File: SCFToOpenMP.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (492 lines) | stat: -rw-r--r-- 21,859 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
//===- SCFToOpenMP.cpp - Structured Control Flow to OpenMP conversion -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert scf.parallel operations into OpenMP
// parallel loops.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/SCFToOpenMP/SCFToOpenMP.h"

#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/OpenMP/OpenMPDialect.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"

namespace mlir {
#define GEN_PASS_DEF_CONVERTSCFTOOPENMPPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

/// Matches a block containing a "simple" reduction. The expected shape of the
/// block is as follows.
///
///   ^bb(%arg0, %arg1):
///     %0 = OpTy(%arg0, %arg1)
///     scf.reduce.return %0
template <typename... OpTy>
static bool matchSimpleReduction(Block &block) {
  if (block.empty() || llvm::hasSingleElement(block) ||
      std::next(block.begin(), 2) != block.end())
    return false;

  if (block.getNumArguments() != 2)
    return false;

  SmallVector<Operation *, 4> combinerOps;
  Value reducedVal = matchReduction({block.getArguments()[1]},
                                    /*redPos=*/0, combinerOps);

  if (!reducedVal || !isa<BlockArgument>(reducedVal) || combinerOps.size() != 1)
    return false;

  return isa<OpTy...>(combinerOps[0]) &&
         isa<scf::ReduceReturnOp>(block.back()) &&
         block.front().getOperands() == block.getArguments();
}

/// Matches a block containing a select-based min/max reduction. The types of
/// select and compare operations are provided as template arguments. The
/// comparison predicates suitable for min and max are provided as function
/// arguments. If a reduction is matched, `ifMin` will be set if the reduction
/// compute the minimum and unset if it computes the maximum, otherwise it
/// remains unmodified. The expected shape of the block is as follows.
///
///   ^bb(%arg0, %arg1):
///     %0 = CompareOpTy(<one-of-predicates>, %arg0, %arg1)
///     %1 = SelectOpTy(%0, %arg0, %arg1)  // %arg0, %arg1 may be swapped here.
///     scf.reduce.return %1
template <
    typename CompareOpTy, typename SelectOpTy,
    typename Predicate = decltype(std::declval<CompareOpTy>().getPredicate())>
static bool
matchSelectReduction(Block &block, ArrayRef<Predicate> lessThanPredicates,
                     ArrayRef<Predicate> greaterThanPredicates, bool &isMin) {
  static_assert(
      llvm::is_one_of<SelectOpTy, arith::SelectOp, LLVM::SelectOp>::value,
      "only arithmetic and llvm select ops are supported");

  // Expect exactly three operations in the block.
  if (block.empty() || llvm::hasSingleElement(block) ||
      std::next(block.begin(), 2) == block.end() ||
      std::next(block.begin(), 3) != block.end())
    return false;

  // Check op kinds.
  auto compare = dyn_cast<CompareOpTy>(block.front());
  auto select = dyn_cast<SelectOpTy>(block.front().getNextNode());
  auto terminator = dyn_cast<scf::ReduceReturnOp>(block.back());
  if (!compare || !select || !terminator)
    return false;

  // Block arguments must be compared.
  if (compare->getOperands() != block.getArguments())
    return false;

  // Detect whether the comparison is less-than or greater-than, otherwise bail.
  bool isLess;
  if (llvm::is_contained(lessThanPredicates, compare.getPredicate())) {
    isLess = true;
  } else if (llvm::is_contained(greaterThanPredicates,
                                compare.getPredicate())) {
    isLess = false;
  } else {
    return false;
  }

  if (select.getCondition() != compare.getResult())
    return false;

  // Detect if the operands are swapped between cmpf and select. Match the
  // comparison type with the requested type or with the opposite of the
  // requested type if the operands are swapped. Use generic accessors because
  // std and LLVM versions of select have different operand names but identical
  // positions.
  constexpr unsigned kTrueValue = 1;
  constexpr unsigned kFalseValue = 2;
  bool sameOperands = select.getOperand(kTrueValue) == compare.getLhs() &&
                      select.getOperand(kFalseValue) == compare.getRhs();
  bool swappedOperands = select.getOperand(kTrueValue) == compare.getRhs() &&
                         select.getOperand(kFalseValue) == compare.getLhs();
  if (!sameOperands && !swappedOperands)
    return false;

  if (select.getResult() != terminator.getResult())
    return false;

  // The reduction is a min if it uses less-than predicates with same operands
  // or greather-than predicates with swapped operands. Similarly for max.
  isMin = (isLess && sameOperands) || (!isLess && swappedOperands);
  return isMin || (isLess & swappedOperands) || (!isLess && sameOperands);
}

/// Returns the float semantics for the given float type.
static const llvm::fltSemantics &fltSemanticsForType(FloatType type) {
  if (type.isF16())
    return llvm::APFloat::IEEEhalf();
  if (type.isF32())
    return llvm::APFloat::IEEEsingle();
  if (type.isF64())
    return llvm::APFloat::IEEEdouble();
  if (type.isF128())
    return llvm::APFloat::IEEEquad();
  if (type.isBF16())
    return llvm::APFloat::BFloat();
  if (type.isF80())
    return llvm::APFloat::x87DoubleExtended();
  llvm_unreachable("unknown float type");
}

/// Returns an attribute with the minimum (if `min` is set) or the maximum value
/// (otherwise) for the given float type.
static Attribute minMaxValueForFloat(Type type, bool min) {
  auto fltType = cast<FloatType>(type);
  return FloatAttr::get(
      type, llvm::APFloat::getLargest(fltSemanticsForType(fltType), min));
}

/// Returns an attribute with the signed integer minimum (if `min` is set) or
/// the maximum value (otherwise) for the given integer type, regardless of its
/// signedness semantics (only the width is considered).
static Attribute minMaxValueForSignedInt(Type type, bool min) {
  auto intType = cast<IntegerType>(type);
  unsigned bitwidth = intType.getWidth();
  return IntegerAttr::get(type, min ? llvm::APInt::getSignedMinValue(bitwidth)
                                    : llvm::APInt::getSignedMaxValue(bitwidth));
}

/// Returns an attribute with the unsigned integer minimum (if `min` is set) or
/// the maximum value (otherwise) for the given integer type, regardless of its
/// signedness semantics (only the width is considered).
static Attribute minMaxValueForUnsignedInt(Type type, bool min) {
  auto intType = cast<IntegerType>(type);
  unsigned bitwidth = intType.getWidth();
  return IntegerAttr::get(type, min ? llvm::APInt::getZero(bitwidth)
                                    : llvm::APInt::getAllOnes(bitwidth));
}

/// Creates an OpenMP reduction declaration and inserts it into the provided
/// symbol table. The declaration has a constant initializer with the neutral
/// value `initValue`, and the reduction combiner carried over from `reduce`.
static omp::ReductionDeclareOp createDecl(PatternRewriter &builder,
                                          SymbolTable &symbolTable,
                                          scf::ReduceOp reduce,
                                          Attribute initValue) {
  OpBuilder::InsertionGuard guard(builder);
  auto decl = builder.create<omp::ReductionDeclareOp>(
      reduce.getLoc(), "__scf_reduction", reduce.getOperand().getType());
  symbolTable.insert(decl);

  Type type = reduce.getOperand().getType();
  builder.createBlock(&decl.getInitializerRegion(),
                      decl.getInitializerRegion().end(), {type},
                      {reduce.getOperand().getLoc()});
  builder.setInsertionPointToEnd(&decl.getInitializerRegion().back());
  Value init =
      builder.create<LLVM::ConstantOp>(reduce.getLoc(), type, initValue);
  builder.create<omp::YieldOp>(reduce.getLoc(), init);

  Operation *terminator = &reduce.getRegion().front().back();
  assert(isa<scf::ReduceReturnOp>(terminator) &&
         "expected reduce op to be terminated by redure return");
  builder.setInsertionPoint(terminator);
  builder.replaceOpWithNewOp<omp::YieldOp>(terminator,
                                           terminator->getOperands());
  builder.inlineRegionBefore(reduce.getRegion(), decl.getReductionRegion(),
                             decl.getReductionRegion().end());
  return decl;
}

/// Returns an LLVM pointer type with the given element type, or an opaque
/// pointer if 'useOpaquePointers' is true.
static LLVM::LLVMPointerType getPointerType(Type elementType,
                                            bool useOpaquePointers) {
  if (useOpaquePointers)
    return LLVM::LLVMPointerType::get(elementType.getContext());
  return LLVM::LLVMPointerType::get(elementType);
}

/// Adds an atomic reduction combiner to the given OpenMP reduction declaration
/// using llvm.atomicrmw of the given kind.
static omp::ReductionDeclareOp addAtomicRMW(OpBuilder &builder,
                                            LLVM::AtomicBinOp atomicKind,
                                            omp::ReductionDeclareOp decl,
                                            scf::ReduceOp reduce,
                                            bool useOpaquePointers) {
  OpBuilder::InsertionGuard guard(builder);
  Type type = reduce.getOperand().getType();
  Type ptrType = getPointerType(type, useOpaquePointers);
  Location reduceOperandLoc = reduce.getOperand().getLoc();
  builder.createBlock(&decl.getAtomicReductionRegion(),
                      decl.getAtomicReductionRegion().end(), {ptrType, ptrType},
                      {reduceOperandLoc, reduceOperandLoc});
  Block *atomicBlock = &decl.getAtomicReductionRegion().back();
  builder.setInsertionPointToEnd(atomicBlock);
  Value loaded = builder.create<LLVM::LoadOp>(reduce.getLoc(), decl.getType(),
                                              atomicBlock->getArgument(1));
  builder.create<LLVM::AtomicRMWOp>(reduce.getLoc(), atomicKind,
                                    atomicBlock->getArgument(0), loaded,
                                    LLVM::AtomicOrdering::monotonic);
  builder.create<omp::YieldOp>(reduce.getLoc(), ArrayRef<Value>());
  return decl;
}

/// Creates an OpenMP reduction declaration that corresponds to the given SCF
/// reduction and returns it. Recognizes common reductions in order to identify
/// the neutral value, necessary for the OpenMP declaration. If the reduction
/// cannot be recognized, returns null.
static omp::ReductionDeclareOp declareReduction(PatternRewriter &builder,
                                                scf::ReduceOp reduce,
                                                bool useOpaquePointers) {
  Operation *container = SymbolTable::getNearestSymbolTable(reduce);
  SymbolTable symbolTable(container);

  // Insert reduction declarations in the symbol-table ancestor before the
  // ancestor of the current insertion point.
  Operation *insertionPoint = reduce;
  while (insertionPoint->getParentOp() != container)
    insertionPoint = insertionPoint->getParentOp();
  OpBuilder::InsertionGuard guard(builder);
  builder.setInsertionPoint(insertionPoint);

  assert(llvm::hasSingleElement(reduce.getRegion()) &&
         "expected reduction region to have a single element");

  // Match simple binary reductions that can be expressed with atomicrmw.
  Type type = reduce.getOperand().getType();
  Block &reduction = reduce.getRegion().front();
  if (matchSimpleReduction<arith::AddFOp, LLVM::FAddOp>(reduction)) {
    omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce,
                                              builder.getFloatAttr(type, 0.0));
    return addAtomicRMW(builder, LLVM::AtomicBinOp::fadd, decl, reduce,
                        useOpaquePointers);
  }
  if (matchSimpleReduction<arith::AddIOp, LLVM::AddOp>(reduction)) {
    omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce,
                                              builder.getIntegerAttr(type, 0));
    return addAtomicRMW(builder, LLVM::AtomicBinOp::add, decl, reduce,
                        useOpaquePointers);
  }
  if (matchSimpleReduction<arith::OrIOp, LLVM::OrOp>(reduction)) {
    omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce,
                                              builder.getIntegerAttr(type, 0));
    return addAtomicRMW(builder, LLVM::AtomicBinOp::_or, decl, reduce,
                        useOpaquePointers);
  }
  if (matchSimpleReduction<arith::XOrIOp, LLVM::XOrOp>(reduction)) {
    omp::ReductionDeclareOp decl = createDecl(builder, symbolTable, reduce,
                                              builder.getIntegerAttr(type, 0));
    return addAtomicRMW(builder, LLVM::AtomicBinOp::_xor, decl, reduce,
                        useOpaquePointers);
  }
  if (matchSimpleReduction<arith::AndIOp, LLVM::AndOp>(reduction)) {
    omp::ReductionDeclareOp decl = createDecl(
        builder, symbolTable, reduce,
        builder.getIntegerAttr(
            type, llvm::APInt::getAllOnes(type.getIntOrFloatBitWidth())));
    return addAtomicRMW(builder, LLVM::AtomicBinOp::_and, decl, reduce,
                        useOpaquePointers);
  }

  // Match simple binary reductions that cannot be expressed with atomicrmw.
  // TODO: add atomic region using cmpxchg (which needs atomic load to be
  // available as an op).
  if (matchSimpleReduction<arith::MulFOp, LLVM::FMulOp>(reduction)) {
    return createDecl(builder, symbolTable, reduce,
                      builder.getFloatAttr(type, 1.0));
  }
  if (matchSimpleReduction<arith::MulIOp, LLVM::MulOp>(reduction)) {
    return createDecl(builder, symbolTable, reduce,
                      builder.getIntegerAttr(type, 1));
  }

  // Match select-based min/max reductions.
  bool isMin;
  if (matchSelectReduction<arith::CmpFOp, arith::SelectOp>(
          reduction, {arith::CmpFPredicate::OLT, arith::CmpFPredicate::OLE},
          {arith::CmpFPredicate::OGT, arith::CmpFPredicate::OGE}, isMin) ||
      matchSelectReduction<LLVM::FCmpOp, LLVM::SelectOp>(
          reduction, {LLVM::FCmpPredicate::olt, LLVM::FCmpPredicate::ole},
          {LLVM::FCmpPredicate::ogt, LLVM::FCmpPredicate::oge}, isMin)) {
    return createDecl(builder, symbolTable, reduce,
                      minMaxValueForFloat(type, !isMin));
  }
  if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
          reduction, {arith::CmpIPredicate::slt, arith::CmpIPredicate::sle},
          {arith::CmpIPredicate::sgt, arith::CmpIPredicate::sge}, isMin) ||
      matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
          reduction, {LLVM::ICmpPredicate::slt, LLVM::ICmpPredicate::sle},
          {LLVM::ICmpPredicate::sgt, LLVM::ICmpPredicate::sge}, isMin)) {
    omp::ReductionDeclareOp decl = createDecl(
        builder, symbolTable, reduce, minMaxValueForSignedInt(type, !isMin));
    return addAtomicRMW(builder,
                        isMin ? LLVM::AtomicBinOp::min : LLVM::AtomicBinOp::max,
                        decl, reduce, useOpaquePointers);
  }
  if (matchSelectReduction<arith::CmpIOp, arith::SelectOp>(
          reduction, {arith::CmpIPredicate::ult, arith::CmpIPredicate::ule},
          {arith::CmpIPredicate::ugt, arith::CmpIPredicate::uge}, isMin) ||
      matchSelectReduction<LLVM::ICmpOp, LLVM::SelectOp>(
          reduction, {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::ule},
          {LLVM::ICmpPredicate::ugt, LLVM::ICmpPredicate::uge}, isMin)) {
    omp::ReductionDeclareOp decl = createDecl(
        builder, symbolTable, reduce, minMaxValueForUnsignedInt(type, !isMin));
    return addAtomicRMW(
        builder, isMin ? LLVM::AtomicBinOp::umin : LLVM::AtomicBinOp::umax,
        decl, reduce, useOpaquePointers);
  }

  return nullptr;
}

namespace {

struct ParallelOpLowering : public OpRewritePattern<scf::ParallelOp> {

  bool useOpaquePointers;

  ParallelOpLowering(MLIRContext *context, bool useOpaquePointers)
      : OpRewritePattern<scf::ParallelOp>(context),
        useOpaquePointers(useOpaquePointers) {}

  LogicalResult matchAndRewrite(scf::ParallelOp parallelOp,
                                PatternRewriter &rewriter) const override {
    // Declare reductions.
    // TODO: consider checking it here is already a compatible reduction
    // declaration and use it instead of redeclaring.
    SmallVector<Attribute> reductionDeclSymbols;
    for (auto reduce : parallelOp.getOps<scf::ReduceOp>()) {
      omp::ReductionDeclareOp decl =
          declareReduction(rewriter, reduce, useOpaquePointers);
      if (!decl)
        return failure();
      reductionDeclSymbols.push_back(
          SymbolRefAttr::get(rewriter.getContext(), decl.getSymName()));
    }

    // Allocate reduction variables. Make sure the we don't overflow the stack
    // with local `alloca`s by saving and restoring the stack pointer.
    Location loc = parallelOp.getLoc();
    Value one = rewriter.create<LLVM::ConstantOp>(
        loc, rewriter.getIntegerType(64), rewriter.getI64IntegerAttr(1));
    SmallVector<Value> reductionVariables;
    reductionVariables.reserve(parallelOp.getNumReductions());
    for (Value init : parallelOp.getInitVals()) {
      assert((LLVM::isCompatibleType(init.getType()) ||
              isa<LLVM::PointerElementTypeInterface>(init.getType())) &&
             "cannot create a reduction variable if the type is not an LLVM "
             "pointer element");
      Value storage = rewriter.create<LLVM::AllocaOp>(
          loc, getPointerType(init.getType(), useOpaquePointers),
          init.getType(), one, 0);
      rewriter.create<LLVM::StoreOp>(loc, init, storage);
      reductionVariables.push_back(storage);
    }

    // Replace the reduction operations contained in this loop. Must be done
    // here rather than in a separate pattern to have access to the list of
    // reduction variables.
    for (auto pair :
         llvm::zip(parallelOp.getOps<scf::ReduceOp>(), reductionVariables)) {
      OpBuilder::InsertionGuard guard(rewriter);
      scf::ReduceOp reduceOp = std::get<0>(pair);
      rewriter.setInsertionPoint(reduceOp);
      rewriter.replaceOpWithNewOp<omp::ReductionOp>(
          reduceOp, reduceOp.getOperand(), std::get<1>(pair));
    }

    // Create the parallel wrapper.
    auto ompParallel = rewriter.create<omp::ParallelOp>(loc);
    {

      OpBuilder::InsertionGuard guard(rewriter);
      rewriter.createBlock(&ompParallel.getRegion());

      // Replace the loop.
      {
        OpBuilder::InsertionGuard allocaGuard(rewriter);
        auto loop = rewriter.create<omp::WsLoopOp>(
            parallelOp.getLoc(), parallelOp.getLowerBound(),
            parallelOp.getUpperBound(), parallelOp.getStep());
        rewriter.create<omp::TerminatorOp>(loc);

        rewriter.inlineRegionBefore(parallelOp.getRegion(), loop.getRegion(),
                                    loop.getRegion().begin());

        Block *ops = rewriter.splitBlock(&*loop.getRegion().begin(),
                                         loop.getRegion().begin()->begin());

        rewriter.setInsertionPointToStart(&*loop.getRegion().begin());

        auto scope = rewriter.create<memref::AllocaScopeOp>(parallelOp.getLoc(),
                                                            TypeRange());
        rewriter.create<omp::YieldOp>(loc, ValueRange());
        Block *scopeBlock = rewriter.createBlock(&scope.getBodyRegion());
        rewriter.mergeBlocks(ops, scopeBlock);
        auto oldYield = cast<scf::YieldOp>(scopeBlock->getTerminator());
        rewriter.setInsertionPointToEnd(&*scope.getBodyRegion().begin());
        rewriter.replaceOpWithNewOp<memref::AllocaScopeReturnOp>(
            oldYield, oldYield->getOperands());
        if (!reductionVariables.empty()) {
          loop.setReductionsAttr(
              ArrayAttr::get(rewriter.getContext(), reductionDeclSymbols));
          loop.getReductionVarsMutable().append(reductionVariables);
        }
      }
    }

    // Load loop results.
    SmallVector<Value> results;
    results.reserve(reductionVariables.size());
    for (auto [variable, type] :
         llvm::zip(reductionVariables, parallelOp.getResultTypes())) {
      Value res = rewriter.create<LLVM::LoadOp>(loc, type, variable);
      results.push_back(res);
    }
    rewriter.replaceOp(parallelOp, results);

    return success();
  }
};

/// Applies the conversion patterns in the given function.
static LogicalResult applyPatterns(ModuleOp module, bool useOpaquePointers) {
  ConversionTarget target(*module.getContext());
  target.addIllegalOp<scf::ReduceOp, scf::ReduceReturnOp, scf::ParallelOp>();
  target.addLegalDialect<omp::OpenMPDialect, LLVM::LLVMDialect,
                         memref::MemRefDialect>();

  RewritePatternSet patterns(module.getContext());
  patterns.add<ParallelOpLowering>(module.getContext(), useOpaquePointers);
  FrozenRewritePatternSet frozen(std::move(patterns));
  return applyPartialConversion(module, target, frozen);
}

/// A pass converting SCF operations to OpenMP operations.
struct SCFToOpenMPPass
    : public impl::ConvertSCFToOpenMPPassBase<SCFToOpenMPPass> {

  using Base::Base;

  /// Pass entry point.
  void runOnOperation() override {
    if (failed(applyPatterns(getOperation(), useOpaquePointers)))
      signalPassFailure();
  }
};

} // namespace