      *offset = desc.offset(rewriter, loc);
    return;
  }

  // These will all cause assert()s on unconvertible types.
  unsigned memorySpace = *typeConverter.getMemRefAddressSpace(
      cast<UnrankedMemRefType>(operandType));
  Type elementType = cast<UnrankedMemRefType>(operandType).getElementType();
  Type llvmElementType = typeConverter.convertType(elementType);
  LLVM::LLVMPointerType elementPtrType =
      typeConverter.getPointerType(llvmElementType, memorySpace);

  // Extract pointer to the underlying ranked memref descriptor and cast it to
  // ElemType**.
  UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
  Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);

  *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
      rewriter, loc, underlyingDescPtr, elementPtrType);
  *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
      rewriter, loc, typeConverter, underlyingDescPtr, elementPtrType);
  if (offset != nullptr) {
    *offset = UnrankedMemRefDescriptor::offset(
        rewriter, loc, typeConverter, underlyingDescPtr, elementPtrType);
  }
}

struct MemRefReinterpretCastOpLowering
    : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
  using ConvertOpToLLVMPattern<
      memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type srcType = castOp.getSource().getType();

    Value descriptor;
    if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
                                               adaptor, &descriptor)))
      return failure();
    rewriter.replaceOp(castOp, {descriptor});
    return success();
  }

private:
  LogicalResult convertSourceMemRefToDescriptor(
      ConversionPatternRewriter &rewriter, Type srcType,
      memref::ReinterpretCastOp castOp,
      memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
    MemRefType targetMemRefType =
        cast<MemRefType>(castOp.getResult().getType());
    auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>(
        typeConverter->convertType(targetMemRefType));
    if (!llvmTargetDescriptorTy)
      return failure();

    // Create descriptor.
    Location loc = castOp.getLoc();
    auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);

    // Set allocated and aligned pointers.
    Value allocatedPtr, alignedPtr;
    extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
                             castOp.getSource(), adaptor.getSource(),
                             &allocatedPtr, &alignedPtr);
    desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
    desc.setAlignedPtr(rewriter, loc, alignedPtr);

    // Set offset.
    if (castOp.isDynamicOffset(0))
      desc.setOffset(rewriter, loc, adaptor.getOffsets()[0]);
    else
      desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));

    // Set sizes and strides.
    unsigned dynSizeId = 0;
    unsigned dynStrideId = 0;
    for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
      if (castOp.isDynamicSize(i))
        desc.setSize(rewriter, loc, i, adaptor.getSizes()[dynSizeId++]);
      else
        desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));

      if (castOp.isDynamicStride(i))
        desc.setStride(rewriter, loc, i, adaptor.getStrides()[dynStrideId++]);
      else
        desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
    }
    *descriptor = desc;
    return success();
  }
};

struct MemRefReshapeOpLowering
    : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
  using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Type srcType = reshapeOp.getSource().getType();

    Value descriptor;
    if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
                                               adaptor, &descriptor)))
      return failure();
    rewriter.replaceOp(reshapeOp, {descriptor});
    return success();
  }

private:
  LogicalResult
  convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
                                  Type srcType, memref::ReshapeOp reshapeOp,
                                  memref::ReshapeOp::Adaptor adaptor,
                                  Value *descriptor) const {
    auto shapeMemRefType = cast<MemRefType>(reshapeOp.getShape().getType());
    if (shapeMemRefType.hasStaticShape()) {
      MemRefType targetMemRefType =
          cast<MemRefType>(reshapeOp.getResult().getType());
      auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>(
          typeConverter->convertType(targetMemRefType));
      if (!llvmTargetDescriptorTy)
        return failure();

      // Create descriptor.
      Location loc = reshapeOp.getLoc();
      auto desc =
          MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);

      // Set allocated and aligned pointers.
      Value allocatedPtr, alignedPtr;
      extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
                               reshapeOp.getSource(), adaptor.getSource(),
                               &allocatedPtr, &alignedPtr);
      desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
      desc.setAlignedPtr(rewriter, loc, alignedPtr);

      // Extract the offset and strides from the type.
      int64_t offset;
      SmallVector<int64_t> strides;
      if (failed(getStridesAndOffset(targetMemRefType, strides, offset)))
        return rewriter.notifyMatchFailure(
            reshapeOp, "failed to get stride and offset exprs");

      if (!isStaticStrideOrOffset(offset))
        return rewriter.notifyMatchFailure(reshapeOp,
                                           "dynamic offset is unsupported");

      desc.setConstantOffset(rewriter, loc, offset);

      assert(targetMemRefType.getLayout().isIdentity() &&
             "Identity layout map is a precondition of a valid reshape op");

      Value stride = nullptr;
      int64_t targetRank = targetMemRefType.getRank();
      for (auto i : llvm::reverse(llvm::seq<int64_t>(0, targetRank))) {
        if (!ShapedType::isDynamic(strides[i])) {
          // If the stride for this dimension is dynamic, then use the product
          // of the sizes of the inner dimensions.
          stride = createIndexConstant(rewriter, loc, strides[i]);
        } else if (!stride) {
          // `stride` is null only in the first iteration of the loop.  However,
          // since the target memref has an identity layout, we can safely set
          // the innermost stride to 1.
          stride = createIndexConstant(rewriter, loc, 1);
        }

        Value dimSize;
        // If the size of this dimension is dynamic, then load it at runtime
        // from the shape operand.
        if (!targetMemRefType.isDynamicDim(i)) {
          dimSize = createIndexConstant(rewriter, loc,
                                        targetMemRefType.getDimSize(i));
        } else {
          Value shapeOp = reshapeOp.getShape();
          Value index = createIndexConstant(rewriter, loc, i);
          dimSize = rewriter.create<memref::LoadOp>(loc, shapeOp, index);
          Type indexType = getIndexType();
          if (dimSize.getType() != indexType)
            dimSize = typeConverter->materializeTargetConversion(
                rewriter, loc, indexType, dimSize);
          assert(dimSize && "Invalid memref element type");
        }

        desc.setSize(rewriter, loc, i, dimSize);
        desc.setStride(rewriter, loc, i, stride);

        // Prepare the stride value for the next dimension.
        stride = rewriter.create<LLVM::MulOp>(loc, stride, dimSize);
      }

      *descriptor = desc;
      return success();
    }

    // The shape is a rank-1 tensor with unknown length.
    Location loc = reshapeOp.getLoc();
    MemRefDescriptor shapeDesc(adaptor.getShape());
    Value resultRank = shapeDesc.size(rewriter, loc, 0);

    // Extract address space and element type.
    auto targetType = cast<UnrankedMemRefType>(reshapeOp.getResult().getType());
    unsigned addressSpace =
        *getTypeConverter()->getMemRefAddressSpace(targetType);
    Type elementType = targetType.getElementType();

    // Create the unranked memref descriptor that holds the ranked one. The
    // inner descriptor is allocated on stack.
    auto targetDesc = UnrankedMemRefDescriptor::undef(
        rewriter, loc, typeConverter->convertType(targetType));
    targetDesc.setRank(rewriter, loc, resultRank);
    SmallVector<Value, 4> sizes;
    UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
                                           targetDesc, addressSpace, sizes);
    Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
        loc, getVoidPtrType(), IntegerType::get(getContext(), 8),
        sizes.front());
    targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);

    // Extract pointers and offset from the source memref.
    Value allocatedPtr, alignedPtr, offset;
    extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
                             reshapeOp.getSource(), adaptor.getSource(),
                             &allocatedPtr, &alignedPtr, &offset);

    // Set pointers and offset.
    Type llvmElementType = typeConverter->convertType(elementType);
    LLVM::LLVMPointerType elementPtrType =
        getTypeConverter()->getPointerType(llvmElementType, addressSpace);

    UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
                                              elementPtrType, allocatedPtr);
    UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
                                            underlyingDescPtr, elementPtrType,
                                            alignedPtr);
    UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
                                        underlyingDescPtr, elementPtrType,
                                        offset);

    // Use the offset pointer as base for further addressing. Copy over the new
    // shape and compute strides. For this, we create a loop from rank-1 to 0.
    Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
        rewriter, loc, *getTypeConverter(), underlyingDescPtr, elementPtrType);
    Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
        rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
    Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
    Value oneIndex = createIndexConstant(rewriter, loc, 1);
    Value resultRankMinusOne =
        rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);

    Block *initBlock = rewriter.getInsertionBlock();
    Type indexType = getTypeConverter()->getIndexType();
    Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());

    Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
                                            {indexType, indexType}, {loc, loc});

    // Move the remaining initBlock ops to condBlock.
    Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
    rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());

    rewriter.setInsertionPointToEnd(initBlock);
    rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
                                condBlock);
    rewriter.setInsertionPointToStart(condBlock);
    Value indexArg = condBlock->getArgument(0);
    Value strideArg = condBlock->getArgument(1);

    Value zeroIndex = createIndexConstant(rewriter, loc, 0);
    Value pred = rewriter.create<LLVM::ICmpOp>(
        loc, IntegerType::get(rewriter.getContext(), 1),
        LLVM::ICmpPredicate::sge, indexArg, zeroIndex);

    Block *bodyBlock =
        rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
    rewriter.setInsertionPointToStart(bodyBlock);

    // Copy size from shape to descriptor.
    Type llvmIndexPtrType = getTypeConverter()->getPointerType(indexType);
    Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
        loc, llvmIndexPtrType,
        typeConverter->convertType(shapeMemRefType.getElementType()),
        shapeOperandPtr, indexArg);
    Value size = rewriter.create<LLVM::LoadOp>(loc, indexType, sizeLoadGep);
    UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
                                      targetSizesBase, indexArg, size);

    // Write stride value and compute next one.
    UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
                                        targetStridesBase, indexArg, strideArg);
    Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);

    // Decrement loop counter and branch back.
    Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
    rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
                                condBlock);

    Block *remainder =
        rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());

    // Hook up the cond exit to the remainder.
    rewriter.setInsertionPointToEnd(condBlock);
    rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, std::nullopt,
                                    remainder, std::nullopt);

    // Reset position to beginning of new remainder block.
    rewriter.setInsertionPointToStart(remainder);

    *descriptor = targetDesc;
    return success();
  }
};

/// RessociatingReshapeOp must be expanded before we reach this stage.
/// Report that information.
template <typename ReshapeOp>
class ReassociatingReshapeOpConversion
    : public ConvertOpToLLVMPattern<ReshapeOp> {
public:
  using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
  using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;

  LogicalResult
  matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    return rewriter.notifyMatchFailure(
        reshapeOp,
        "reassociation operations should have been expanded beforehand");
  }
};

/// Subviews must be expanded before we reach this stage.
/// Report that information.
struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
  using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    return rewriter.notifyMatchFailure(
        subViewOp, "subview operations should have been expanded beforehand");
  }
};

/// Conversion pattern that transforms a transpose op into:
///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
///   2. A load of the ViewDescriptor from the pointer allocated in 1.
///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
///      and stride. Size and stride are permutations of the original values.
///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
/// The transpose op is replaced by the alloca'ed pointer.
class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
public:
  using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = transposeOp.getLoc();
    MemRefDescriptor viewMemRef(adaptor.getIn());

    // No permutation, early exit.
    if (transposeOp.getPermutation().isIdentity())
      return rewriter.replaceOp(transposeOp, {viewMemRef}), success();

    auto targetMemRef = MemRefDescriptor::undef(
        rewriter, loc,
        typeConverter->convertType(transposeOp.getIn().getType()));

    // Copy the base and aligned pointers from the old descriptor to the new
    // one.
    targetMemRef.setAllocatedPtr(rewriter, loc,
                                 viewMemRef.allocatedPtr(rewriter, loc));
    targetMemRef.setAlignedPtr(rewriter, loc,
                               viewMemRef.alignedPtr(rewriter, loc));

    // Copy the offset pointer from the old descriptor to the new one.
    targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));

    // Iterate over the dimensions and apply size/stride permutation.
    for (const auto &en :
         llvm::enumerate(transposeOp.getPermutation().getResults())) {
      int sourcePos = en.index();
      int targetPos = en.value().cast<AffineDimExpr>().getPosition();
      targetMemRef.setSize(rewriter, loc, targetPos,
                           viewMemRef.size(rewriter, loc, sourcePos));
      targetMemRef.setStride(rewriter, loc, targetPos,
                             viewMemRef.stride(rewriter, loc, sourcePos));
    }

    rewriter.replaceOp(transposeOp, {targetMemRef});
    return success();
  }
};

/// Conversion pattern that transforms an op into:
///   1. An `llvm.mlir.undef` operation to create a memref descriptor
///   2. Updates to the descriptor to introduce the data ptr, offset, size
///      and stride.
/// The view op is replaced by the descriptor.
struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
  using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;

  // Build and return the value for the idx^th shape dimension, either by
  // returning the constant shape dimension or counting the proper dynamic size.
  Value getSize(ConversionPatternRewriter &rewriter, Location loc,
                ArrayRef<int64_t> shape, ValueRange dynamicSizes,
                unsigned idx) const {
    assert(idx < shape.size());
    if (!ShapedType::isDynamic(shape[idx]))
      return createIndexConstant(rewriter, loc, shape[idx]);
    // Count the number of dynamic dims in range [0, idx]
    unsigned nDynamic =
        llvm::count_if(shape.take_front(idx), ShapedType::isDynamic);
    return dynamicSizes[nDynamic];
  }

  // Build and return the idx^th stride, either by returning the constant stride
  // or by computing the dynamic stride from the current `runningStride` and
  // `nextSize`. The caller should keep a running stride and update it with the
  // result returned by this function.
  Value getStride(ConversionPatternRewriter &rewriter, Location loc,
                  ArrayRef<int64_t> strides, Value nextSize,
                  Value runningStride, unsigned idx) const {
    assert(idx < strides.size());
    if (!ShapedType::isDynamic(strides[idx]))
      return createIndexConstant(rewriter, loc, strides[idx]);
    if (nextSize)
      return runningStride
                 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
                 : nextSize;
    assert(!runningStride);
    return createIndexConstant(rewriter, loc, 1);
  }

  LogicalResult
  matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto loc = viewOp.getLoc();

    auto viewMemRefType = viewOp.getType();
    auto targetElementTy =
        typeConverter->convertType(viewMemRefType.getElementType());
    auto targetDescTy = typeConverter->convertType(viewMemRefType);
    if (!targetDescTy || !targetElementTy ||
        !LLVM::isCompatibleType(targetElementTy) ||
        !LLVM::isCompatibleType(targetDescTy))
      return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
             failure();

    int64_t offset;
    SmallVector<int64_t, 4> strides;
    auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
    if (failed(successStrides))
      return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
    assert(offset == 0 && "expected offset to be 0");

    // Target memref must be contiguous in memory (innermost stride is 1), or
    // empty (special case when at least one of the memref dimensions is 0).
    if (!strides.empty() && (strides.back() != 1 && strides.back() != 0))
      return viewOp.emitWarning("cannot cast to non-contiguous shape"),
             failure();

    // Create the descriptor.
    MemRefDescriptor sourceMemRef(adaptor.getSource());
    auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);

    // Field 1: Copy the allocated pointer, used for malloc/free.
    Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
    auto srcMemRefType = cast<MemRefType>(viewOp.getSource().getType());
    unsigned sourceMemorySpace =
        *getTypeConverter()->getMemRefAddressSpace(srcMemRefType);
    Value bitcastPtr;
    if (getTypeConverter()->useOpaquePointers())
      bitcastPtr = allocatedPtr;
    else
      bitcastPtr = rewriter.create<LLVM::BitcastOp>(
          loc, LLVM::LLVMPointerType::get(targetElementTy, sourceMemorySpace),
          allocatedPtr);

    targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);

    // Field 2: Copy the actual aligned pointer to payload.
    Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
    alignedPtr = rewriter.create<LLVM::GEPOp>(
        loc, alignedPtr.getType(),
        typeConverter->convertType(srcMemRefType.getElementType()), alignedPtr,
        adaptor.getByteShift());

    if (getTypeConverter()->useOpaquePointers()) {
      bitcastPtr = alignedPtr;
    } else {
      bitcastPtr = rewriter.create<LLVM::BitcastOp>(
          loc, LLVM::LLVMPointerType::get(targetElementTy, sourceMemorySpace),
          alignedPtr);
    }

    targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);

    // Field 3: The offset in the resulting type must be 0. This is because of
    // the type change: an offset on srcType* may not be expressible as an
    // offset on dstType*.
    targetMemRef.setOffset(rewriter, loc,
                           createIndexConstant(rewriter, loc, offset));

    // Early exit for 0-D corner case.
    if (viewMemRefType.getRank() == 0)
      return rewriter.replaceOp(viewOp, {targetMemRef}), success();

    // Fields 4 and 5: Update sizes and strides.
    Value stride = nullptr, nextSize = nullptr;
    for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
      // Update size.
      Value size = getSize(rewriter, loc, viewMemRefType.getShape(),
                           adaptor.getSizes(), i);
      targetMemRef.setSize(rewriter, loc, i, size);
      // Update stride.
      stride = getStride(rewriter, loc, strides, nextSize, stride, i);
      targetMemRef.setStride(rewriter, loc, i, stride);
      nextSize = size;
    }

    rewriter.replaceOp(viewOp, {targetMemRef});
    return success();
  }
};

//===----------------------------------------------------------------------===//
// AtomicRMWOpLowering
//===----------------------------------------------------------------------===//

/// Try to match the kind of a memref.atomic_rmw to determine whether to use a
/// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg.
static std::optional<LLVM::AtomicBinOp>
matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) {
  switch (atomicOp.getKind()) {
  case arith::AtomicRMWKind::addf:
    return LLVM::AtomicBinOp::fadd;
  case arith::AtomicRMWKind::addi:
    return LLVM::AtomicBinOp::add;
  case arith::AtomicRMWKind::assign:
    return LLVM::AtomicBinOp::xchg;
  case arith::AtomicRMWKind::maxs:
    return LLVM::AtomicBinOp::max;
  case arith::AtomicRMWKind::maxu:
    return LLVM::AtomicBinOp::umax;
  case arith::AtomicRMWKind::mins:
    return LLVM::AtomicBinOp::min;
  case arith::AtomicRMWKind::minu:
    return LLVM::AtomicBinOp::umin;
  case arith::AtomicRMWKind::ori:
    return LLVM::AtomicBinOp::_or;
  case arith::AtomicRMWKind::andi:
    return LLVM::AtomicBinOp::_and;
  default:
    return std::nullopt;
  }
  llvm_unreachable("Invalid AtomicRMWKind");
}

struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> {
  using Base::Base;

  LogicalResult
  matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (failed(match(atomicOp)))
      return failure();
    auto maybeKind = matchSimpleAtomicOp(atomicOp);
    if (!maybeKind)
      return failure();
    auto memRefType = atomicOp.getMemRefType();
    auto dataPtr =
        getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.getMemref(),
                             adaptor.getIndices(), rewriter);
    rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>(
        atomicOp, *maybeKind, dataPtr, adaptor.getValue(),
        LLVM::AtomicOrdering::acq_rel);
    return success();
  }
};

/// Unpack the pointer returned by a memref.extract_aligned_pointer_as_index.
class ConvertExtractAlignedPointerAsIndex
    : public ConvertOpToLLVMPattern<memref::ExtractAlignedPointerAsIndexOp> {
public:
  using ConvertOpToLLVMPattern<
      memref::ExtractAlignedPointerAsIndexOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::ExtractAlignedPointerAsIndexOp extractOp,
                  OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefDescriptor desc(adaptor.getSource());
    rewriter.replaceOpWithNewOp<LLVM::PtrToIntOp>(
        extractOp, getTypeConverter()->getIndexType(),
        desc.alignedPtr(rewriter, extractOp->getLoc()));
    return success();
  }
};

/// Materialize the MemRef descriptor represented by the results of
/// ExtractStridedMetadataOp.
class ExtractStridedMetadataOpLowering
    : public ConvertOpToLLVMPattern<memref::ExtractStridedMetadataOp> {
public:
  using ConvertOpToLLVMPattern<
      memref::ExtractStridedMetadataOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(memref::ExtractStridedMetadataOp extractStridedMetadataOp,
                  OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
      return failure();

    // Create the descriptor.
    MemRefDescriptor sourceMemRef(adaptor.getSource());
    Location loc = extractStridedMetadataOp.getLoc();
    Value source = extractStridedMetadataOp.getSource();

    auto sourceMemRefType = cast<MemRefType>(source.getType());
    int64_t rank = sourceMemRefType.getRank();
    SmallVector<Value> results;
    results.reserve(2 + rank * 2);

    // Base buffer.
    Value baseBuffer = sourceMemRef.allocatedPtr(rewriter, loc);
    Value alignedBuffer = sourceMemRef.alignedPtr(rewriter, loc);
    MemRefDescriptor dstMemRef = MemRefDescriptor::fromStaticShape(
        rewriter, loc, *getTypeConverter(),
        cast<MemRefType>(extractStridedMetadataOp.getBaseBuffer().getType()),
        baseBuffer, alignedBuffer);
    results.push_back((Value)dstMemRef);

    // Offset.
    results.push_back(sourceMemRef.offset(rewriter, loc));

    // Sizes.
    for (unsigned i = 0; i < rank; ++i)
      results.push_back(sourceMemRef.size(rewriter, loc, i));
    // Strides.
    for (unsigned i = 0; i < rank; ++i)
      results.push_back(sourceMemRef.stride(rewriter, loc, i));

    rewriter.replaceOp(extractStridedMetadataOp, results);
    return success();
  }
};

} // namespace

void mlir::populateFinalizeMemRefToLLVMConversionPatterns(
    LLVMTypeConverter &converter, RewritePatternSet &patterns) {
  // clang-format off
  patterns.add<
      AllocaOpLowering,
      AllocaScopeOpLowering,
      AtomicRMWOpLowering,
      AssumeAlignmentOpLowering,
      ConvertExtractAlignedPointerAsIndex,
      DimOpLowering,
      ExtractStridedMetadataOpLowering,
      GenericAtomicRMWOpLowering,
      GlobalMemrefOpLowering,
      GetGlobalMemrefOpLowering,
      LoadOpLowering,
      MemRefCastOpLowering,
      MemRefCopyOpLowering,
      MemorySpaceCastOpLowering,
      MemRefReinterpretCastOpLowering,
      MemRefReshapeOpLowering,
      PrefetchOpLowering,
      RankOpLowering,
      ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
      ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
      StoreOpLowering,
      SubViewOpLowering,
      TransposeOpLowering,
      ViewOpLowering>(converter);
  // clang-format on
  auto allocLowering = converter.getOptions().allocLowering;
  if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
    patterns.add<AlignedAllocOpLowering, AlignedReallocOpLowering,
                 DeallocOpLowering>(converter);
  else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
    patterns.add<AllocOpLowering, ReallocOpLowering, DeallocOpLowering>(
        converter);
}

namespace {
struct FinalizeMemRefToLLVMConversionPass
    : public impl::FinalizeMemRefToLLVMConversionPassBase<
          FinalizeMemRefToLLVMConversionPass> {
  using FinalizeMemRefToLLVMConversionPassBase::
      FinalizeMemRefToLLVMConversionPassBase;

  void runOnOperation() override {
    Operation *op = getOperation();
    const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
    LowerToLLVMOptions options(&getContext(),
                               dataLayoutAnalysis.getAtOrAbove(op));
    options.allocLowering =
        (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
                         : LowerToLLVMOptions::AllocLowering::Malloc);

    options.useGenericFunctions = useGenericFunctions;
    options.useOpaquePointers = useOpaquePointers;

    if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
      options.overrideIndexBitwidth(indexBitwidth);

    LLVMTypeConverter typeConverter(&getContext(), options,
                                    &dataLayoutAnalysis);
    RewritePatternSet patterns(&getContext());
    populateFinalizeMemRefToLLVMConversionPatterns(typeConverter, patterns);
    LLVMConversionTarget target(getContext());
    target.addLegalOp<func::FuncOp>();
    if (failed(applyPartialConversion(op, target, std::move(patterns))))
      signalPassFailure();
  }
};
} // namespace