File: NVGPUToNVVM.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1065 lines) | stat: -rw-r--r-- 46,708 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
//===- NVGPUToNVVM.cpp - NVGPU to NVVM dialect conversion -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/NVGPUToNVVM/NVGPUToNVVM.h"

#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/Dialect/LLVMIR/NVVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Pass/Pass.h"
#include "llvm/Support/raw_ostream.h"

namespace mlir {
#define GEN_PASS_DEF_CONVERTNVGPUTONVVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

/// GPU has 32 bit registers, this function truncates values when larger width
/// is not needed.
static Value truncToI32(ConversionPatternRewriter &rewriter, Location loc,
                        Value value) {
  Type type = value.getType();
  assert(llvm::isa<IntegerType>(type) && "expected an integer Value");
  if (type.getIntOrFloatBitWidth() <= 32)
    return value;
  return rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), value);
}

/// Returns the type for the intrinsic given the vectorResultType of the
/// `gpu.mma.sync` operation.
static Type inferIntrinsicResultType(Type vectorResultType) {
  MLIRContext *ctx = vectorResultType.getContext();
  auto a = cast<LLVM::LLVMArrayType>(vectorResultType);
  auto f16x2Ty = LLVM::getFixedVectorType(Float16Type::get(ctx), 2);
  auto i32Ty = IntegerType::get(ctx, 32);
  auto i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
  Type f64Ty = Float64Type::get(ctx);
  Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
  Type f32Ty = Float32Type::get(ctx);
  Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
  if (a.getElementType() == f16x2Ty) {
    return LLVM::LLVMStructType::getLiteral(
        ctx, SmallVector<Type>(a.getNumElements(), f16x2Ty));
  }
  if (a.getElementType() == i32x2Ty) {
    return LLVM::LLVMStructType::getLiteral(
        ctx,
        SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, i32Ty));
  }
  if (a.getElementType() == f64x2Ty) {
    return LLVM::LLVMStructType::getLiteral(ctx, {f64Ty, f64Ty});
  }
  if (a.getElementType() == f32x2Ty) {
    return LLVM::LLVMStructType::getLiteral(
        ctx,
        SmallVector<Type>(static_cast<size_t>(a.getNumElements()) * 2, f32Ty));
  }
  if (a.getElementType() == LLVM::getFixedVectorType(f32Ty, 1)) {
    return LLVM::LLVMStructType::getLiteral(
        ctx, SmallVector<Type>(static_cast<size_t>(a.getNumElements()), f32Ty));
  }
  return vectorResultType;
}

/// Convert the SSA result of the NVVM intrinsic `nvvm.mma.sync` (which is
/// always an LLVM struct) into a fragment that is compatible with the vector
/// type of this operation. This involves extracting elements from the struct
/// and inserting them into an LLVM array. These extra data-movement
/// operations should be canonicalized away by the LLVM backend.
static Value convertIntrinsicResult(Location loc, Type intrinsicResultType,
                                    Type resultType, Value intrinsicResult,
                                    RewriterBase &rewriter) {
  MLIRContext *ctx = rewriter.getContext();
  auto structType = dyn_cast<LLVM::LLVMStructType>(intrinsicResultType);
  auto arrayType = dyn_cast<LLVM::LLVMArrayType>(resultType);
  Type i32Ty = rewriter.getI32Type();
  Type f32Ty = rewriter.getF32Type();
  Type f64Ty = rewriter.getF64Type();
  Type f16x2Ty = LLVM::getFixedVectorType(rewriter.getF16Type(), 2);
  Type i32x2Ty = LLVM::getFixedVectorType(i32Ty, 2);
  Type f64x2Ty = LLVM::getFixedVectorType(f64Ty, 2);
  Type f32x2Ty = LLVM::getFixedVectorType(f32Ty, 2);
  Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);

  auto makeConst = [&](int32_t index) -> Value {
    return rewriter.create<LLVM::ConstantOp>(loc, IntegerType::get(ctx, 32),
                                             rewriter.getI32IntegerAttr(index));
  };

  if (arrayType) {
    SmallVector<Value, 4> elements;

    // The intrinsic returns 32-bit wide elements in a form which can be
    // directly bitcasted and inserted into the result vector.
    if (arrayType.getElementType() == f16x2Ty ||
        arrayType.getElementType() == f32x1Ty) {
      for (unsigned i = 0; i < structType.getBody().size(); i++) {
        Value el =
            rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i);
        el = rewriter.createOrFold<LLVM::BitcastOp>(
            loc, arrayType.getElementType(), el);
        elements.push_back(el);
      }
    }

    // The intrinsic returns i32, f64, and f32 values as individual scalars,
    // even when the result is notionally a 64-bit wide element (e.g. f32x2). We
    // need to extract them from the struct and pack them into the 64-bit wide
    // rows of the vector result.
    if (arrayType.getElementType() == i32x2Ty ||
        arrayType.getElementType() == f64x2Ty ||
        arrayType.getElementType() == f32x2Ty) {

      for (unsigned i = 0, e = structType.getBody().size() / 2; i < e; i++) {
        Value vec =
            rewriter.create<LLVM::UndefOp>(loc, arrayType.getElementType());
        Value x1 =
            rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult, i * 2);
        Value x2 = rewriter.create<LLVM::ExtractValueOp>(loc, intrinsicResult,
                                                         i * 2 + 1);
        vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
                                                     x1, makeConst(0));
        vec = rewriter.create<LLVM::InsertElementOp>(loc, vec.getType(), vec,
                                                     x2, makeConst(1));
        elements.push_back(vec);
      }
    }

    // Create the final vectorized result.
    Value result = rewriter.create<LLVM::UndefOp>(loc, arrayType);
    for (const auto &el : llvm::enumerate(elements)) {
      result = rewriter.create<LLVM::InsertValueOp>(loc, result, el.value(),
                                                    el.index());
    }
    return result;
  }

  return intrinsicResult;
}

/// The `gpu.mma.sync` converter below expects matrix fragment operands to be
/// given as 2D `vectors` where the rows are 32b or 64b wide. The
/// `nvvm.mma.sync` op expects these argments to be a given in a long list of
/// scalars of certain types. This function helps unpack the `vector` arguments
/// and cast them to the types expected by `nvvm.mma.sync`.
static SmallVector<Value> unpackOperandVector(RewriterBase &rewriter,
                                              Location loc, Value operand,
                                              NVVM::MMATypes operandPtxType) {
  SmallVector<Value> result;
  Type i32Ty = rewriter.getI32Type();
  Type f64Ty = rewriter.getF64Type();
  Type f32Ty = rewriter.getF32Type();
  Type i8Ty = rewriter.getI8Type();
  Type i4Ty = rewriter.getIntegerType(4);
  Type i8x4Ty = LLVM::getFixedVectorType(i8Ty, 4);
  Type i4x8Ty = LLVM::getFixedVectorType(i4Ty, 8);
  Type f32x1Ty = LLVM::getFixedVectorType(f32Ty, 1);
  auto arrayTy = cast<LLVM::LLVMArrayType>(operand.getType());

  for (unsigned i = 0, e = arrayTy.getNumElements(); i < e; ++i) {
    Value toUse = rewriter.create<LLVM::ExtractValueOp>(loc, operand, i);

    // For 4xi8 vectors, the intrinsic expects these to be provided as i32
    // scalar types.
    if (arrayTy.getElementType() == i8x4Ty ||
        arrayTy.getElementType() == i4x8Ty ||
        (arrayTy.getElementType() == f32x1Ty &&
         operandPtxType == NVVM::MMATypes::tf32)) {
      result.push_back(
          rewriter.create<LLVM::BitcastOp>(loc, rewriter.getI32Type(), toUse));
      continue;
    }

    // For some element types (i32, f32, f64), we need to unpack the inner
    // vector/array type as well because the intrinsic expects individual
    // scalars to be provided.
    VectorType innerArrayTy = dyn_cast<VectorType>(arrayTy.getElementType());
    if (innerArrayTy && (innerArrayTy.getElementType() == i32Ty ||
                         innerArrayTy.getElementType() == f64Ty ||
                         innerArrayTy.getElementType() == f32Ty)) {
      for (unsigned idx = 0, innerSize = innerArrayTy.getNumElements();
           idx < innerSize; idx++) {
        result.push_back(rewriter.create<LLVM::ExtractElementOp>(
            loc, toUse,
            rewriter.create<LLVM::ConstantOp>(
                loc, rewriter.getI64Type(), rewriter.getI64IntegerAttr(idx))));
      }
      continue;
    }
    result.push_back(toUse);
  }
  return result;
}

namespace {

struct MmaLdMatrixOpToNVVM : public ConvertOpToLLVMPattern<nvgpu::LdMatrixOp> {
  using ConvertOpToLLVMPattern<nvgpu::LdMatrixOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::LdMatrixOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    MLIRContext *ctx = getContext();
    Location loc = op->getLoc();

    // The result type of ldmatrix will always be a struct of 32bit integer
    // registers if more than one 32bit value is returned. Otherwise, the result
    // is a single i32. The result type of the GPU operation is always a vector
    // of shape (NumRegisters, VectorRegister) where VectorRegister is the
    // vector type of the result and always 32 bits long. We bitcast the result
    // of the NVVM::LdMatrix to this vector type.
    auto vectorResultType = dyn_cast<VectorType>(op->getResultTypes()[0]);
    if (!vectorResultType) {
      return failure();
    }
    Type innerVectorType = LLVM::getFixedVectorType(
        vectorResultType.getElementType(), vectorResultType.getDimSize(1));

    int64_t num32BitRegs = vectorResultType.getDimSize(0);

    Type ldMatrixResultType;
    if (num32BitRegs > 1) {
      ldMatrixResultType = LLVM::LLVMStructType::getLiteral(
          ctx, SmallVector<Type>(num32BitRegs, rewriter.getI32Type()));
    } else {
      ldMatrixResultType = rewriter.getI32Type();
    }

    auto srcMemrefType = cast<MemRefType>(op.getSrcMemref().getType());
    Value srcPtr =
        getStridedElementPtr(loc, srcMemrefType, adaptor.getSrcMemref(),
                             adaptor.getIndices(), rewriter);
    Value ldMatrixResult = rewriter.create<NVVM::LdMatrixOp>(
        loc, ldMatrixResultType, srcPtr,
        /*num=*/op.getNumTiles(),
        /*layout=*/op.getTranspose() ? NVVM::MMALayout::col
                                     : NVVM::MMALayout::row);

    // The ldmatrix operation returns either a single i32 value or a struct of
    // i32 values. Here we unpack those values and cast them back to their
    // actual vector type (still of width 32b) and repack them into a result
    // struct.
    Type finalResultType = typeConverter->convertType(vectorResultType);
    Value result = rewriter.create<LLVM::UndefOp>(loc, finalResultType);
    for (int64_t i = 0, e = vectorResultType.getDimSize(0); i < e; i++) {
      Value i32Register =
          num32BitRegs > 1
              ? rewriter.create<LLVM::ExtractValueOp>(loc, ldMatrixResult, i)
              : ldMatrixResult;
      Value casted =
          rewriter.create<LLVM::BitcastOp>(loc, innerVectorType, i32Register);
      result = rewriter.create<LLVM::InsertValueOp>(loc, result, casted, i);
    }

    rewriter.replaceOp(op, result);
    return success();
  }
};

/// Convert the given type into the corresponding PTX type (NVVM::MMATypes
/// enum).
static FailureOr<NVVM::MMATypes> getNvvmMmaType(Type t) {
  Type elType = getElementTypeOrSelf(t);
  if (elType.isInteger(8))
    return NVVM::MMATypes::s8;
  if (elType.isInteger(4))
    return NVVM::MMATypes::s4;
  if (elType.isF16())
    return NVVM::MMATypes::f16;
  if (elType.isF64())
    return NVVM::MMATypes::f64;
  if (elType.isF32())
    return NVVM::MMATypes::tf32;
  return failure();
}

struct MmaSyncOptoNVVM : public ConvertOpToLLVMPattern<nvgpu::MmaSyncOp> {
  using ConvertOpToLLVMPattern<nvgpu::MmaSyncOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MmaSyncOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    // Get the shapes of the MMAMatrix type being used. The shapes will
    // choose which intrinsic this op will be lowered to.
    VectorType aType = op.getMatrixA().getType();
    VectorType bType = op.getMatrixA().getType();
    VectorType cType = op.getMatrixC().getType();

    std::array<int64_t, 3> gemmShape = op.getMmaShapeAsArray();

    // Tensor Cores (mma.sync) on F32 works only with TensorFloat32 (TF32).
    bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
    if (aType.getElementType().isF32() && !tf32Enabled)
      return failure();

    FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
    if (failed(ptxTypeA))
      return op->emitOpError("failed to deduce operand PTX types");
    FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
    if (failed(ptxTypeB))
      return op->emitOpError("failed to deduce operand PTX types");
    std::optional<NVVM::MMATypes> ptxTypeC =
        NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
                                         /*isAccumulator=*/true);
    if (!ptxTypeC)
      return op->emitError(
          "could not infer the PTX type for the accumulator/result");

    // TODO: add an attribute to the op to customize this behavior.
    std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
    if (isa<IntegerType>(aType.getElementType()))
      overflow = NVVM::MMAIntOverflow::satfinite;

    SmallVector<Value> matA =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixA(), *ptxTypeA);
    SmallVector<Value> matB =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixB(), *ptxTypeB);
    SmallVector<Value> matC =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixC(), *ptxTypeC);

    Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
    Type intrinsicResTy = inferIntrinsicResultType(
        typeConverter->convertType(op->getResultTypes()[0]));
    Value intrinsicResult = rewriter.create<NVVM::MmaOp>(
        op.getLoc(), intrinsicResTy, matA, matB, matC,
        /*shape=*/gemmShape,
        /*b1Op=*/std::nullopt,
        /*intOverflow=*/overflow,
        /*multiplicandPtxTypes=*/
        std::array<NVVM::MMATypes, 2>{*ptxTypeA, *ptxTypeB},
        /*multiplicandLayouts=*/
        std::array<NVVM::MMALayout, 2>{NVVM::MMALayout::row,
                                       NVVM::MMALayout::col});
    rewriter.replaceOp(op, convertIntrinsicResult(op.getLoc(), intrinsicResTy,
                                                  desiredRetTy, intrinsicResult,
                                                  rewriter));
    return success();
  }
};

/// Returns whether mbarrier object has shared memory address space.
static bool isMbarrierShared(nvgpu::MBarrierType barrierType) {
  return (mlir::nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(
      barrierType.getMemorySpace()));
}

/// Returns whether memory space attribute of the mbarrier object.
static Attribute getMbarrierMemorySpace(RewriterBase &rewriter,
                                        nvgpu::MBarrierType barrierType) {
  Attribute memorySpace = {};
  if (isMbarrierShared(barrierType)) {
    memorySpace = rewriter.getI64IntegerAttr(
        nvgpu::NVGPUDialect::kSharedMemoryAddressSpace);
  }
  return memorySpace;
}

/// Returns memref type of the mbarrier object. The type is defined in the
/// MBarrierType.
static MemRefType createMBarrierMemrefType(RewriterBase &rewriter,
                                           nvgpu::MBarrierType barrierType) {
  Attribute memorySpace = getMbarrierMemorySpace(rewriter, barrierType);
  MemRefLayoutAttrInterface layout;
  return MemRefType::get({1}, rewriter.getI64Type(), layout, memorySpace);
}

/// Returns the base pointer of the mbarrier object.
static Value getMbarrierPtr(ConversionPatternRewriter &rewriter,
                            LLVMTypeConverter &typeConverter,
                            TypedValue<nvgpu::MBarrierType> barrier,
                            Value barrierMemref) {
  MemRefType memrefType = createMBarrierMemrefType(rewriter, barrier.getType());
  MemRefDescriptor memRefDescriptor(barrierMemref);
  return memRefDescriptor.bufferPtr(rewriter, barrier.getLoc(), typeConverter,
                                    memrefType);
}

struct ConvertNVGPUToNVVMPass
    : public impl::ConvertNVGPUToNVVMPassBase<ConvertNVGPUToNVVMPass> {
  using Base::Base;

  void getDependentDialects(DialectRegistry &registry) const override {
    registry
        .insert<memref::MemRefDialect, LLVM::LLVMDialect, NVVM::NVVMDialect>();
  }

  void runOnOperation() override {
    LowerToLLVMOptions options(&getContext());
    options.useOpaquePointers = useOpaquePointers;
    RewritePatternSet patterns(&getContext());
    LLVMTypeConverter converter(&getContext(), options);
    IRRewriter rewriter(&getContext());
    /// device-side async tokens cannot be materialized in nvvm. We just
    /// convert them to a dummy i32 type in order to easily drop them during
    /// conversion.
    converter.addConversion([&](nvgpu::DeviceAsyncTokenType type) -> Type {
      return converter.convertType(IntegerType::get(type.getContext(), 32));
    });
    converter.addConversion([&](nvgpu::MBarrierTokenType type) -> Type {
      return converter.convertType(IntegerType::get(type.getContext(), 64));
    });
    converter.addConversion([&](nvgpu::MBarrierType type) -> Type {
      return converter.convertType(createMBarrierMemrefType(rewriter, type));
    });
    converter.addConversion([&](nvgpu::TensorMapDescriptorType type) -> Type {
      return converter.getPointerType(type.getTensor().getElementType());
    });
    populateNVGPUToNVVMConversionPatterns(converter, patterns);
    LLVMConversionTarget target(getContext());
    target.addLegalDialect<::mlir::LLVM::LLVMDialect>();
    target.addLegalDialect<::mlir::memref::MemRefDialect>();
    target.addLegalDialect<::mlir::NVVM::NVVMDialect>();
    if (failed(applyPartialConversion(getOperation(), target,
                                      std::move(patterns))))
      signalPassFailure();
  }
};

/// Returns the constraints for the sparse MMA inline assembly instruction.
static std::string buildMmaSparseAsmConstraintString(unsigned matASize,
                                                     unsigned matBSize,
                                                     unsigned matCSize) {
  std::string str;
  llvm::raw_string_ostream ss(str);
  for (unsigned i = 0; i < matCSize; i++)
    ss << "=r,";
  for (unsigned i = 0; i < matASize + matBSize + matCSize; i++)
    ss << "r,";
  // The final operand is for the sparsity metadata.
  // The sparsity selector appears as direct literal.
  ss << "r";
  ss.flush();
  return str;
}

/// Returns the string for the `mma.sp.sync` instruction that corresponds to
/// the given parameters. Note that this function doesn't do any validation,
/// it's expected that the provided parameters correspond to a valid
/// instruction.
static std::string buildMmaSparseAsmString(
    const std::array<int64_t, 3> &shape, unsigned matASize, unsigned matBSize,
    unsigned matCSize, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
    NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
    std::optional<NVVM::MMAIntOverflow> overflow, unsigned metaDataSelector) {
  auto ptxTypeStr = [](NVVM::MMATypes ptxType) {
    return NVVM::stringifyMMATypes(ptxType);
  };

  std::string asmStr;
  llvm::raw_string_ostream ss(asmStr);
  ss << "mma.sp.sync.aligned.m" << shape[0] << "n" << shape[1] << "k"
     << shape[2] << ".row.col.";

  if (overflow)
    ss << NVVM::stringifyMMAIntOverflow(*overflow) << ".";

  ss << ptxTypeStr(ptxTypeD) << "." << ptxTypeStr(ptxTypeA) << "."
     << ptxTypeStr(ptxTypeB) << "." << ptxTypeStr(ptxTypeC) << " ";
  unsigned asmArgIdx = 0;

  // The operand string is structured into sections `{matC elements...},
  // {matA elements...}, {matB elements...}, {matC elements}`.
  for (const auto arrSize : {matCSize, matASize, matBSize, matCSize}) {
    ss << "{";
    for (unsigned i = 0; i < arrSize; i++)
      ss << "$" << asmArgIdx++ << (i < arrSize - 1 ? "," : "");
    ss << "},";
  }
  ss << "$" << asmArgIdx++ << ",";
  assert(metaDataSelector <= 1);
  ss << "0x" << metaDataSelector << ";";
  ss.flush();
  return asmStr;
}

/// Builds an inline assembly operation corresponding to the specified MMA
/// sparse sync operation.
static FailureOr<LLVM::InlineAsmOp> emitMmaSparseSyncOpAsm(
    Location loc, NVVM::MMATypes ptxTypeA, NVVM::MMATypes ptxTypeB,
    NVVM::MMATypes ptxTypeC, NVVM::MMATypes ptxTypeD,
    std::optional<NVVM::MMAIntOverflow> overflow, ArrayRef<Value> unpackedAData,
    ArrayRef<Value> unpackedB, ArrayRef<Value> unpackedC, Value indexData,
    int64_t metadataSelector, const std::array<int64_t, 3> &shape,
    Type intrinsicResultType, ConversionPatternRewriter &rewriter) {
  auto asmDialectAttr = LLVM::AsmDialectAttr::get(rewriter.getContext(),
                                                  LLVM::AsmDialect::AD_ATT);

  const unsigned matASize = unpackedAData.size();
  const unsigned matBSize = unpackedB.size();
  const unsigned matCSize = unpackedC.size();

  std::string asmStr = buildMmaSparseAsmString(
      shape, matASize, matBSize, matCSize, ptxTypeA, ptxTypeB, ptxTypeC,
      ptxTypeD, overflow, metadataSelector);
  std::string constraintStr =
      buildMmaSparseAsmConstraintString(matASize, matBSize, matCSize);

  SmallVector<Value> asmVals;
  asmVals.reserve(matASize + matBSize + matCSize + 1);
  for (ArrayRef<Value> args : {unpackedAData, unpackedB, unpackedC})
    llvm::append_range(asmVals, args);
  asmVals.push_back(indexData);

  return rewriter.create<LLVM::InlineAsmOp>(loc,
                                            /*resultTypes=*/intrinsicResultType,
                                            /*operands=*/asmVals,
                                            /*asm_string=*/asmStr,
                                            /*constraints=*/constraintStr,
                                            /*has_side_effects=*/true,
                                            /*is_align_stack=*/false,
                                            /*asm_dialect=*/asmDialectAttr,
                                            /*operand_attrs=*/ArrayAttr());
}

/// Lowers `nvgpu.mma.sp.sync` to inline assembly.
struct NVGPUMmaSparseSyncLowering
    : public ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp> {
  using ConvertOpToLLVMPattern<nvgpu::MmaSparseSyncOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MmaSparseSyncOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    // Get the shapes of the MMAMatrix type being used. The shapes will
    // choose which intrinsic this op will be lowered to.
    VectorType aType = op.getMatrixA().getType();
    VectorType bType = op.getMatrixB().getType();
    VectorType cType = op.getMatrixC().getType();

    FailureOr<NVVM::MMATypes> ptxTypeA = getNvvmMmaType(aType);
    if (failed(ptxTypeA))
      return op->emitOpError("failed to deduce operand PTX types");
    FailureOr<NVVM::MMATypes> ptxTypeB = getNvvmMmaType(bType);
    if (failed(ptxTypeB))
      return op->emitOpError("failed to deduce operand PTX types");
    std::optional<NVVM::MMATypes> ptxTypeC =
        NVVM::MmaOp::inferOperandMMAType(cType.getElementType(),
                                         /*isAccumulator=*/true);
    if (!ptxTypeC)
      return op->emitError(
          "could not infer the PTX type for the accumulator/result");

    // Same as `mma.sync`, F32 works only with TensorFloat32 (TF32).
    bool tf32Enabled = op->hasAttr(op.getTf32EnabledAttrName());
    if (aType.getElementType().isF32() && !tf32Enabled)
      return failure();

    // TODO: add an attribute to the op to customize this behavior.
    std::optional<NVVM::MMAIntOverflow> overflow(std::nullopt);
    if (isa<IntegerType>(aType.getElementType()))
      overflow = NVVM::MMAIntOverflow::satfinite;

    SmallVector<Value> matA =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixA(), *ptxTypeA);
    SmallVector<Value> matB =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixB(), *ptxTypeB);
    SmallVector<Value> matC =
        unpackOperandVector(rewriter, loc, adaptor.getMatrixC(), *ptxTypeC);

    Type desiredRetTy = typeConverter->convertType(op->getResultTypes()[0]);
    Type intrinsicResTy = inferIntrinsicResultType(
        typeConverter->convertType(op->getResultTypes()[0]));

    // Bitcast the sparse metadata from vector<2xf16> to an i32.
    Value sparseMetadata = adaptor.getSparseMetadata();
    if (sparseMetadata.getType() !=
        LLVM::getFixedVectorType(rewriter.getI16Type(), 2))
      return op->emitOpError() << "Expected metadata type to be LLVM "
                                  "VectorType of 2 i16 elements";
    sparseMetadata = rewriter.create<LLVM::BitcastOp>(
        loc, rewriter.getI32Type(), sparseMetadata);

    FailureOr<LLVM::InlineAsmOp> intrinsicResult = emitMmaSparseSyncOpAsm(
        loc, *ptxTypeA, *ptxTypeB, *ptxTypeC, *ptxTypeC, overflow, matA, matB,
        matC, sparseMetadata, op.getSparsitySelector(), op.getMmaShapeAsArray(),
        intrinsicResTy, rewriter);
    if (failed(intrinsicResult))
      return failure();

    assert((*intrinsicResult).getNumResults() == 1 &&
           "expected inline asm op returns a single LLVM struct type");
    rewriter.replaceOp(
        op, convertIntrinsicResult(op.getLoc(), intrinsicResTy, desiredRetTy,
                                   (*intrinsicResult)->getResult(0), rewriter));
    return success();
  }
};

struct NVGPUAsyncCopyLowering
    : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCopyOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::DeviceAsyncCopyOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::DeviceAsyncCopyOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    auto dstMemrefType = cast<MemRefType>(op.getDst().getType());
    Value dstPtr = getStridedElementPtr(loc, dstMemrefType, adaptor.getDst(),
                                        adaptor.getDstIndices(), rewriter);
    auto i8Ty = IntegerType::get(op.getContext(), 8);
    FailureOr<unsigned> dstAddressSpace =
        getTypeConverter()->getMemRefAddressSpace(dstMemrefType);
    if (failed(dstAddressSpace))
      return rewriter.notifyMatchFailure(
          loc, "destination memref address space not convertible to integer");
    auto dstPointerType =
        getTypeConverter()->getPointerType(i8Ty, *dstAddressSpace);
    if (!getTypeConverter()->useOpaquePointers())
      dstPtr = rewriter.create<LLVM::BitcastOp>(loc, dstPointerType, dstPtr);

    auto srcMemrefType = cast<MemRefType>(op.getSrc().getType());
    FailureOr<unsigned> srcAddressSpace =
        getTypeConverter()->getMemRefAddressSpace(srcMemrefType);
    if (failed(srcAddressSpace))
      return rewriter.notifyMatchFailure(
          loc, "source memref address space not convertible to integer");

    Value scrPtr = getStridedElementPtr(loc, srcMemrefType, adaptor.getSrc(),
                                        adaptor.getSrcIndices(), rewriter);
    auto srcPointerType =
        getTypeConverter()->getPointerType(i8Ty, *srcAddressSpace);
    if (!getTypeConverter()->useOpaquePointers())
      scrPtr = rewriter.create<LLVM::BitcastOp>(loc, srcPointerType, scrPtr);
    // Intrinsics takes a global pointer so we need an address space cast.
    auto srcPointerGlobalType = getTypeConverter()->getPointerType(
        i8Ty, NVVM::NVVMMemorySpace::kGlobalMemorySpace);
    scrPtr = rewriter.create<LLVM::AddrSpaceCastOp>(loc, srcPointerGlobalType,
                                                    scrPtr);
    int64_t dstElements = adaptor.getDstElements().getZExtValue();
    int64_t sizeInBytes =
        (dstMemrefType.getElementTypeBitWidth() * dstElements) / 8;
    // When the optional SrcElements argument is *not* present, the regular
    // CpAsyncOp is generated. CopyAsyncOp reads bytes from source (global
    // memory) to fill DstElements number of elements in the destination
    // (shared memory).
    Value srcBytes = adaptor.getSrcElements();
    if (srcBytes) {
      // When the optional SrcElements argument is present, the source (global
      // memory) of CpAsyncOp is read only for SrcElements number of elements.
      // The rest of the DstElements in the destination (shared memory) are
      // filled with zeros.
      Value c3I32 = rewriter.create<LLVM::ConstantOp>(
          loc, rewriter.getI32Type(), rewriter.getI32IntegerAttr(3));
      Value bitwidth = rewriter.create<LLVM::ConstantOp>(
          loc, rewriter.getI32Type(),
          rewriter.getI32IntegerAttr(srcMemrefType.getElementTypeBitWidth()));
      Value srcElementsI32 =
          rewriter.create<LLVM::TruncOp>(loc, rewriter.getI32Type(), srcBytes);
      srcBytes = rewriter.create<LLVM::LShrOp>(
          loc, rewriter.create<LLVM::MulOp>(loc, bitwidth, srcElementsI32),
          c3I32);
    }
    // Cache global (.cg) for 16 dst bytes, Cache all (.ca) for sizes other than
    // 16 dst bytes.
    NVVM::LoadCacheModifierKind cacheModifier =
        (op.getBypassL1().value_or(false) && sizeInBytes == 16)
            ? NVVM::LoadCacheModifierKind::CG
            : NVVM::LoadCacheModifierKind::CA;

    rewriter.create<NVVM::CpAsyncOp>(
        loc, dstPtr, scrPtr, rewriter.getI32IntegerAttr(sizeInBytes),
        NVVM::LoadCacheModifierKindAttr::get(op->getContext(), cacheModifier),
        srcBytes);

    // Drop the result token.
    Value zero = rewriter.create<LLVM::ConstantOp>(
        op->getLoc(), IntegerType::get(op.getContext(), 32),
        rewriter.getI32IntegerAttr(0));
    rewriter.replaceOp(op, zero);
    return success();
  }
};

struct NVGPUAsyncCreateGroupLowering
    : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncCreateGroupOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::DeviceAsyncCreateGroupOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::DeviceAsyncCreateGroupOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.create<NVVM::CpAsyncCommitGroupOp>(op.getLoc());
    // Drop the result token.
    Value zero = rewriter.create<LLVM::ConstantOp>(
        op->getLoc(), IntegerType::get(op.getContext(), 32),
        rewriter.getI32IntegerAttr(0));
    rewriter.replaceOp(op, zero);
    return success();
  }
};

struct NVGPUAsyncWaitLowering
    : public ConvertOpToLLVMPattern<nvgpu::DeviceAsyncWaitOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::DeviceAsyncWaitOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::DeviceAsyncWaitOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // If numGroup is not present pick 0 as a conservative correct value.
    int32_t numGroups = adaptor.getNumGroups().value_or(0);
    rewriter.create<NVVM::CpAsyncWaitGroupOp>(op.getLoc(), numGroups);
    rewriter.eraseOp(op);
    return success();
  }
};

/// Creates mbarrier object in shared memory
struct NVGPUMBarrierCreateLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp> {
  using ConvertOpToLLVMPattern<nvgpu::MBarrierCreateOp>::ConvertOpToLLVMPattern;

  template <typename moduleT>
  memref::GlobalOp generateGlobalBarrier(ConversionPatternRewriter &rewriter,
                                         Operation *funcOp, moduleT moduleOp,
                                         MemRefType barrierType) const {
    SymbolTable symbolTable(moduleOp);
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPoint(&moduleOp.front());
    auto global = rewriter.create<memref::GlobalOp>(
        funcOp->getLoc(), "__mbarrier",
        /*sym_visibility=*/rewriter.getStringAttr("private"),
        /*type=*/barrierType,
        /*initial_value=*/ElementsAttr(),
        /*constant=*/false,
        /*alignment=*/rewriter.getI64IntegerAttr(8));
    symbolTable.insert(global);
    return global;
  }

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierCreateOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Operation *funcOp = op->getParentOp();
    MemRefType barrierType =
        createMBarrierMemrefType(rewriter, op.getBarrier().getType());

    memref::GlobalOp global;
    if (auto moduleOp = funcOp->getParentOfType<gpu::GPUModuleOp>())
      global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);
    else if (auto moduleOp = funcOp->getParentOfType<ModuleOp>())
      global = generateGlobalBarrier(rewriter, funcOp, moduleOp, barrierType);

    rewriter.setInsertionPoint(op);
    rewriter.replaceOpWithNewOp<memref::GetGlobalOp>(op, barrierType,
                                                     global.getName());
    return success();
  }
};

/// Lowers `nvgpu.mbarrier.init` to `nvvm.mbarrier.init`
struct NVGPUMBarrierInitLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierInitOp> {
  using ConvertOpToLLVMPattern<nvgpu::MBarrierInitOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierInitOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.setInsertionPoint(op);
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());

    Value count = truncToI32(rewriter, op->getLoc(), adaptor.getCount());

    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierInitSharedOp>(op, barrier,
                                                              count);
    } else {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierInitOp>(op, barrier, count);
    }
    return success();
  }
};

/// Lowers `nvgpu.mbarrier.arrive` to `nvvm.mbarrier.arrive`
struct NVGPUMBarrierArriveLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierArriveOp> {
  using ConvertOpToLLVMPattern<nvgpu::MBarrierArriveOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(nvgpu::MBarrierArriveOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());
    Type tokenType = getTypeConverter()->convertType(
        nvgpu::MBarrierTokenType::get(op->getContext()));
    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveSharedOp>(op, tokenType,
                                                                barrier);
    } else {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveOp>(op, tokenType,
                                                          barrier);
    }
    return success();
  }
};

/// Lowers `nvgpu.mbarrier.arrive.nocomplete` to
/// `nvvm.mbarrier.arrive.nocomplete`
struct NVGPUMBarrierArriveNoCompleteLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierArriveNoCompleteOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::MBarrierArriveNoCompleteOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierArriveNoCompleteOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());
    Type tokenType = getTypeConverter()->convertType(
        nvgpu::MBarrierTokenType::get(op->getContext()));
    Value count = truncToI32(rewriter, op->getLoc(), adaptor.getCount());
    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteSharedOp>(
          op, tokenType, barrier, count);
    } else {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveNocompleteOp>(
          op, tokenType, barrier, count);
    }
    return success();
  }
};

/// Lowers `nvgpu.mbarrier.test.wait` to `nvvm.mbarrier.test.wait`
struct NVGPUMBarrierTestWaitLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierTestWaitOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::MBarrierTestWaitOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierTestWaitOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());
    Type retType = rewriter.getI1Type();
    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitSharedOp>(
          op, retType, barrier, adaptor.getToken());
    } else {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierTestWaitOp>(
          op, retType, barrier, adaptor.getToken());
    }
    return success();
  }
};

struct NVGPUMBarrierArriveExpectTxLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierArriveExpectTxOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::MBarrierArriveExpectTxOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierArriveExpectTxOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());
    Value txcount = truncToI32(rewriter, op->getLoc(), adaptor.getTxcount());

    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxSharedOp>(
          op, barrier, txcount);
      return success();
    }

    rewriter.replaceOpWithNewOp<NVVM::MBarrierArriveExpectTxOp>(op, barrier,
                                                                txcount);
    return success();
  }
};

struct NVGPUMBarrierTryWaitParityLowering
    : public ConvertOpToLLVMPattern<nvgpu::MBarrierTryWaitParityOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::MBarrierTryWaitParityOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(nvgpu::MBarrierTryWaitParityOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());
    Value ticks = truncToI32(rewriter, op->getLoc(), adaptor.getTicks());
    Value phase = truncToI32(rewriter, op->getLoc(), adaptor.getPhase());

    if (isMbarrierShared(op.getBarrier().getType())) {
      rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParitySharedOp>(
          op, barrier, phase, ticks);
      return success();
    }

    rewriter.replaceOpWithNewOp<NVVM::MBarrierTryWaitParityOp>(op, barrier,
                                                               phase, ticks);
    return success();
  }
};

struct NVGPUTmaAsyncLoadOpLowering
    : public ConvertOpToLLVMPattern<nvgpu::TmaAsyncLoadOp> {
  using ConvertOpToLLVMPattern<nvgpu::TmaAsyncLoadOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(nvgpu::TmaAsyncLoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dest = rewriter.create<LLVM::ExtractValueOp>(op->getLoc(),
                                                      adaptor.getDst(), 1);
    Value barrier = getMbarrierPtr(rewriter, *getTypeConverter(),
                                   op.getBarrier(), adaptor.getBarrier());

    SmallVector<Value> coords = adaptor.getCoordinates();
    for (auto [index, value] : llvm::enumerate(coords)) {
      coords[index] = truncToI32(rewriter, op->getLoc(), value);
    }

    rewriter.replaceOpWithNewOp<NVVM::CpAsyncBulkTensorGlobalToSharedClusterOp>(
        op, dest, adaptor.getTensorMapDescriptor(), barrier, coords);
    return success();
  }
};

static Value makeI64Const(RewriterBase &rewriter, Operation *op,
                          int32_t index) {
  return rewriter.create<LLVM::ConstantOp>(op->getLoc(),
                                           rewriter.getIntegerType(64),
                                           rewriter.getI32IntegerAttr(index));
}

/// Returns a Value that holds data type enum that is expected by CUDA driver.
static Value elementTypeAsLLVMConstant(RewriterBase &rewriter, Operation *op,
                                       Type type) {
  // Enum is from CUDA driver API
  // https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__TYPES.html
  enum CUtensorMapDataTypeEnum {
    CU_TENSOR_MAP_DATA_TYPE_UINT8 = 0,
    CU_TENSOR_MAP_DATA_TYPE_UINT16,
    CU_TENSOR_MAP_DATA_TYPE_UINT32,
    CU_TENSOR_MAP_DATA_TYPE_INT32,
    CU_TENSOR_MAP_DATA_TYPE_UINT64,
    CU_TENSOR_MAP_DATA_TYPE_INT64,
    CU_TENSOR_MAP_DATA_TYPE_FLOAT16,
    CU_TENSOR_MAP_DATA_TYPE_FLOAT32,
    CU_TENSOR_MAP_DATA_TYPE_FLOAT64,
    CU_TENSOR_MAP_DATA_TYPE_BFLOAT16,
    CU_TENSOR_MAP_DATA_TYPE_FLOAT32_FTZ,
    CU_TENSOR_MAP_DATA_TYPE_TFLOAT32,
    CU_TENSOR_MAP_DATA_TYPE_TFLOAT32_FTZ
  };

  if (type.isUnsignedInteger(8))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_UINT8);
  if (type.isUnsignedInteger(16))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_UINT16);
  if (type.isUnsignedInteger(32))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_UINT32);
  if (type.isUnsignedInteger(64))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_UINT64);
  if (type.isSignlessInteger(32))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_INT32);
  if (type.isSignlessInteger(64))
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_INT64);
  if (type.isF16())
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_FLOAT16);
  if (type.isF32())
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_FLOAT32);
  if (type.isF64())
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_FLOAT64);
  if (type.isBF16())
    return makeI64Const(rewriter, op, CU_TENSOR_MAP_DATA_TYPE_BFLOAT16);

  llvm_unreachable("Not supported data type");
}

struct NVGPUTmaCreateDescriptorOpLowering
    : public ConvertOpToLLVMPattern<nvgpu::TmaCreateDescriptorOp> {
  using ConvertOpToLLVMPattern<
      nvgpu::TmaCreateDescriptorOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(nvgpu::TmaCreateDescriptorOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op->getLoc();
    LLVM::LLVMPointerType llvmPointerType = getTypeConverter()->getPointerType(
        IntegerType::get(op->getContext(), 8));
    Type llvmInt64Type = IntegerType::get(op->getContext(), 64);

    Value tensorElementType = elementTypeAsLLVMConstant(
        rewriter, op, op.getTensor().getType().getElementType());
    auto promotedOperands = getTypeConverter()->promoteOperands(
        loc, op->getOperands(), adaptor.getOperands(), rewriter);

    Value boxArrayPtr = rewriter.create<LLVM::AllocaOp>(
        loc, llvmPointerType, llvmInt64Type, makeI64Const(rewriter, op, 5));
    for (auto [index, value] : llvm::enumerate(adaptor.getBoxDimensions())) {
      Value gep = rewriter.create<LLVM::GEPOp>(
          loc, llvmPointerType, llvmPointerType, boxArrayPtr,
          makeI64Const(rewriter, op, index));
      rewriter.create<LLVM::StoreOp>(loc, value, gep);
    }

    nvgpu::TensorMapDescriptorType desc = op.getTensorMap().getType();
    // Set Arguments for the function call
    SmallVector<Value> arguments;
    arguments.push_back(promotedOperands[0]); // rank
    arguments.push_back(promotedOperands[1]); // descriptor
    arguments.push_back(tensorElementType);   // data type
    arguments.push_back(
        makeI64Const(rewriter, op, (int)desc.getInterleave())); // interleave
    arguments.push_back(
        makeI64Const(rewriter, op, (int)desc.getSwizzle())); // swizzle
    arguments.push_back(
        makeI64Const(rewriter, op, (int)desc.getL2promo())); // l2promo
    arguments.push_back(makeI64Const(rewriter, op, (int)desc.getOob())); // oob
    arguments.push_back(boxArrayPtr); // box dimensions

    // Set data types of the arguments
    SmallVector<Type> argTypes = {
        llvmInt64Type,   /* int64_t tensorRank */
        llvmPointerType, /* ptr */
        llvmInt64Type,   /* int64_t */
        llvmInt64Type,   /* int64_t */
        llvmInt64Type,   /* int64_t */
        llvmInt64Type,   /* int64_t */
        llvmInt64Type,   /* int64_t */
        llvmPointerType  /* ptr  */
    };
    FunctionCallBuilder hostRegisterCallBuilder = {
        "mgpuTensorMapEncodeTiledMemref", llvmPointerType, argTypes};
    Value tensorMap =
        hostRegisterCallBuilder.create(loc, rewriter, arguments).getResult();

    rewriter.replaceOp(op, tensorMap);
    return success();
  }
};

} // namespace

void mlir::populateNVGPUToNVVMConversionPatterns(LLVMTypeConverter &converter,
                                                 RewritePatternSet &patterns) {
  patterns.add<
      NVGPUMBarrierCreateLowering,           // nvgpu.mbarrier.create
      NVGPUMBarrierInitLowering,             // nvgpu.mbarrier.init
      NVGPUMBarrierArriveLowering,           // nvgpu.mbarrier.arrive
      NVGPUMBarrierArriveNoCompleteLowering, // nvgpu.mbarrier.arrive.no_complete
      NVGPUMBarrierTestWaitLowering,         // nvgpu.mbarrier.test_wait_parity
      NVGPUMBarrierTryWaitParityLowering,    // nvgpu.mbarrier.try_wait_parity
      NVGPUTmaAsyncLoadOpLowering,           // nvgpu.tma.async.load
      NVGPUTmaCreateDescriptorOpLowering,    // nvgpu.tma.create.descriptor
      NVGPUMBarrierArriveExpectTxLowering,   // nvgpu.mbarrier.arrive.expect_tx
      NVGPUTmaAsyncLoadOpLowering,           // nvgpu.tma.async.load
      MmaSyncOptoNVVM, MmaLdMatrixOpToNVVM, NVGPUAsyncCopyLowering,
      NVGPUAsyncCreateGroupLowering, NVGPUAsyncWaitLowering,
      NVGPUMmaSparseSyncLowering>(converter);
}