1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723
|
//===- Predicate.h - Pattern predicates -------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains definitions for "predicates" used when converting PDL into
// a matcher tree. Predicates are composed of three different parts:
//
// * Positions
// - A position refers to a specific location on the input DAG, i.e. an
// existing MLIR entity being matched. These can be attributes, operands,
// operations, results, and types. Each position also defines a relation to
// its parent. For example, the operand `[0] -> 1` has a parent operation
// position `[0]`. The attribute `[0, 1] -> "myAttr"` has parent operation
// position of `[0, 1]`. The operation `[0, 1]` has a parent operand edge
// `[0] -> 1` (i.e. it is the defining op of operand 1). The only position
// without a parent is `[0]`, which refers to the root operation.
// * Questions
// - A question refers to a query on a specific positional value. For
// example, an operation name question checks the name of an operation
// position.
// * Answers
// - An answer is the expected result of a question. For example, when
// matching an operation with the name "foo.op". The question would be an
// operation name question, with an expected answer of "foo.op".
//
//===----------------------------------------------------------------------===//
#ifndef MLIR_LIB_CONVERSION_PDLTOPDLINTERP_PREDICATE_H_
#define MLIR_LIB_CONVERSION_PDLTOPDLINTERP_PREDICATE_H_
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/Types.h"
namespace mlir {
namespace pdl_to_pdl_interp {
namespace Predicates {
/// An enumeration of the kinds of predicates.
enum Kind : unsigned {
/// Positions, ordered by decreasing priority.
OperationPos,
OperandPos,
OperandGroupPos,
AttributePos,
ResultPos,
ResultGroupPos,
TypePos,
AttributeLiteralPos,
TypeLiteralPos,
UsersPos,
ForEachPos,
// Questions, ordered by dependency and decreasing priority.
IsNotNullQuestion,
OperationNameQuestion,
TypeQuestion,
AttributeQuestion,
OperandCountAtLeastQuestion,
OperandCountQuestion,
ResultCountAtLeastQuestion,
ResultCountQuestion,
EqualToQuestion,
ConstraintQuestion,
// Answers.
AttributeAnswer,
FalseAnswer,
OperationNameAnswer,
TrueAnswer,
TypeAnswer,
UnsignedAnswer,
};
} // namespace Predicates
/// Base class for all predicates, used to allow efficient pointer comparison.
template <typename ConcreteT, typename BaseT, typename Key,
Predicates::Kind Kind>
class PredicateBase : public BaseT {
public:
using KeyTy = Key;
using Base = PredicateBase<ConcreteT, BaseT, Key, Kind>;
template <typename KeyT>
explicit PredicateBase(KeyT &&key)
: BaseT(Kind), key(std::forward<KeyT>(key)) {}
/// Get an instance of this position.
template <typename... Args>
static ConcreteT *get(StorageUniquer &uniquer, Args &&...args) {
return uniquer.get<ConcreteT>(/*initFn=*/{}, std::forward<Args>(args)...);
}
/// Construct an instance with the given storage allocator.
template <typename KeyT>
static ConcreteT *construct(StorageUniquer::StorageAllocator &alloc,
KeyT &&key) {
return new (alloc.allocate<ConcreteT>()) ConcreteT(std::forward<KeyT>(key));
}
/// Utility methods required by the storage allocator.
bool operator==(const KeyTy &key) const { return this->key == key; }
static bool classof(const BaseT *pred) { return pred->getKind() == Kind; }
/// Return the key value of this predicate.
const KeyTy &getValue() const { return key; }
protected:
KeyTy key;
};
/// Base storage for simple predicates that only unique with the kind.
template <typename ConcreteT, typename BaseT, Predicates::Kind Kind>
class PredicateBase<ConcreteT, BaseT, void, Kind> : public BaseT {
public:
using Base = PredicateBase<ConcreteT, BaseT, void, Kind>;
explicit PredicateBase() : BaseT(Kind) {}
static ConcreteT *get(StorageUniquer &uniquer) {
return uniquer.get<ConcreteT>();
}
static bool classof(const BaseT *pred) { return pred->getKind() == Kind; }
};
//===----------------------------------------------------------------------===//
// Positions
//===----------------------------------------------------------------------===//
struct OperationPosition;
/// A position describes a value on the input IR on which a predicate may be
/// applied, such as an operation or attribute. This enables re-use between
/// predicates, and assists generating bytecode and memory management.
///
/// Operation positions form the base of other positions, which are formed
/// relative to a parent operation. Operations are anchored at Operand nodes,
/// except for the root operation which is parentless.
class Position : public StorageUniquer::BaseStorage {
public:
explicit Position(Predicates::Kind kind) : kind(kind) {}
virtual ~Position();
/// Returns the depth of the first ancestor operation position.
unsigned getOperationDepth() const;
/// Returns the parent position. The root operation position has no parent.
Position *getParent() const { return parent; }
/// Returns the kind of this position.
Predicates::Kind getKind() const { return kind; }
protected:
/// Link to the parent position.
Position *parent = nullptr;
private:
/// The kind of this position.
Predicates::Kind kind;
};
//===----------------------------------------------------------------------===//
// AttributePosition
/// A position describing an attribute of an operation.
struct AttributePosition
: public PredicateBase<AttributePosition, Position,
std::pair<OperationPosition *, StringAttr>,
Predicates::AttributePos> {
explicit AttributePosition(const KeyTy &key);
/// Returns the attribute name of this position.
StringAttr getName() const { return key.second; }
};
//===----------------------------------------------------------------------===//
// AttributeLiteralPosition
/// A position describing a literal attribute.
struct AttributeLiteralPosition
: public PredicateBase<AttributeLiteralPosition, Position, Attribute,
Predicates::AttributeLiteralPos> {
using PredicateBase::PredicateBase;
};
//===----------------------------------------------------------------------===//
// ForEachPosition
/// A position describing an iterative choice of an operation.
struct ForEachPosition : public PredicateBase<ForEachPosition, Position,
std::pair<Position *, unsigned>,
Predicates::ForEachPos> {
explicit ForEachPosition(const KeyTy &key) : Base(key) { parent = key.first; }
/// Returns the ID, for differentiating various loops.
/// For upward traversals, this is the index of the root.
unsigned getID() const { return key.second; }
};
//===----------------------------------------------------------------------===//
// OperandPosition
/// A position describing an operand of an operation.
struct OperandPosition
: public PredicateBase<OperandPosition, Position,
std::pair<OperationPosition *, unsigned>,
Predicates::OperandPos> {
explicit OperandPosition(const KeyTy &key);
/// Returns the operand number of this position.
unsigned getOperandNumber() const { return key.second; }
};
//===----------------------------------------------------------------------===//
// OperandGroupPosition
/// A position describing an operand group of an operation.
struct OperandGroupPosition
: public PredicateBase<
OperandGroupPosition, Position,
std::tuple<OperationPosition *, std::optional<unsigned>, bool>,
Predicates::OperandGroupPos> {
explicit OperandGroupPosition(const KeyTy &key);
/// Returns a hash suitable for the given keytype.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Returns the group number of this position. If std::nullopt, this group
/// refers to all operands.
std::optional<unsigned> getOperandGroupNumber() const {
return std::get<1>(key);
}
/// Returns if the operand group has unknown size. If false, the operand group
/// has at max one element.
bool isVariadic() const { return std::get<2>(key); }
};
//===----------------------------------------------------------------------===//
// OperationPosition
/// An operation position describes an operation node in the IR. Other position
/// kinds are formed with respect to an operation position.
struct OperationPosition : public PredicateBase<OperationPosition, Position,
std::pair<Position *, unsigned>,
Predicates::OperationPos> {
explicit OperationPosition(const KeyTy &key) : Base(key) {
parent = key.first;
}
/// Returns a hash suitable for the given keytype.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Gets the root position.
static OperationPosition *getRoot(StorageUniquer &uniquer) {
return Base::get(uniquer, nullptr, 0);
}
/// Gets an operation position with the given parent.
static OperationPosition *get(StorageUniquer &uniquer, Position *parent) {
return Base::get(uniquer, parent, parent->getOperationDepth() + 1);
}
/// Returns the depth of this position.
unsigned getDepth() const { return key.second; }
/// Returns if this operation position corresponds to the root.
bool isRoot() const { return getDepth() == 0; }
/// Returns if this operation represents an operand defining op.
bool isOperandDefiningOp() const;
};
//===----------------------------------------------------------------------===//
// ResultPosition
/// A position describing a result of an operation.
struct ResultPosition
: public PredicateBase<ResultPosition, Position,
std::pair<OperationPosition *, unsigned>,
Predicates::ResultPos> {
explicit ResultPosition(const KeyTy &key) : Base(key) { parent = key.first; }
/// Returns the result number of this position.
unsigned getResultNumber() const { return key.second; }
};
//===----------------------------------------------------------------------===//
// ResultGroupPosition
/// A position describing a result group of an operation.
struct ResultGroupPosition
: public PredicateBase<
ResultGroupPosition, Position,
std::tuple<OperationPosition *, std::optional<unsigned>, bool>,
Predicates::ResultGroupPos> {
explicit ResultGroupPosition(const KeyTy &key) : Base(key) {
parent = std::get<0>(key);
}
/// Returns a hash suitable for the given keytype.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Returns the group number of this position. If std::nullopt, this group
/// refers to all results.
std::optional<unsigned> getResultGroupNumber() const {
return std::get<1>(key);
}
/// Returns if the result group has unknown size. If false, the result group
/// has at max one element.
bool isVariadic() const { return std::get<2>(key); }
};
//===----------------------------------------------------------------------===//
// TypePosition
/// A position describing the result type of an entity, i.e. an Attribute,
/// Operand, Result, etc.
struct TypePosition : public PredicateBase<TypePosition, Position, Position *,
Predicates::TypePos> {
explicit TypePosition(const KeyTy &key) : Base(key) {
assert((isa<AttributePosition, OperandPosition, OperandGroupPosition,
ResultPosition, ResultGroupPosition>(key)) &&
"expected parent to be an attribute, operand, or result");
parent = key;
}
};
//===----------------------------------------------------------------------===//
// TypeLiteralPosition
/// A position describing a literal type or type range. The value is stored as
/// either a TypeAttr, or an ArrayAttr of TypeAttr.
struct TypeLiteralPosition
: public PredicateBase<TypeLiteralPosition, Position, Attribute,
Predicates::TypeLiteralPos> {
using PredicateBase::PredicateBase;
};
//===----------------------------------------------------------------------===//
// UsersPosition
/// A position describing the users of a value or a range of values. The second
/// value in the key indicates whether we choose users of a representative for
/// a range (this is true, e.g., in the upward traversals).
struct UsersPosition
: public PredicateBase<UsersPosition, Position, std::pair<Position *, bool>,
Predicates::UsersPos> {
explicit UsersPosition(const KeyTy &key) : Base(key) { parent = key.first; }
/// Returns a hash suitable for the given keytype.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_value(key);
}
/// Indicates whether to compute a range of a representative.
bool useRepresentative() const { return key.second; }
};
//===----------------------------------------------------------------------===//
// Qualifiers
//===----------------------------------------------------------------------===//
/// An ordinal predicate consists of a "Question" and a set of acceptable
/// "Answers" (later converted to ordinal values). A predicate will query some
/// property of a positional value and decide what to do based on the result.
///
/// This makes top-level predicate representations ordinal (SwitchOp). Later,
/// predicates that end up with only one acceptable answer (including all
/// boolean kinds) will be converted to boolean predicates (PredicateOp) in the
/// matcher.
///
/// For simplicity, both are represented as "qualifiers", with a base kind and
/// perhaps additional properties. For example, all OperationName predicates ask
/// the same question, but GenericConstraint predicates may ask different ones.
class Qualifier : public StorageUniquer::BaseStorage {
public:
explicit Qualifier(Predicates::Kind kind) : kind(kind) {}
/// Returns the kind of this qualifier.
Predicates::Kind getKind() const { return kind; }
private:
/// The kind of this position.
Predicates::Kind kind;
};
//===----------------------------------------------------------------------===//
// Answers
/// An Answer representing an `Attribute` value.
struct AttributeAnswer
: public PredicateBase<AttributeAnswer, Qualifier, Attribute,
Predicates::AttributeAnswer> {
using Base::Base;
};
/// An Answer representing an `OperationName` value.
struct OperationNameAnswer
: public PredicateBase<OperationNameAnswer, Qualifier, OperationName,
Predicates::OperationNameAnswer> {
using Base::Base;
};
/// An Answer representing a boolean `true` value.
struct TrueAnswer
: PredicateBase<TrueAnswer, Qualifier, void, Predicates::TrueAnswer> {
using Base::Base;
};
/// An Answer representing a boolean 'false' value.
struct FalseAnswer
: PredicateBase<FalseAnswer, Qualifier, void, Predicates::FalseAnswer> {
using Base::Base;
};
/// An Answer representing a `Type` value. The value is stored as either a
/// TypeAttr, or an ArrayAttr of TypeAttr.
struct TypeAnswer : public PredicateBase<TypeAnswer, Qualifier, Attribute,
Predicates::TypeAnswer> {
using Base::Base;
};
/// An Answer representing an unsigned value.
struct UnsignedAnswer
: public PredicateBase<UnsignedAnswer, Qualifier, unsigned,
Predicates::UnsignedAnswer> {
using Base::Base;
};
//===----------------------------------------------------------------------===//
// Questions
/// Compare an `Attribute` to a constant value.
struct AttributeQuestion
: public PredicateBase<AttributeQuestion, Qualifier, void,
Predicates::AttributeQuestion> {};
/// Apply a parameterized constraint to multiple position values.
struct ConstraintQuestion
: public PredicateBase<ConstraintQuestion, Qualifier,
std::tuple<StringRef, ArrayRef<Position *>>,
Predicates::ConstraintQuestion> {
using Base::Base;
/// Return the name of the constraint.
StringRef getName() const { return std::get<0>(key); }
/// Return the arguments of the constraint.
ArrayRef<Position *> getArgs() const { return std::get<1>(key); }
/// Construct an instance with the given storage allocator.
static ConstraintQuestion *construct(StorageUniquer::StorageAllocator &alloc,
KeyTy key) {
return Base::construct(alloc, KeyTy{alloc.copyInto(std::get<0>(key)),
alloc.copyInto(std::get<1>(key))});
}
};
/// Compare the equality of two values.
struct EqualToQuestion
: public PredicateBase<EqualToQuestion, Qualifier, Position *,
Predicates::EqualToQuestion> {
using Base::Base;
};
/// Compare a positional value with null, i.e. check if it exists.
struct IsNotNullQuestion
: public PredicateBase<IsNotNullQuestion, Qualifier, void,
Predicates::IsNotNullQuestion> {};
/// Compare the number of operands of an operation with a known value.
struct OperandCountQuestion
: public PredicateBase<OperandCountQuestion, Qualifier, void,
Predicates::OperandCountQuestion> {};
struct OperandCountAtLeastQuestion
: public PredicateBase<OperandCountAtLeastQuestion, Qualifier, void,
Predicates::OperandCountAtLeastQuestion> {};
/// Compare the name of an operation with a known value.
struct OperationNameQuestion
: public PredicateBase<OperationNameQuestion, Qualifier, void,
Predicates::OperationNameQuestion> {};
/// Compare the number of results of an operation with a known value.
struct ResultCountQuestion
: public PredicateBase<ResultCountQuestion, Qualifier, void,
Predicates::ResultCountQuestion> {};
struct ResultCountAtLeastQuestion
: public PredicateBase<ResultCountAtLeastQuestion, Qualifier, void,
Predicates::ResultCountAtLeastQuestion> {};
/// Compare the type of an attribute or value with a known type.
struct TypeQuestion : public PredicateBase<TypeQuestion, Qualifier, void,
Predicates::TypeQuestion> {};
//===----------------------------------------------------------------------===//
// PredicateUniquer
//===----------------------------------------------------------------------===//
/// This class provides a storage uniquer that is used to allocate predicate
/// instances.
class PredicateUniquer : public StorageUniquer {
public:
PredicateUniquer() {
// Register the types of Positions with the uniquer.
registerParametricStorageType<AttributePosition>();
registerParametricStorageType<AttributeLiteralPosition>();
registerParametricStorageType<ForEachPosition>();
registerParametricStorageType<OperandPosition>();
registerParametricStorageType<OperandGroupPosition>();
registerParametricStorageType<OperationPosition>();
registerParametricStorageType<ResultPosition>();
registerParametricStorageType<ResultGroupPosition>();
registerParametricStorageType<TypePosition>();
registerParametricStorageType<TypeLiteralPosition>();
registerParametricStorageType<UsersPosition>();
// Register the types of Questions with the uniquer.
registerParametricStorageType<AttributeAnswer>();
registerParametricStorageType<OperationNameAnswer>();
registerParametricStorageType<TypeAnswer>();
registerParametricStorageType<UnsignedAnswer>();
registerSingletonStorageType<FalseAnswer>();
registerSingletonStorageType<TrueAnswer>();
// Register the types of Answers with the uniquer.
registerParametricStorageType<ConstraintQuestion>();
registerParametricStorageType<EqualToQuestion>();
registerSingletonStorageType<AttributeQuestion>();
registerSingletonStorageType<IsNotNullQuestion>();
registerSingletonStorageType<OperandCountQuestion>();
registerSingletonStorageType<OperandCountAtLeastQuestion>();
registerSingletonStorageType<OperationNameQuestion>();
registerSingletonStorageType<ResultCountQuestion>();
registerSingletonStorageType<ResultCountAtLeastQuestion>();
registerSingletonStorageType<TypeQuestion>();
}
};
//===----------------------------------------------------------------------===//
// PredicateBuilder
//===----------------------------------------------------------------------===//
/// This class provides utilities for constructing predicates.
class PredicateBuilder {
public:
PredicateBuilder(PredicateUniquer &uniquer, MLIRContext *ctx)
: uniquer(uniquer), ctx(ctx) {}
//===--------------------------------------------------------------------===//
// Positions
//===--------------------------------------------------------------------===//
/// Returns the root operation position.
Position *getRoot() { return OperationPosition::getRoot(uniquer); }
/// Returns the parent position defining the value held by the given operand.
OperationPosition *getOperandDefiningOp(Position *p) {
assert((isa<OperandPosition, OperandGroupPosition>(p)) &&
"expected operand position");
return OperationPosition::get(uniquer, p);
}
/// Returns the operation position equivalent to the given position.
OperationPosition *getPassthroughOp(Position *p) {
assert((isa<ForEachPosition>(p)) && "expected users position");
return OperationPosition::get(uniquer, p);
}
/// Returns an attribute position for an attribute of the given operation.
Position *getAttribute(OperationPosition *p, StringRef name) {
return AttributePosition::get(uniquer, p, StringAttr::get(ctx, name));
}
/// Returns an attribute position for the given attribute.
Position *getAttributeLiteral(Attribute attr) {
return AttributeLiteralPosition::get(uniquer, attr);
}
Position *getForEach(Position *p, unsigned id) {
return ForEachPosition::get(uniquer, p, id);
}
/// Returns an operand position for an operand of the given operation.
Position *getOperand(OperationPosition *p, unsigned operand) {
return OperandPosition::get(uniquer, p, operand);
}
/// Returns a position for a group of operands of the given operation.
Position *getOperandGroup(OperationPosition *p, std::optional<unsigned> group,
bool isVariadic) {
return OperandGroupPosition::get(uniquer, p, group, isVariadic);
}
Position *getAllOperands(OperationPosition *p) {
return getOperandGroup(p, /*group=*/std::nullopt, /*isVariadic=*/true);
}
/// Returns a result position for a result of the given operation.
Position *getResult(OperationPosition *p, unsigned result) {
return ResultPosition::get(uniquer, p, result);
}
/// Returns a position for a group of results of the given operation.
Position *getResultGroup(OperationPosition *p, std::optional<unsigned> group,
bool isVariadic) {
return ResultGroupPosition::get(uniquer, p, group, isVariadic);
}
Position *getAllResults(OperationPosition *p) {
return getResultGroup(p, /*group=*/std::nullopt, /*isVariadic=*/true);
}
/// Returns a type position for the given entity.
Position *getType(Position *p) { return TypePosition::get(uniquer, p); }
/// Returns a type position for the given type value. The value is stored
/// as either a TypeAttr, or an ArrayAttr of TypeAttr.
Position *getTypeLiteral(Attribute attr) {
return TypeLiteralPosition::get(uniquer, attr);
}
/// Returns the users of a position using the value at the given operand.
UsersPosition *getUsers(Position *p, bool useRepresentative) {
assert((isa<OperandPosition, OperandGroupPosition, ResultPosition,
ResultGroupPosition>(p)) &&
"expected result position");
return UsersPosition::get(uniquer, p, useRepresentative);
}
//===--------------------------------------------------------------------===//
// Qualifiers
//===--------------------------------------------------------------------===//
/// An ordinal predicate consists of a "Question" and a set of acceptable
/// "Answers" (later converted to ordinal values). A predicate will query some
/// property of a positional value and decide what to do based on the result.
using Predicate = std::pair<Qualifier *, Qualifier *>;
/// Create a predicate comparing an attribute to a known value.
Predicate getAttributeConstraint(Attribute attr) {
return {AttributeQuestion::get(uniquer),
AttributeAnswer::get(uniquer, attr)};
}
/// Create a predicate checking if two values are equal.
Predicate getEqualTo(Position *pos) {
return {EqualToQuestion::get(uniquer, pos), TrueAnswer::get(uniquer)};
}
/// Create a predicate checking if two values are not equal.
Predicate getNotEqualTo(Position *pos) {
return {EqualToQuestion::get(uniquer, pos), FalseAnswer::get(uniquer)};
}
/// Create a predicate that applies a generic constraint.
Predicate getConstraint(StringRef name, ArrayRef<Position *> pos) {
return {ConstraintQuestion::get(uniquer, std::make_tuple(name, pos)),
TrueAnswer::get(uniquer)};
}
/// Create a predicate comparing a value with null.
Predicate getIsNotNull() {
return {IsNotNullQuestion::get(uniquer), TrueAnswer::get(uniquer)};
}
/// Create a predicate comparing the number of operands of an operation to a
/// known value.
Predicate getOperandCount(unsigned count) {
return {OperandCountQuestion::get(uniquer),
UnsignedAnswer::get(uniquer, count)};
}
Predicate getOperandCountAtLeast(unsigned count) {
return {OperandCountAtLeastQuestion::get(uniquer),
UnsignedAnswer::get(uniquer, count)};
}
/// Create a predicate comparing the name of an operation to a known value.
Predicate getOperationName(StringRef name) {
return {OperationNameQuestion::get(uniquer),
OperationNameAnswer::get(uniquer, OperationName(name, ctx))};
}
/// Create a predicate comparing the number of results of an operation to a
/// known value.
Predicate getResultCount(unsigned count) {
return {ResultCountQuestion::get(uniquer),
UnsignedAnswer::get(uniquer, count)};
}
Predicate getResultCountAtLeast(unsigned count) {
return {ResultCountAtLeastQuestion::get(uniquer),
UnsignedAnswer::get(uniquer, count)};
}
/// Create a predicate comparing the type of an attribute or value to a known
/// type. The value is stored as either a TypeAttr, or an ArrayAttr of
/// TypeAttr.
Predicate getTypeConstraint(Attribute type) {
return {TypeQuestion::get(uniquer), TypeAnswer::get(uniquer, type)};
}
private:
/// The uniquer used when allocating predicate nodes.
PredicateUniquer &uniquer;
/// The current MLIR context.
MLIRContext *ctx;
};
} // namespace pdl_to_pdl_interp
} // namespace mlir
#endif // MLIR_CONVERSION_PDLTOPDLINTERP_PREDICATE_H_
|