1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707
|
//===- SCFToControlFlow.cpp - SCF to CF conversion ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert scf.for, scf.if and loop.terminator
// ops into standard CFG ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToControlFlow/SCFToControlFlow.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
namespace mlir {
#define GEN_PASS_DEF_SCFTOCONTROLFLOW
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using namespace mlir::scf;
namespace {
struct SCFToControlFlowPass
: public impl::SCFToControlFlowBase<SCFToControlFlowPass> {
void runOnOperation() override;
};
// Create a CFG subgraph for the loop around its body blocks (if the body
// contained other loops, they have been already lowered to a flow of blocks).
// Maintain the invariants that a CFG subgraph created for any loop has a single
// entry and a single exit, and that the entry/exit blocks are respectively
// first/last blocks in the parent region. The original loop operation is
// replaced by the initialization operations that set up the initial value of
// the loop induction variable (%iv) and computes the loop bounds that are loop-
// invariant for affine loops. The operations following the original scf.for
// are split out into a separate continuation (exit) block. A condition block is
// created before the continuation block. It checks the exit condition of the
// loop and branches either to the continuation block, or to the first block of
// the body. The condition block takes as arguments the values of the induction
// variable followed by loop-carried values. Since it dominates both the body
// blocks and the continuation block, loop-carried values are visible in all of
// those blocks. Induction variable modification is appended to the last block
// of the body (which is the exit block from the body subgraph thanks to the
// invariant we maintain) along with a branch that loops back to the condition
// block. Loop-carried values are the loop terminator operands, which are
// forwarded to the branch.
//
// +---------------------------------+
// | <code before the ForOp> |
// | <definitions of %init...> |
// | <compute initial %iv value> |
// | cf.br cond(%iv, %init...) |
// +---------------------------------+
// |
// -------| |
// | v v
// | +--------------------------------+
// | | cond(%iv, %init...): |
// | | <compare %iv to upper bound> |
// | | cf.cond_br %r, body, end |
// | +--------------------------------+
// | | |
// | | -------------|
// | v |
// | +--------------------------------+ |
// | | body-first: | |
// | | <%init visible by dominance> | |
// | | <body contents> | |
// | +--------------------------------+ |
// | | |
// | ... |
// | | |
// | +--------------------------------+ |
// | | body-last: | |
// | | <body contents> | |
// | | <operands of yield = %yields>| |
// | | %new_iv =<add step to %iv> | |
// | | cf.br cond(%new_iv, %yields) | |
// | +--------------------------------+ |
// | | |
// |----------- |--------------------
// v
// +--------------------------------+
// | end: |
// | <code after the ForOp> |
// | <%init visible by dominance> |
// +--------------------------------+
//
struct ForLowering : public OpRewritePattern<ForOp> {
using OpRewritePattern<ForOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const override;
};
// Create a CFG subgraph for the scf.if operation (including its "then" and
// optional "else" operation blocks). We maintain the invariants that the
// subgraph has a single entry and a single exit point, and that the entry/exit
// blocks are respectively the first/last block of the enclosing region. The
// operations following the scf.if are split into a continuation (subgraph
// exit) block. The condition is lowered to a chain of blocks that implement the
// short-circuit scheme. The "scf.if" operation is replaced with a conditional
// branch to either the first block of the "then" region, or to the first block
// of the "else" region. In these blocks, "scf.yield" is unconditional branches
// to the post-dominating block. When the "scf.if" does not return values, the
// post-dominating block is the same as the continuation block. When it returns
// values, the post-dominating block is a new block with arguments that
// correspond to the values returned by the "scf.if" that unconditionally
// branches to the continuation block. This allows block arguments to dominate
// any uses of the hitherto "scf.if" results that they replaced. (Inserting a
// new block allows us to avoid modifying the argument list of an existing
// block, which is illegal in a conversion pattern). When the "else" region is
// empty, which is only allowed for "scf.if"s that don't return values, the
// condition branches directly to the continuation block.
//
// CFG for a scf.if with else and without results.
//
// +--------------------------------+
// | <code before the IfOp> |
// | cf.cond_br %cond, %then, %else |
// +--------------------------------+
// | |
// | --------------|
// v |
// +--------------------------------+ |
// | then: | |
// | <then contents> | |
// | cf.br continue | |
// +--------------------------------+ |
// | |
// |---------- |-------------
// | V
// | +--------------------------------+
// | | else: |
// | | <else contents> |
// | | cf.br continue |
// | +--------------------------------+
// | |
// ------| |
// v v
// +--------------------------------+
// | continue: |
// | <code after the IfOp> |
// +--------------------------------+
//
// CFG for a scf.if with results.
//
// +--------------------------------+
// | <code before the IfOp> |
// | cf.cond_br %cond, %then, %else |
// +--------------------------------+
// | |
// | --------------|
// v |
// +--------------------------------+ |
// | then: | |
// | <then contents> | |
// | cf.br dom(%args...) | |
// +--------------------------------+ |
// | |
// |---------- |-------------
// | V
// | +--------------------------------+
// | | else: |
// | | <else contents> |
// | | cf.br dom(%args...) |
// | +--------------------------------+
// | |
// ------| |
// v v
// +--------------------------------+
// | dom(%args...): |
// | cf.br continue |
// +--------------------------------+
// |
// v
// +--------------------------------+
// | continue: |
// | <code after the IfOp> |
// +--------------------------------+
//
struct IfLowering : public OpRewritePattern<IfOp> {
using OpRewritePattern<IfOp>::OpRewritePattern;
LogicalResult matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const override;
};
struct ExecuteRegionLowering : public OpRewritePattern<ExecuteRegionOp> {
using OpRewritePattern<ExecuteRegionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const override;
};
struct ParallelLowering : public OpRewritePattern<mlir::scf::ParallelOp> {
using OpRewritePattern<mlir::scf::ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(mlir::scf::ParallelOp parallelOp,
PatternRewriter &rewriter) const override;
};
/// Create a CFG subgraph for this loop construct. The regions of the loop need
/// not be a single block anymore (for example, if other SCF constructs that
/// they contain have been already converted to CFG), but need to be single-exit
/// from the last block of each region. The operations following the original
/// WhileOp are split into a new continuation block. Both regions of the WhileOp
/// are inlined, and their terminators are rewritten to organize the control
/// flow implementing the loop as follows.
///
/// +---------------------------------+
/// | <code before the WhileOp> |
/// | cf.br ^before(%operands...) |
/// +---------------------------------+
/// |
/// -------| |
/// | v v
/// | +--------------------------------+
/// | | ^before(%bargs...): |
/// | | %vals... = <some payload> |
/// | +--------------------------------+
/// | |
/// | ...
/// | |
/// | +--------------------------------+
/// | | ^before-last:
/// | | %cond = <compute condition> |
/// | | cf.cond_br %cond, |
/// | | ^after(%vals...), ^cont |
/// | +--------------------------------+
/// | | |
/// | | -------------|
/// | v |
/// | +--------------------------------+ |
/// | | ^after(%aargs...): | |
/// | | <body contents> | |
/// | +--------------------------------+ |
/// | | |
/// | ... |
/// | | |
/// | +--------------------------------+ |
/// | | ^after-last: | |
/// | | %yields... = <some payload> | |
/// | | cf.br ^before(%yields...) | |
/// | +--------------------------------+ |
/// | | |
/// |----------- |--------------------
/// v
/// +--------------------------------+
/// | ^cont: |
/// | <code after the WhileOp> |
/// | <%vals from 'before' region |
/// | visible by dominance> |
/// +--------------------------------+
///
/// Values are communicated between ex-regions (the groups of blocks that used
/// to form a region before inlining) through block arguments of their
/// entry blocks, which are visible in all other dominated blocks. Similarly,
/// the results of the WhileOp are defined in the 'before' region, which is
/// required to have a single existing block, and are therefore accessible in
/// the continuation block due to dominance.
struct WhileLowering : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp whileOp,
PatternRewriter &rewriter) const override;
};
/// Optimized version of the above for the case of the "after" region merely
/// forwarding its arguments back to the "before" region (i.e., a "do-while"
/// loop). This avoid inlining the "after" region completely and branches back
/// to the "before" entry instead.
struct DoWhileLowering : public OpRewritePattern<WhileOp> {
using OpRewritePattern<WhileOp>::OpRewritePattern;
LogicalResult matchAndRewrite(WhileOp whileOp,
PatternRewriter &rewriter) const override;
};
/// Lower an `scf.index_switch` operation to a `cf.switch` operation.
struct IndexSwitchLowering : public OpRewritePattern<IndexSwitchOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(IndexSwitchOp op,
PatternRewriter &rewriter) const override;
};
} // namespace
LogicalResult ForLowering::matchAndRewrite(ForOp forOp,
PatternRewriter &rewriter) const {
Location loc = forOp.getLoc();
// Start by splitting the block containing the 'scf.for' into two parts.
// The part before will get the init code, the part after will be the end
// point.
auto *initBlock = rewriter.getInsertionBlock();
auto initPosition = rewriter.getInsertionPoint();
auto *endBlock = rewriter.splitBlock(initBlock, initPosition);
// Use the first block of the loop body as the condition block since it is the
// block that has the induction variable and loop-carried values as arguments.
// Split out all operations from the first block into a new block. Move all
// body blocks from the loop body region to the region containing the loop.
auto *conditionBlock = &forOp.getRegion().front();
auto *firstBodyBlock =
rewriter.splitBlock(conditionBlock, conditionBlock->begin());
auto *lastBodyBlock = &forOp.getRegion().back();
rewriter.inlineRegionBefore(forOp.getRegion(), endBlock);
auto iv = conditionBlock->getArgument(0);
// Append the induction variable stepping logic to the last body block and
// branch back to the condition block. Loop-carried values are taken from
// operands of the loop terminator.
Operation *terminator = lastBodyBlock->getTerminator();
rewriter.setInsertionPointToEnd(lastBodyBlock);
auto step = forOp.getStep();
auto stepped = rewriter.create<arith::AddIOp>(loc, iv, step).getResult();
if (!stepped)
return failure();
SmallVector<Value, 8> loopCarried;
loopCarried.push_back(stepped);
loopCarried.append(terminator->operand_begin(), terminator->operand_end());
rewriter.create<cf::BranchOp>(loc, conditionBlock, loopCarried);
rewriter.eraseOp(terminator);
// Compute loop bounds before branching to the condition.
rewriter.setInsertionPointToEnd(initBlock);
Value lowerBound = forOp.getLowerBound();
Value upperBound = forOp.getUpperBound();
if (!lowerBound || !upperBound)
return failure();
// The initial values of loop-carried values is obtained from the operands
// of the loop operation.
SmallVector<Value, 8> destOperands;
destOperands.push_back(lowerBound);
auto iterOperands = forOp.getIterOperands();
destOperands.append(iterOperands.begin(), iterOperands.end());
rewriter.create<cf::BranchOp>(loc, conditionBlock, destOperands);
// With the body block done, we can fill in the condition block.
rewriter.setInsertionPointToEnd(conditionBlock);
auto comparison = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, iv, upperBound);
rewriter.create<cf::CondBranchOp>(loc, comparison, firstBodyBlock,
ArrayRef<Value>(), endBlock,
ArrayRef<Value>());
// The result of the loop operation is the values of the condition block
// arguments except the induction variable on the last iteration.
rewriter.replaceOp(forOp, conditionBlock->getArguments().drop_front());
return success();
}
LogicalResult IfLowering::matchAndRewrite(IfOp ifOp,
PatternRewriter &rewriter) const {
auto loc = ifOp.getLoc();
// Start by splitting the block containing the 'scf.if' into two parts.
// The part before will contain the condition, the part after will be the
// continuation point.
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
Block *continueBlock;
if (ifOp.getNumResults() == 0) {
continueBlock = remainingOpsBlock;
} else {
continueBlock =
rewriter.createBlock(remainingOpsBlock, ifOp.getResultTypes(),
SmallVector<Location>(ifOp.getNumResults(), loc));
rewriter.create<cf::BranchOp>(loc, remainingOpsBlock);
}
// Move blocks from the "then" region to the region containing 'scf.if',
// place it before the continuation block, and branch to it.
auto &thenRegion = ifOp.getThenRegion();
auto *thenBlock = &thenRegion.front();
Operation *thenTerminator = thenRegion.back().getTerminator();
ValueRange thenTerminatorOperands = thenTerminator->getOperands();
rewriter.setInsertionPointToEnd(&thenRegion.back());
rewriter.create<cf::BranchOp>(loc, continueBlock, thenTerminatorOperands);
rewriter.eraseOp(thenTerminator);
rewriter.inlineRegionBefore(thenRegion, continueBlock);
// Move blocks from the "else" region (if present) to the region containing
// 'scf.if', place it before the continuation block and branch to it. It
// will be placed after the "then" regions.
auto *elseBlock = continueBlock;
auto &elseRegion = ifOp.getElseRegion();
if (!elseRegion.empty()) {
elseBlock = &elseRegion.front();
Operation *elseTerminator = elseRegion.back().getTerminator();
ValueRange elseTerminatorOperands = elseTerminator->getOperands();
rewriter.setInsertionPointToEnd(&elseRegion.back());
rewriter.create<cf::BranchOp>(loc, continueBlock, elseTerminatorOperands);
rewriter.eraseOp(elseTerminator);
rewriter.inlineRegionBefore(elseRegion, continueBlock);
}
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<cf::CondBranchOp>(loc, ifOp.getCondition(), thenBlock,
/*trueArgs=*/ArrayRef<Value>(), elseBlock,
/*falseArgs=*/ArrayRef<Value>());
// Ok, we're done!
rewriter.replaceOp(ifOp, continueBlock->getArguments());
return success();
}
LogicalResult
ExecuteRegionLowering::matchAndRewrite(ExecuteRegionOp op,
PatternRewriter &rewriter) const {
auto loc = op.getLoc();
auto *condBlock = rewriter.getInsertionBlock();
auto opPosition = rewriter.getInsertionPoint();
auto *remainingOpsBlock = rewriter.splitBlock(condBlock, opPosition);
auto ®ion = op.getRegion();
rewriter.setInsertionPointToEnd(condBlock);
rewriter.create<cf::BranchOp>(loc, ®ion.front());
for (Block &block : region) {
if (auto terminator = dyn_cast<scf::YieldOp>(block.getTerminator())) {
ValueRange terminatorOperands = terminator->getOperands();
rewriter.setInsertionPointToEnd(&block);
rewriter.create<cf::BranchOp>(loc, remainingOpsBlock, terminatorOperands);
rewriter.eraseOp(terminator);
}
}
rewriter.inlineRegionBefore(region, remainingOpsBlock);
SmallVector<Value> vals;
SmallVector<Location> argLocs(op.getNumResults(), op->getLoc());
for (auto arg :
remainingOpsBlock->addArguments(op->getResultTypes(), argLocs))
vals.push_back(arg);
rewriter.replaceOp(op, vals);
return success();
}
LogicalResult
ParallelLowering::matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const {
Location loc = parallelOp.getLoc();
// For a parallel loop, we essentially need to create an n-dimensional loop
// nest. We do this by translating to scf.for ops and have those lowered in
// a further rewrite. If a parallel loop contains reductions (and thus returns
// values), forward the initial values for the reductions down the loop
// hierarchy and bubble up the results by modifying the "yield" terminator.
SmallVector<Value, 4> iterArgs = llvm::to_vector<4>(parallelOp.getInitVals());
SmallVector<Value, 4> ivs;
ivs.reserve(parallelOp.getNumLoops());
bool first = true;
SmallVector<Value, 4> loopResults(iterArgs);
for (auto [iv, lower, upper, step] :
llvm::zip(parallelOp.getInductionVars(), parallelOp.getLowerBound(),
parallelOp.getUpperBound(), parallelOp.getStep())) {
ForOp forOp = rewriter.create<ForOp>(loc, lower, upper, step, iterArgs);
ivs.push_back(forOp.getInductionVar());
auto iterRange = forOp.getRegionIterArgs();
iterArgs.assign(iterRange.begin(), iterRange.end());
if (first) {
// Store the results of the outermost loop that will be used to replace
// the results of the parallel loop when it is fully rewritten.
loopResults.assign(forOp.result_begin(), forOp.result_end());
first = false;
} else if (!forOp.getResults().empty()) {
// A loop is constructed with an empty "yield" terminator if there are
// no results.
rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock());
rewriter.create<scf::YieldOp>(loc, forOp.getResults());
}
rewriter.setInsertionPointToStart(forOp.getBody());
}
// First, merge reduction blocks into the main region.
SmallVector<Value, 4> yieldOperands;
yieldOperands.reserve(parallelOp.getNumResults());
for (auto &op : *parallelOp.getBody()) {
auto reduce = dyn_cast<ReduceOp>(op);
if (!reduce)
continue;
Block &reduceBlock = reduce.getReductionOperator().front();
Value arg = iterArgs[yieldOperands.size()];
yieldOperands.push_back(reduceBlock.getTerminator()->getOperand(0));
rewriter.eraseOp(reduceBlock.getTerminator());
rewriter.inlineBlockBefore(&reduceBlock, &op, {arg, reduce.getOperand()});
rewriter.eraseOp(reduce);
}
// Then merge the loop body without the terminator.
rewriter.eraseOp(parallelOp.getBody()->getTerminator());
Block *newBody = rewriter.getInsertionBlock();
if (newBody->empty())
rewriter.mergeBlocks(parallelOp.getBody(), newBody, ivs);
else
rewriter.inlineBlockBefore(parallelOp.getBody(), newBody->getTerminator(),
ivs);
// Finally, create the terminator if required (for loops with no results, it
// has been already created in loop construction).
if (!yieldOperands.empty()) {
rewriter.setInsertionPointToEnd(rewriter.getInsertionBlock());
rewriter.create<scf::YieldOp>(loc, yieldOperands);
}
rewriter.replaceOp(parallelOp, loopResults);
return success();
}
LogicalResult WhileLowering::matchAndRewrite(WhileOp whileOp,
PatternRewriter &rewriter) const {
OpBuilder::InsertionGuard guard(rewriter);
Location loc = whileOp.getLoc();
// Split the current block before the WhileOp to create the inlining point.
Block *currentBlock = rewriter.getInsertionBlock();
Block *continuation =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
// Inline both regions.
Block *after = &whileOp.getAfter().front();
Block *afterLast = &whileOp.getAfter().back();
Block *before = &whileOp.getBefore().front();
Block *beforeLast = &whileOp.getBefore().back();
rewriter.inlineRegionBefore(whileOp.getAfter(), continuation);
rewriter.inlineRegionBefore(whileOp.getBefore(), after);
// Branch to the "before" region.
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<cf::BranchOp>(loc, before, whileOp.getInits());
// Replace terminators with branches. Assuming bodies are SESE, which holds
// given only the patterns from this file, we only need to look at the last
// block. This should be reconsidered if we allow break/continue in SCF.
rewriter.setInsertionPointToEnd(beforeLast);
auto condOp = cast<ConditionOp>(beforeLast->getTerminator());
rewriter.replaceOpWithNewOp<cf::CondBranchOp>(condOp, condOp.getCondition(),
after, condOp.getArgs(),
continuation, ValueRange());
rewriter.setInsertionPointToEnd(afterLast);
auto yieldOp = cast<scf::YieldOp>(afterLast->getTerminator());
rewriter.replaceOpWithNewOp<cf::BranchOp>(yieldOp, before,
yieldOp.getResults());
// Replace the op with values "yielded" from the "before" region, which are
// visible by dominance.
rewriter.replaceOp(whileOp, condOp.getArgs());
return success();
}
LogicalResult
DoWhileLowering::matchAndRewrite(WhileOp whileOp,
PatternRewriter &rewriter) const {
if (!llvm::hasSingleElement(whileOp.getAfter()))
return rewriter.notifyMatchFailure(whileOp,
"do-while simplification applicable to "
"single-block 'after' region only");
Block &afterBlock = whileOp.getAfter().front();
if (!llvm::hasSingleElement(afterBlock))
return rewriter.notifyMatchFailure(whileOp,
"do-while simplification applicable "
"only if 'after' region has no payload");
auto yield = dyn_cast<scf::YieldOp>(&afterBlock.front());
if (!yield || yield.getResults() != afterBlock.getArguments())
return rewriter.notifyMatchFailure(whileOp,
"do-while simplification applicable "
"only to forwarding 'after' regions");
// Split the current block before the WhileOp to create the inlining point.
OpBuilder::InsertionGuard guard(rewriter);
Block *currentBlock = rewriter.getInsertionBlock();
Block *continuation =
rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
// Only the "before" region should be inlined.
Block *before = &whileOp.getBefore().front();
Block *beforeLast = &whileOp.getBefore().back();
rewriter.inlineRegionBefore(whileOp.getBefore(), continuation);
// Branch to the "before" region.
rewriter.setInsertionPointToEnd(currentBlock);
rewriter.create<cf::BranchOp>(whileOp.getLoc(), before, whileOp.getInits());
// Loop around the "before" region based on condition.
rewriter.setInsertionPointToEnd(beforeLast);
auto condOp = cast<ConditionOp>(beforeLast->getTerminator());
rewriter.replaceOpWithNewOp<cf::CondBranchOp>(condOp, condOp.getCondition(),
before, condOp.getArgs(),
continuation, ValueRange());
// Replace the op with values "yielded" from the "before" region, which are
// visible by dominance.
rewriter.replaceOp(whileOp, condOp.getArgs());
return success();
}
LogicalResult
IndexSwitchLowering::matchAndRewrite(IndexSwitchOp op,
PatternRewriter &rewriter) const {
// Split the block at the op.
Block *condBlock = rewriter.getInsertionBlock();
Block *continueBlock = rewriter.splitBlock(condBlock, Block::iterator(op));
// Create the arguments on the continue block with which to replace the
// results of the op.
SmallVector<Value> results;
results.reserve(op.getNumResults());
for (Type resultType : op.getResultTypes())
results.push_back(continueBlock->addArgument(resultType, op.getLoc()));
// Handle the regions.
auto convertRegion = [&](Region ®ion) -> FailureOr<Block *> {
Block *block = ®ion.front();
// Convert the yield terminator to a branch to the continue block.
auto yield = cast<scf::YieldOp>(block->getTerminator());
rewriter.setInsertionPoint(yield);
rewriter.replaceOpWithNewOp<cf::BranchOp>(yield, continueBlock,
yield.getOperands());
// Inline the region.
rewriter.inlineRegionBefore(region, continueBlock);
return block;
};
// Convert the case regions.
SmallVector<Block *> caseSuccessors;
SmallVector<int32_t> caseValues;
caseSuccessors.reserve(op.getCases().size());
caseValues.reserve(op.getCases().size());
for (auto [region, value] : llvm::zip(op.getCaseRegions(), op.getCases())) {
FailureOr<Block *> block = convertRegion(region);
if (failed(block))
return failure();
caseSuccessors.push_back(*block);
caseValues.push_back(value);
}
// Convert the default region.
FailureOr<Block *> defaultBlock = convertRegion(op.getDefaultRegion());
if (failed(defaultBlock))
return failure();
// Create the switch.
rewriter.setInsertionPointToEnd(condBlock);
SmallVector<ValueRange> caseOperands(caseSuccessors.size(), {});
rewriter.create<cf::SwitchOp>(
op.getLoc(), op.getArg(), *defaultBlock, ValueRange(),
rewriter.getDenseI32ArrayAttr(caseValues), caseSuccessors, caseOperands);
rewriter.replaceOp(op, continueBlock->getArguments());
return success();
}
void mlir::populateSCFToControlFlowConversionPatterns(
RewritePatternSet &patterns) {
patterns.add<ForLowering, IfLowering, ParallelLowering, WhileLowering,
ExecuteRegionLowering, IndexSwitchLowering>(
patterns.getContext());
patterns.add<DoWhileLowering>(patterns.getContext(), /*benefit=*/2);
}
void SCFToControlFlowPass::runOnOperation() {
RewritePatternSet patterns(&getContext());
populateSCFToControlFlowConversionPatterns(patterns);
// Configure conversion to lower out SCF operations.
ConversionTarget target(getContext());
target.addIllegalOp<scf::ForOp, scf::IfOp, scf::ParallelOp, scf::WhileOp,
scf::ExecuteRegionOp>();
target.markUnknownOpDynamicallyLegal([](Operation *) { return true; });
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
std::unique_ptr<Pass> mlir::createConvertSCFToCFPass() {
return std::make_unique<SCFToControlFlowPass>();
}
|