1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
|
//===- ConvertLaunchFuncToLLVMCalls.cpp - MLIR GPU launch to LLVM pass ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements passes to convert `gpu.launch_func` op into a sequence
// of LLVM calls that emulate the host and device sides.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVMPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/LLVMCommon/LoweringOptions.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
#define GEN_PASS_DEF_LOWERHOSTCODETOLLVMPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
static constexpr const char kSPIRVModule[] = "__spv__";
//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//
/// Returns the string name of the `DescriptorSet` decoration.
static std::string descriptorSetName() {
return llvm::convertToSnakeFromCamelCase(
stringifyDecoration(spirv::Decoration::DescriptorSet));
}
/// Returns the string name of the `Binding` decoration.
static std::string bindingName() {
return llvm::convertToSnakeFromCamelCase(
stringifyDecoration(spirv::Decoration::Binding));
}
/// Calculates the index of the kernel's operand that is represented by the
/// given global variable with the `bind` attribute. We assume that the index of
/// each kernel's operand is mapped to (descriptorSet, binding) by the map:
/// i -> (0, i)
/// which is implemented under `LowerABIAttributesPass`.
static unsigned calculateGlobalIndex(spirv::GlobalVariableOp op) {
IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
return binding.getInt();
}
/// Copies the given number of bytes from src to dst pointers.
static void copy(Location loc, Value dst, Value src, Value size,
OpBuilder &builder) {
builder.create<LLVM::MemcpyOp>(loc, dst, src, size, /*isVolatile=*/false);
}
/// Encodes the binding and descriptor set numbers into a new symbolic name.
/// The name is specified by
/// {kernel_module_name}_{variable_name}_descriptor_set{ds}_binding{b}
/// to avoid symbolic conflicts, where 'ds' and 'b' are descriptor set and
/// binding numbers.
static std::string
createGlobalVariableWithBindName(spirv::GlobalVariableOp op,
StringRef kernelModuleName) {
IntegerAttr descriptorSet =
op->getAttrOfType<IntegerAttr>(descriptorSetName());
IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
return llvm::formatv("{0}_{1}_descriptor_set{2}_binding{3}",
kernelModuleName.str(), op.getSymName().str(),
std::to_string(descriptorSet.getInt()),
std::to_string(binding.getInt()));
}
/// Returns true if the given global variable has both a descriptor set number
/// and a binding number.
static bool hasDescriptorSetAndBinding(spirv::GlobalVariableOp op) {
IntegerAttr descriptorSet =
op->getAttrOfType<IntegerAttr>(descriptorSetName());
IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
return descriptorSet && binding;
}
/// Fills `globalVariableMap` with SPIR-V global variables that represent kernel
/// arguments from the given SPIR-V module. We assume that the module contains a
/// single entry point function. Hence, all `spirv.GlobalVariable`s with a bind
/// attribute are kernel arguments.
static LogicalResult getKernelGlobalVariables(
spirv::ModuleOp module,
DenseMap<uint32_t, spirv::GlobalVariableOp> &globalVariableMap) {
auto entryPoints = module.getOps<spirv::EntryPointOp>();
if (!llvm::hasSingleElement(entryPoints)) {
return module.emitError(
"The module must contain exactly one entry point function");
}
auto globalVariables = module.getOps<spirv::GlobalVariableOp>();
for (auto globalOp : globalVariables) {
if (hasDescriptorSetAndBinding(globalOp))
globalVariableMap[calculateGlobalIndex(globalOp)] = globalOp;
}
return success();
}
/// Encodes the SPIR-V module's symbolic name into the name of the entry point
/// function.
static LogicalResult encodeKernelName(spirv::ModuleOp module) {
StringRef spvModuleName = module.getSymName().value_or(kSPIRVModule);
// We already know that the module contains exactly one entry point function
// based on `getKernelGlobalVariables()` call. Update this function's name
// to:
// {spv_module_name}_{function_name}
auto entryPoints = module.getOps<spirv::EntryPointOp>();
if (!llvm::hasSingleElement(entryPoints)) {
return module.emitError(
"The module must contain exactly one entry point function");
}
spirv::EntryPointOp entryPoint = *entryPoints.begin();
StringRef funcName = entryPoint.getFn();
auto funcOp = module.lookupSymbol<spirv::FuncOp>(entryPoint.getFnAttr());
StringAttr newFuncName =
StringAttr::get(module->getContext(), spvModuleName + "_" + funcName);
if (failed(SymbolTable::replaceAllSymbolUses(funcOp, newFuncName, module)))
return failure();
SymbolTable::setSymbolName(funcOp, newFuncName);
return success();
}
//===----------------------------------------------------------------------===//
// Conversion patterns
//===----------------------------------------------------------------------===//
namespace {
/// Structure to group information about the variables being copied.
struct CopyInfo {
Value dst;
Value src;
Value size;
};
/// This pattern emulates a call to the kernel in LLVM dialect. For that, we
/// copy the data to the global variable (emulating device side), call the
/// kernel as a normal void LLVM function, and copy the data back (emulating the
/// host side).
class GPULaunchLowering : public ConvertOpToLLVMPattern<gpu::LaunchFuncOp> {
using ConvertOpToLLVMPattern<gpu::LaunchFuncOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto *op = launchOp.getOperation();
MLIRContext *context = rewriter.getContext();
auto module = launchOp->getParentOfType<ModuleOp>();
// Get the SPIR-V module that represents the gpu kernel module. The module
// is named:
// __spv__{kernel_module_name}
// based on GPU to SPIR-V conversion.
StringRef kernelModuleName = launchOp.getKernelModuleName().getValue();
std::string spvModuleName = kSPIRVModule + kernelModuleName.str();
auto spvModule = module.lookupSymbol<spirv::ModuleOp>(
StringAttr::get(context, spvModuleName));
if (!spvModule) {
return launchOp.emitOpError("SPIR-V kernel module '")
<< spvModuleName << "' is not found";
}
// Declare kernel function in the main module so that it later can be linked
// with its definition from the kernel module. We know that the kernel
// function would have no arguments and the data is passed via global
// variables. The name of the kernel will be
// {spv_module_name}_{kernel_function_name}
// to avoid symbolic name conflicts.
StringRef kernelFuncName = launchOp.getKernelName().getValue();
std::string newKernelFuncName = spvModuleName + "_" + kernelFuncName.str();
auto kernelFunc = module.lookupSymbol<LLVM::LLVMFuncOp>(
StringAttr::get(context, newKernelFuncName));
if (!kernelFunc) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(module.getBody());
kernelFunc = rewriter.create<LLVM::LLVMFuncOp>(
rewriter.getUnknownLoc(), newKernelFuncName,
LLVM::LLVMFunctionType::get(LLVM::LLVMVoidType::get(context),
ArrayRef<Type>()));
rewriter.setInsertionPoint(launchOp);
}
// Get all global variables associated with the kernel operands.
DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
if (failed(getKernelGlobalVariables(spvModule, globalVariableMap)))
return failure();
// Traverse kernel operands that were converted to MemRefDescriptors. For
// each operand, create a global variable and copy data from operand to it.
Location loc = launchOp.getLoc();
SmallVector<CopyInfo, 4> copyInfo;
auto numKernelOperands = launchOp.getNumKernelOperands();
auto kernelOperands = adaptor.getOperands().take_back(numKernelOperands);
for (const auto &operand : llvm::enumerate(kernelOperands)) {
// Check if the kernel's operand is a ranked memref.
auto memRefType = dyn_cast<MemRefType>(
launchOp.getKernelOperand(operand.index()).getType());
if (!memRefType)
return failure();
// Calculate the size of the memref and get the pointer to the allocated
// buffer.
SmallVector<Value, 4> sizes;
SmallVector<Value, 4> strides;
Value sizeBytes;
getMemRefDescriptorSizes(loc, memRefType, {}, rewriter, sizes, strides,
sizeBytes);
MemRefDescriptor descriptor(operand.value());
Value src = descriptor.allocatedPtr(rewriter, loc);
// Get the global variable in the SPIR-V module that is associated with
// the kernel operand. Construct its new name and create a corresponding
// LLVM dialect global variable.
spirv::GlobalVariableOp spirvGlobal = globalVariableMap[operand.index()];
auto pointeeType =
cast<spirv::PointerType>(spirvGlobal.getType()).getPointeeType();
auto dstGlobalType = typeConverter->convertType(pointeeType);
if (!dstGlobalType)
return failure();
std::string name =
createGlobalVariableWithBindName(spirvGlobal, spvModuleName);
// Check if this variable has already been created.
auto dstGlobal = module.lookupSymbol<LLVM::GlobalOp>(name);
if (!dstGlobal) {
OpBuilder::InsertionGuard guard(rewriter);
rewriter.setInsertionPointToStart(module.getBody());
dstGlobal = rewriter.create<LLVM::GlobalOp>(
loc, dstGlobalType,
/*isConstant=*/false, LLVM::Linkage::Linkonce, name, Attribute(),
/*alignment=*/0);
rewriter.setInsertionPoint(launchOp);
}
// Copy the data from src operand pointer to dst global variable. Save
// src, dst and size so that we can copy data back after emulating the
// kernel call.
Value dst = rewriter.create<LLVM::AddressOfOp>(
loc, typeConverter->convertType(spirvGlobal.getType()),
dstGlobal.getSymName());
copy(loc, dst, src, sizeBytes, rewriter);
CopyInfo info;
info.dst = dst;
info.src = src;
info.size = sizeBytes;
copyInfo.push_back(info);
}
// Create a call to the kernel and copy the data back.
rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, kernelFunc,
ArrayRef<Value>());
for (CopyInfo info : copyInfo)
copy(loc, info.src, info.dst, info.size, rewriter);
return success();
}
};
class LowerHostCodeToLLVM
: public impl::LowerHostCodeToLLVMPassBase<LowerHostCodeToLLVM> {
public:
using Base::Base;
void runOnOperation() override {
ModuleOp module = getOperation();
// Erase the GPU module.
for (auto gpuModule :
llvm::make_early_inc_range(module.getOps<gpu::GPUModuleOp>()))
gpuModule.erase();
// Request C wrapper emission.
for (auto func : module.getOps<func::FuncOp>()) {
func->setAttr(LLVM::LLVMDialect::getEmitCWrapperAttrName(),
UnitAttr::get(&getContext()));
}
// Specify options to lower to LLVM and pull in the conversion patterns.
LowerToLLVMOptions options(module.getContext());
options.useOpaquePointers = useOpaquePointers;
auto *context = module.getContext();
RewritePatternSet patterns(context);
LLVMTypeConverter typeConverter(context, options);
mlir::arith::populateArithToLLVMConversionPatterns(typeConverter, patterns);
populateFinalizeMemRefToLLVMConversionPatterns(typeConverter, patterns);
populateFuncToLLVMConversionPatterns(typeConverter, patterns);
patterns.add<GPULaunchLowering>(typeConverter);
// Pull in SPIR-V type conversion patterns to convert SPIR-V global
// variable's type to LLVM dialect type.
populateSPIRVToLLVMTypeConversion(typeConverter);
ConversionTarget target(*context);
target.addLegalDialect<LLVM::LLVMDialect>();
if (failed(applyPartialConversion(module, target, std::move(patterns))))
signalPassFailure();
// Finally, modify the kernel function in SPIR-V modules to avoid symbolic
// conflicts.
for (auto spvModule : module.getOps<spirv::ModuleOp>()) {
if (failed(encodeKernelName(spvModule))) {
signalPassFailure();
return;
}
}
}
};
} // namespace
|