File: SPIRVToLLVM.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1676 lines) | stat: -rw-r--r-- 70,095 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
//===- SPIRVToLLVM.cpp - SPIR-V to LLVM Patterns --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements patterns to convert SPIR-V dialect to LLVM dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVEnums.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FormatVariadic.h"

#define DEBUG_TYPE "spirv-to-llvm-pattern"

using namespace mlir;

//===----------------------------------------------------------------------===//
// Utility functions
//===----------------------------------------------------------------------===//

/// Returns true if the given type is a signed integer or vector type.
static bool isSignedIntegerOrVector(Type type) {
  if (type.isSignedInteger())
    return true;
  if (auto vecType = dyn_cast<VectorType>(type))
    return vecType.getElementType().isSignedInteger();
  return false;
}

/// Returns true if the given type is an unsigned integer or vector type
static bool isUnsignedIntegerOrVector(Type type) {
  if (type.isUnsignedInteger())
    return true;
  if (auto vecType = dyn_cast<VectorType>(type))
    return vecType.getElementType().isUnsignedInteger();
  return false;
}

/// Returns the width of an integer or of the element type of an integer vector,
/// if applicable.
static std::optional<uint64_t> getIntegerOrVectorElementWidth(Type type) {
  if (auto intType = dyn_cast<IntegerType>(type))
    return intType.getWidth();
  if (auto vecType = dyn_cast<VectorType>(type))
    if (auto intType = dyn_cast<IntegerType>(vecType.getElementType()))
      return intType.getWidth();
  return std::nullopt;
}

/// Returns the bit width of integer, float or vector of float or integer values
static unsigned getBitWidth(Type type) {
  assert((type.isIntOrFloat() || isa<VectorType>(type)) &&
         "bitwidth is not supported for this type");
  if (type.isIntOrFloat())
    return type.getIntOrFloatBitWidth();
  auto vecType = dyn_cast<VectorType>(type);
  auto elementType = vecType.getElementType();
  assert(elementType.isIntOrFloat() &&
         "only integers and floats have a bitwidth");
  return elementType.getIntOrFloatBitWidth();
}

/// Returns the bit width of LLVMType integer or vector.
static unsigned getLLVMTypeBitWidth(Type type) {
  return cast<IntegerType>((LLVM::isCompatibleVectorType(type)
                                ? LLVM::getVectorElementType(type)
                                : type))
      .getWidth();
}

/// Creates `IntegerAttribute` with all bits set for given type
static IntegerAttr minusOneIntegerAttribute(Type type, Builder builder) {
  if (auto vecType = dyn_cast<VectorType>(type)) {
    auto integerType = cast<IntegerType>(vecType.getElementType());
    return builder.getIntegerAttr(integerType, -1);
  }
  auto integerType = cast<IntegerType>(type);
  return builder.getIntegerAttr(integerType, -1);
}

/// Creates `llvm.mlir.constant` with all bits set for the given type.
static Value createConstantAllBitsSet(Location loc, Type srcType, Type dstType,
                                      PatternRewriter &rewriter) {
  if (isa<VectorType>(srcType)) {
    return rewriter.create<LLVM::ConstantOp>(
        loc, dstType,
        SplatElementsAttr::get(cast<ShapedType>(srcType),
                               minusOneIntegerAttribute(srcType, rewriter)));
  }
  return rewriter.create<LLVM::ConstantOp>(
      loc, dstType, minusOneIntegerAttribute(srcType, rewriter));
}

/// Creates `llvm.mlir.constant` with a floating-point scalar or vector value.
static Value createFPConstant(Location loc, Type srcType, Type dstType,
                              PatternRewriter &rewriter, double value) {
  if (auto vecType = dyn_cast<VectorType>(srcType)) {
    auto floatType = cast<FloatType>(vecType.getElementType());
    return rewriter.create<LLVM::ConstantOp>(
        loc, dstType,
        SplatElementsAttr::get(vecType,
                               rewriter.getFloatAttr(floatType, value)));
  }
  auto floatType = cast<FloatType>(srcType);
  return rewriter.create<LLVM::ConstantOp>(
      loc, dstType, rewriter.getFloatAttr(floatType, value));
}

/// Utility function for bitfield ops:
///   - `BitFieldInsert`
///   - `BitFieldSExtract`
///   - `BitFieldUExtract`
/// Truncates or extends the value. If the bitwidth of the value is the same as
/// `llvmType` bitwidth, the value remains unchanged.
static Value optionallyTruncateOrExtend(Location loc, Value value,
                                        Type llvmType,
                                        PatternRewriter &rewriter) {
  auto srcType = value.getType();
  unsigned targetBitWidth = getLLVMTypeBitWidth(llvmType);
  unsigned valueBitWidth = LLVM::isCompatibleType(srcType)
                               ? getLLVMTypeBitWidth(srcType)
                               : getBitWidth(srcType);

  if (valueBitWidth < targetBitWidth)
    return rewriter.create<LLVM::ZExtOp>(loc, llvmType, value);
  // If the bit widths of `Count` and `Offset` are greater than the bit width
  // of the target type, they are truncated. Truncation is safe since `Count`
  // and `Offset` must be no more than 64 for op behaviour to be defined. Hence,
  // both values can be expressed in 8 bits.
  if (valueBitWidth > targetBitWidth)
    return rewriter.create<LLVM::TruncOp>(loc, llvmType, value);
  return value;
}

/// Broadcasts the value to vector with `numElements` number of elements.
static Value broadcast(Location loc, Value toBroadcast, unsigned numElements,
                       LLVMTypeConverter &typeConverter,
                       ConversionPatternRewriter &rewriter) {
  auto vectorType = VectorType::get(numElements, toBroadcast.getType());
  auto llvmVectorType = typeConverter.convertType(vectorType);
  auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32));
  Value broadcasted = rewriter.create<LLVM::UndefOp>(loc, llvmVectorType);
  for (unsigned i = 0; i < numElements; ++i) {
    auto index = rewriter.create<LLVM::ConstantOp>(
        loc, llvmI32Type, rewriter.getI32IntegerAttr(i));
    broadcasted = rewriter.create<LLVM::InsertElementOp>(
        loc, llvmVectorType, broadcasted, toBroadcast, index);
  }
  return broadcasted;
}

/// Broadcasts the value. If `srcType` is a scalar, the value remains unchanged.
static Value optionallyBroadcast(Location loc, Value value, Type srcType,
                                 LLVMTypeConverter &typeConverter,
                                 ConversionPatternRewriter &rewriter) {
  if (auto vectorType = dyn_cast<VectorType>(srcType)) {
    unsigned numElements = vectorType.getNumElements();
    return broadcast(loc, value, numElements, typeConverter, rewriter);
  }
  return value;
}

/// Utility function for bitfield ops: `BitFieldInsert`, `BitFieldSExtract` and
/// `BitFieldUExtract`.
/// Broadcast `Offset` and `Count` to match the type of `Base`. If `Base` is of
/// a vector type, construct a vector that has:
///  - same number of elements as `Base`
///  - each element has the type that is the same as the type of `Offset` or
///    `Count`
///  - each element has the same value as `Offset` or `Count`
/// Then cast `Offset` and `Count` if their bit width is different
/// from `Base` bit width.
static Value processCountOrOffset(Location loc, Value value, Type srcType,
                                  Type dstType, LLVMTypeConverter &converter,
                                  ConversionPatternRewriter &rewriter) {
  Value broadcasted =
      optionallyBroadcast(loc, value, srcType, converter, rewriter);
  return optionallyTruncateOrExtend(loc, broadcasted, dstType, rewriter);
}

/// Converts SPIR-V struct with a regular (according to `VulkanLayoutUtils`)
/// offset to LLVM struct. Otherwise, the conversion is not supported.
static std::optional<Type>
convertStructTypeWithOffset(spirv::StructType type,
                            LLVMTypeConverter &converter) {
  if (type != VulkanLayoutUtils::decorateType(type))
    return std::nullopt;

  auto elementsVector = llvm::to_vector<8>(
      llvm::map_range(type.getElementTypes(), [&](Type elementType) {
        return converter.convertType(elementType);
      }));
  return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector,
                                          /*isPacked=*/false);
}

/// Converts SPIR-V struct with no offset to packed LLVM struct.
static Type convertStructTypePacked(spirv::StructType type,
                                    LLVMTypeConverter &converter) {
  auto elementsVector = llvm::to_vector<8>(
      llvm::map_range(type.getElementTypes(), [&](Type elementType) {
        return converter.convertType(elementType);
      }));
  return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector,
                                          /*isPacked=*/true);
}

/// Creates LLVM dialect constant with the given value.
static Value createI32ConstantOf(Location loc, PatternRewriter &rewriter,
                                 unsigned value) {
  return rewriter.create<LLVM::ConstantOp>(
      loc, IntegerType::get(rewriter.getContext(), 32),
      rewriter.getIntegerAttr(rewriter.getI32Type(), value));
}

/// Utility for `spirv.Load` and `spirv.Store` conversion.
static LogicalResult replaceWithLoadOrStore(Operation *op, ValueRange operands,
                                            ConversionPatternRewriter &rewriter,
                                            LLVMTypeConverter &typeConverter,
                                            unsigned alignment, bool isVolatile,
                                            bool isNonTemporal) {
  if (auto loadOp = dyn_cast<spirv::LoadOp>(op)) {
    auto dstType = typeConverter.convertType(loadOp.getType());
    if (!dstType)
      return failure();
    rewriter.replaceOpWithNewOp<LLVM::LoadOp>(
        loadOp, dstType, spirv::LoadOpAdaptor(operands).getPtr(), alignment,
        isVolatile, isNonTemporal);
    return success();
  }
  auto storeOp = cast<spirv::StoreOp>(op);
  spirv::StoreOpAdaptor adaptor(operands);
  rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValue(),
                                             adaptor.getPtr(), alignment,
                                             isVolatile, isNonTemporal);
  return success();
}

//===----------------------------------------------------------------------===//
// Type conversion
//===----------------------------------------------------------------------===//

/// Converts SPIR-V array type to LLVM array. Natural stride (according to
/// `VulkanLayoutUtils`) is also mapped to LLVM array. This has to be respected
/// when converting ops that manipulate array types.
static std::optional<Type> convertArrayType(spirv::ArrayType type,
                                            TypeConverter &converter) {
  unsigned stride = type.getArrayStride();
  Type elementType = type.getElementType();
  auto sizeInBytes = cast<spirv::SPIRVType>(elementType).getSizeInBytes();
  if (stride != 0 && (!sizeInBytes || *sizeInBytes != stride))
    return std::nullopt;

  auto llvmElementType = converter.convertType(elementType);
  unsigned numElements = type.getNumElements();
  return LLVM::LLVMArrayType::get(llvmElementType, numElements);
}

/// Converts SPIR-V pointer type to LLVM pointer. Pointer's storage class is not
/// modelled at the moment.
static Type convertPointerType(spirv::PointerType type,
                               LLVMTypeConverter &converter) {
  auto pointeeType = converter.convertType(type.getPointeeType());
  return converter.getPointerType(pointeeType);
}

/// Converts SPIR-V runtime array to LLVM array. Since LLVM allows indexing over
/// the bounds, the runtime array is converted to a 0-sized LLVM array. There is
/// no modelling of array stride at the moment.
static std::optional<Type> convertRuntimeArrayType(spirv::RuntimeArrayType type,
                                                   TypeConverter &converter) {
  if (type.getArrayStride() != 0)
    return std::nullopt;
  auto elementType = converter.convertType(type.getElementType());
  return LLVM::LLVMArrayType::get(elementType, 0);
}

/// Converts SPIR-V struct to LLVM struct. There is no support of structs with
/// member decorations. Also, only natural offset is supported.
static std::optional<Type> convertStructType(spirv::StructType type,
                                             LLVMTypeConverter &converter) {
  SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations;
  type.getMemberDecorations(memberDecorations);
  if (!memberDecorations.empty())
    return std::nullopt;
  if (type.hasOffset())
    return convertStructTypeWithOffset(type, converter);
  return convertStructTypePacked(type, converter);
}

//===----------------------------------------------------------------------===//
// Operation conversion
//===----------------------------------------------------------------------===//

namespace {

class AccessChainPattern : public SPIRVToLLVMConversion<spirv::AccessChainOp> {
public:
  using SPIRVToLLVMConversion<spirv::AccessChainOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::AccessChainOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = typeConverter.convertType(op.getComponentPtr().getType());
    if (!dstType)
      return failure();
    // To use GEP we need to add a first 0 index to go through the pointer.
    auto indices = llvm::to_vector<4>(adaptor.getIndices());
    Type indexType = op.getIndices().front().getType();
    auto llvmIndexType = typeConverter.convertType(indexType);
    if (!llvmIndexType)
      return failure();
    Value zero = rewriter.create<LLVM::ConstantOp>(
        op.getLoc(), llvmIndexType, rewriter.getIntegerAttr(indexType, 0));
    indices.insert(indices.begin(), zero);
    rewriter.replaceOpWithNewOp<LLVM::GEPOp>(
        op, dstType,
        typeConverter.convertType(
            cast<spirv::PointerType>(op.getBasePtr().getType())
                .getPointeeType()),
        adaptor.getBasePtr(), indices);
    return success();
  }
};

class AddressOfPattern : public SPIRVToLLVMConversion<spirv::AddressOfOp> {
public:
  using SPIRVToLLVMConversion<spirv::AddressOfOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::AddressOfOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = typeConverter.convertType(op.getPointer().getType());
    if (!dstType)
      return failure();
    rewriter.replaceOpWithNewOp<LLVM::AddressOfOp>(op, dstType,
                                                   op.getVariable());
    return success();
  }
};

class BitFieldInsertPattern
    : public SPIRVToLLVMConversion<spirv::BitFieldInsertOp> {
public:
  using SPIRVToLLVMConversion<spirv::BitFieldInsertOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BitFieldInsertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = op.getType();
    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();
    Location loc = op.getLoc();

    // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
    Value offset = processCountOrOffset(loc, op.getOffset(), srcType, dstType,
                                        typeConverter, rewriter);
    Value count = processCountOrOffset(loc, op.getCount(), srcType, dstType,
                                       typeConverter, rewriter);

    // Create a mask with bits set outside [Offset, Offset + Count - 1].
    Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
    Value maskShiftedByCount =
        rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
    Value negated = rewriter.create<LLVM::XOrOp>(loc, dstType,
                                                 maskShiftedByCount, minusOne);
    Value maskShiftedByCountAndOffset =
        rewriter.create<LLVM::ShlOp>(loc, dstType, negated, offset);
    Value mask = rewriter.create<LLVM::XOrOp>(
        loc, dstType, maskShiftedByCountAndOffset, minusOne);

    // Extract unchanged bits from the `Base`  that are outside of
    // [Offset, Offset + Count - 1]. Then `or` with shifted `Insert`.
    Value baseAndMask =
        rewriter.create<LLVM::AndOp>(loc, dstType, op.getBase(), mask);
    Value insertShiftedByOffset =
        rewriter.create<LLVM::ShlOp>(loc, dstType, op.getInsert(), offset);
    rewriter.replaceOpWithNewOp<LLVM::OrOp>(op, dstType, baseAndMask,
                                            insertShiftedByOffset);
    return success();
  }
};

/// Converts SPIR-V ConstantOp with scalar or vector type.
class ConstantScalarAndVectorPattern
    : public SPIRVToLLVMConversion<spirv::ConstantOp> {
public:
  using SPIRVToLLVMConversion<spirv::ConstantOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::ConstantOp constOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = constOp.getType();
    if (!isa<VectorType>(srcType) && !srcType.isIntOrFloat())
      return failure();

    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();

    // SPIR-V constant can be a signed/unsigned integer, which has to be
    // casted to signless integer when converting to LLVM dialect. Removing the
    // sign bit may have unexpected behaviour. However, it is better to handle
    // it case-by-case, given that the purpose of the conversion is not to
    // cover all possible corner cases.
    if (isSignedIntegerOrVector(srcType) ||
        isUnsignedIntegerOrVector(srcType)) {
      auto signlessType = rewriter.getIntegerType(getBitWidth(srcType));

      if (isa<VectorType>(srcType)) {
        auto dstElementsAttr = cast<DenseIntElementsAttr>(constOp.getValue());
        rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
            constOp, dstType,
            dstElementsAttr.mapValues(
                signlessType, [&](const APInt &value) { return value; }));
        return success();
      }
      auto srcAttr = cast<IntegerAttr>(constOp.getValue());
      auto dstAttr = rewriter.getIntegerAttr(signlessType, srcAttr.getValue());
      rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, dstAttr);
      return success();
    }
    rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(
        constOp, dstType, adaptor.getOperands(), constOp->getAttrs());
    return success();
  }
};

class BitFieldSExtractPattern
    : public SPIRVToLLVMConversion<spirv::BitFieldSExtractOp> {
public:
  using SPIRVToLLVMConversion<spirv::BitFieldSExtractOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BitFieldSExtractOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = op.getType();
    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();
    Location loc = op.getLoc();

    // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
    Value offset = processCountOrOffset(loc, op.getOffset(), srcType, dstType,
                                        typeConverter, rewriter);
    Value count = processCountOrOffset(loc, op.getCount(), srcType, dstType,
                                       typeConverter, rewriter);

    // Create a constant that holds the size of the `Base`.
    IntegerType integerType;
    if (auto vecType = dyn_cast<VectorType>(srcType))
      integerType = cast<IntegerType>(vecType.getElementType());
    else
      integerType = cast<IntegerType>(srcType);

    auto baseSize = rewriter.getIntegerAttr(integerType, getBitWidth(srcType));
    Value size =
        isa<VectorType>(srcType)
            ? rewriter.create<LLVM::ConstantOp>(
                  loc, dstType,
                  SplatElementsAttr::get(cast<ShapedType>(srcType), baseSize))
            : rewriter.create<LLVM::ConstantOp>(loc, dstType, baseSize);

    // Shift `Base` left by [sizeof(Base) - (Count + Offset)], so that the bit
    // at Offset + Count - 1 is the most significant bit now.
    Value countPlusOffset =
        rewriter.create<LLVM::AddOp>(loc, dstType, count, offset);
    Value amountToShiftLeft =
        rewriter.create<LLVM::SubOp>(loc, dstType, size, countPlusOffset);
    Value baseShiftedLeft = rewriter.create<LLVM::ShlOp>(
        loc, dstType, op.getBase(), amountToShiftLeft);

    // Shift the result right, filling the bits with the sign bit.
    Value amountToShiftRight =
        rewriter.create<LLVM::AddOp>(loc, dstType, offset, amountToShiftLeft);
    rewriter.replaceOpWithNewOp<LLVM::AShrOp>(op, dstType, baseShiftedLeft,
                                              amountToShiftRight);
    return success();
  }
};

class BitFieldUExtractPattern
    : public SPIRVToLLVMConversion<spirv::BitFieldUExtractOp> {
public:
  using SPIRVToLLVMConversion<spirv::BitFieldUExtractOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BitFieldUExtractOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = op.getType();
    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();
    Location loc = op.getLoc();

    // Process `Offset` and `Count`: broadcast and extend/truncate if needed.
    Value offset = processCountOrOffset(loc, op.getOffset(), srcType, dstType,
                                        typeConverter, rewriter);
    Value count = processCountOrOffset(loc, op.getCount(), srcType, dstType,
                                       typeConverter, rewriter);

    // Create a mask with bits set at [0, Count - 1].
    Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter);
    Value maskShiftedByCount =
        rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count);
    Value mask = rewriter.create<LLVM::XOrOp>(loc, dstType, maskShiftedByCount,
                                              minusOne);

    // Shift `Base` by `Offset` and apply the mask on it.
    Value shiftedBase =
        rewriter.create<LLVM::LShrOp>(loc, dstType, op.getBase(), offset);
    rewriter.replaceOpWithNewOp<LLVM::AndOp>(op, dstType, shiftedBase, mask);
    return success();
  }
};

class BranchConversionPattern : public SPIRVToLLVMConversion<spirv::BranchOp> {
public:
  using SPIRVToLLVMConversion<spirv::BranchOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BranchOp branchOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<LLVM::BrOp>(branchOp, adaptor.getOperands(),
                                            branchOp.getTarget());
    return success();
  }
};

class BranchConditionalConversionPattern
    : public SPIRVToLLVMConversion<spirv::BranchConditionalOp> {
public:
  using SPIRVToLLVMConversion<
      spirv::BranchConditionalOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BranchConditionalOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // If branch weights exist, map them to 32-bit integer vector.
    DenseI32ArrayAttr branchWeights = nullptr;
    if (auto weights = op.getBranchWeights()) {
      SmallVector<int32_t> weightValues;
      for (auto weight : weights->getAsRange<IntegerAttr>())
        weightValues.push_back(weight.getInt());
      branchWeights = DenseI32ArrayAttr::get(getContext(), weightValues);
    }

    rewriter.replaceOpWithNewOp<LLVM::CondBrOp>(
        op, op.getCondition(), op.getTrueBlockArguments(),
        op.getFalseBlockArguments(), branchWeights, op.getTrueBlock(),
        op.getFalseBlock());
    return success();
  }
};

/// Converts `spirv.getCompositeExtract` to `llvm.extractvalue` if the container
/// type is an aggregate type (struct or array). Otherwise, converts to
/// `llvm.extractelement` that operates on vectors.
class CompositeExtractPattern
    : public SPIRVToLLVMConversion<spirv::CompositeExtractOp> {
public:
  using SPIRVToLLVMConversion<spirv::CompositeExtractOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::CompositeExtractOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = this->typeConverter.convertType(op.getType());
    if (!dstType)
      return failure();

    Type containerType = op.getComposite().getType();
    if (isa<VectorType>(containerType)) {
      Location loc = op.getLoc();
      IntegerAttr value = cast<IntegerAttr>(op.getIndices()[0]);
      Value index = createI32ConstantOf(loc, rewriter, value.getInt());
      rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
          op, dstType, adaptor.getComposite(), index);
      return success();
    }

    rewriter.replaceOpWithNewOp<LLVM::ExtractValueOp>(
        op, adaptor.getComposite(),
        LLVM::convertArrayToIndices(op.getIndices()));
    return success();
  }
};

/// Converts `spirv.getCompositeInsert` to `llvm.insertvalue` if the container
/// type is an aggregate type (struct or array). Otherwise, converts to
/// `llvm.insertelement` that operates on vectors.
class CompositeInsertPattern
    : public SPIRVToLLVMConversion<spirv::CompositeInsertOp> {
public:
  using SPIRVToLLVMConversion<spirv::CompositeInsertOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::CompositeInsertOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = this->typeConverter.convertType(op.getType());
    if (!dstType)
      return failure();

    Type containerType = op.getComposite().getType();
    if (isa<VectorType>(containerType)) {
      Location loc = op.getLoc();
      IntegerAttr value = cast<IntegerAttr>(op.getIndices()[0]);
      Value index = createI32ConstantOf(loc, rewriter, value.getInt());
      rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
          op, dstType, adaptor.getComposite(), adaptor.getObject(), index);
      return success();
    }

    rewriter.replaceOpWithNewOp<LLVM::InsertValueOp>(
        op, adaptor.getComposite(), adaptor.getObject(),
        LLVM::convertArrayToIndices(op.getIndices()));
    return success();
  }
};

/// Converts SPIR-V operations that have straightforward LLVM equivalent
/// into LLVM dialect operations.
template <typename SPIRVOp, typename LLVMOp>
class DirectConversionPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = this->typeConverter.convertType(operation.getType());
    if (!dstType)
      return failure();
    rewriter.template replaceOpWithNewOp<LLVMOp>(
        operation, dstType, adaptor.getOperands(), operation->getAttrs());
    return success();
  }
};

/// Converts `spirv.ExecutionMode` into a global struct constant that holds
/// execution mode information.
class ExecutionModePattern
    : public SPIRVToLLVMConversion<spirv::ExecutionModeOp> {
public:
  using SPIRVToLLVMConversion<spirv::ExecutionModeOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::ExecutionModeOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // First, create the global struct's name that would be associated with
    // this entry point's execution mode. We set it to be:
    //   __spv__{SPIR-V module name}_{function name}_execution_mode_info_{mode}
    ModuleOp module = op->getParentOfType<ModuleOp>();
    spirv::ExecutionModeAttr executionModeAttr = op.getExecutionModeAttr();
    std::string moduleName;
    if (module.getName().has_value())
      moduleName = "_" + module.getName()->str();
    else
      moduleName = "";
    std::string executionModeInfoName = llvm::formatv(
        "__spv_{0}_{1}_execution_mode_info_{2}", moduleName, op.getFn().str(),
        static_cast<uint32_t>(executionModeAttr.getValue()));

    MLIRContext *context = rewriter.getContext();
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(module.getBody());

    // Create a struct type, corresponding to the C struct below.
    // struct {
    //   int32_t executionMode;
    //   int32_t values[];          // optional values
    // };
    auto llvmI32Type = IntegerType::get(context, 32);
    SmallVector<Type, 2> fields;
    fields.push_back(llvmI32Type);
    ArrayAttr values = op.getValues();
    if (!values.empty()) {
      auto arrayType = LLVM::LLVMArrayType::get(llvmI32Type, values.size());
      fields.push_back(arrayType);
    }
    auto structType = LLVM::LLVMStructType::getLiteral(context, fields);

    // Create `llvm.mlir.global` with initializer region containing one block.
    auto global = rewriter.create<LLVM::GlobalOp>(
        UnknownLoc::get(context), structType, /*isConstant=*/true,
        LLVM::Linkage::External, executionModeInfoName, Attribute(),
        /*alignment=*/0);
    Location loc = global.getLoc();
    Region &region = global.getInitializerRegion();
    Block *block = rewriter.createBlock(&region);

    // Initialize the struct and set the execution mode value.
    rewriter.setInsertionPoint(block, block->begin());
    Value structValue = rewriter.create<LLVM::UndefOp>(loc, structType);
    Value executionMode = rewriter.create<LLVM::ConstantOp>(
        loc, llvmI32Type,
        rewriter.getI32IntegerAttr(
            static_cast<uint32_t>(executionModeAttr.getValue())));
    structValue = rewriter.create<LLVM::InsertValueOp>(loc, structValue,
                                                       executionMode, 0);

    // Insert extra operands if they exist into execution mode info struct.
    for (unsigned i = 0, e = values.size(); i < e; ++i) {
      auto attr = values.getValue()[i];
      Value entry = rewriter.create<LLVM::ConstantOp>(loc, llvmI32Type, attr);
      structValue = rewriter.create<LLVM::InsertValueOp>(
          loc, structValue, entry, ArrayRef<int64_t>({1, i}));
    }
    rewriter.create<LLVM::ReturnOp>(loc, ArrayRef<Value>({structValue}));
    rewriter.eraseOp(op);
    return success();
  }
};

/// Converts `spirv.GlobalVariable` to `llvm.mlir.global`. Note that SPIR-V
/// global returns a pointer, whereas in LLVM dialect the global holds an actual
/// value. This difference is handled by `spirv.mlir.addressof` and
/// `llvm.mlir.addressof`ops that both return a pointer.
class GlobalVariablePattern
    : public SPIRVToLLVMConversion<spirv::GlobalVariableOp> {
public:
  using SPIRVToLLVMConversion<spirv::GlobalVariableOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::GlobalVariableOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // Currently, there is no support of initialization with a constant value in
    // SPIR-V dialect. Specialization constants are not considered as well.
    if (op.getInitializer())
      return failure();

    auto srcType = cast<spirv::PointerType>(op.getType());
    auto dstType = typeConverter.convertType(srcType.getPointeeType());
    if (!dstType)
      return failure();

    // Limit conversion to the current invocation only or `StorageBuffer`
    // required by SPIR-V runner.
    // This is okay because multiple invocations are not supported yet.
    auto storageClass = srcType.getStorageClass();
    switch (storageClass) {
    case spirv::StorageClass::Input:
    case spirv::StorageClass::Private:
    case spirv::StorageClass::Output:
    case spirv::StorageClass::StorageBuffer:
    case spirv::StorageClass::UniformConstant:
      break;
    default:
      return failure();
    }

    // LLVM dialect spec: "If the global value is a constant, storing into it is
    // not allowed.". This corresponds to SPIR-V 'Input' and 'UniformConstant'
    // storage class that is read-only.
    bool isConstant = (storageClass == spirv::StorageClass::Input) ||
                      (storageClass == spirv::StorageClass::UniformConstant);
    // SPIR-V spec: "By default, functions and global variables are private to a
    // module and cannot be accessed by other modules. However, a module may be
    // written to export or import functions and global (module scope)
    // variables.". Therefore, map 'Private' storage class to private linkage,
    // 'Input' and 'Output' to external linkage.
    auto linkage = storageClass == spirv::StorageClass::Private
                       ? LLVM::Linkage::Private
                       : LLVM::Linkage::External;
    auto newGlobalOp = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
        op, dstType, isConstant, linkage, op.getSymName(), Attribute(),
        /*alignment=*/0);

    // Attach location attribute if applicable
    if (op.getLocationAttr())
      newGlobalOp->setAttr(op.getLocationAttrName(), op.getLocationAttr());

    return success();
  }
};

/// Converts SPIR-V cast ops that do not have straightforward LLVM
/// equivalent in LLVM dialect.
template <typename SPIRVOp, typename LLVMExtOp, typename LLVMTruncOp>
class IndirectCastPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    Type fromType = operation.getOperand().getType();
    Type toType = operation.getType();

    auto dstType = this->typeConverter.convertType(toType);
    if (!dstType)
      return failure();

    if (getBitWidth(fromType) < getBitWidth(toType)) {
      rewriter.template replaceOpWithNewOp<LLVMExtOp>(operation, dstType,
                                                      adaptor.getOperands());
      return success();
    }
    if (getBitWidth(fromType) > getBitWidth(toType)) {
      rewriter.template replaceOpWithNewOp<LLVMTruncOp>(operation, dstType,
                                                        adaptor.getOperands());
      return success();
    }
    return failure();
  }
};

class FunctionCallPattern
    : public SPIRVToLLVMConversion<spirv::FunctionCallOp> {
public:
  using SPIRVToLLVMConversion<spirv::FunctionCallOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::FunctionCallOp callOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (callOp.getNumResults() == 0) {
      rewriter.replaceOpWithNewOp<LLVM::CallOp>(
          callOp, std::nullopt, adaptor.getOperands(), callOp->getAttrs());
      return success();
    }

    // Function returns a single result.
    auto dstType = typeConverter.convertType(callOp.getType(0));
    rewriter.replaceOpWithNewOp<LLVM::CallOp>(
        callOp, dstType, adaptor.getOperands(), callOp->getAttrs());
    return success();
  }
};

/// Converts SPIR-V floating-point comparisons to llvm.fcmp "predicate"
template <typename SPIRVOp, LLVM::FCmpPredicate predicate>
class FComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    auto dstType = this->typeConverter.convertType(operation.getType());
    if (!dstType)
      return failure();

    rewriter.template replaceOpWithNewOp<LLVM::FCmpOp>(
        operation, dstType, predicate, operation.getOperand1(),
        operation.getOperand2());
    return success();
  }
};

/// Converts SPIR-V integer comparisons to llvm.icmp "predicate"
template <typename SPIRVOp, LLVM::ICmpPredicate predicate>
class IComparePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    auto dstType = this->typeConverter.convertType(operation.getType());
    if (!dstType)
      return failure();

    rewriter.template replaceOpWithNewOp<LLVM::ICmpOp>(
        operation, dstType, predicate, operation.getOperand1(),
        operation.getOperand2());
    return success();
  }
};

class InverseSqrtPattern
    : public SPIRVToLLVMConversion<spirv::GLInverseSqrtOp> {
public:
  using SPIRVToLLVMConversion<spirv::GLInverseSqrtOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::GLInverseSqrtOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = op.getType();
    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();

    Location loc = op.getLoc();
    Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
    Value sqrt = rewriter.create<LLVM::SqrtOp>(loc, dstType, op.getOperand());
    rewriter.replaceOpWithNewOp<LLVM::FDivOp>(op, dstType, one, sqrt);
    return success();
  }
};

/// Converts `spirv.Load` and `spirv.Store` to LLVM dialect.
template <typename SPIRVOp>
class LoadStorePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    if (!op.getMemoryAccess()) {
      return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter,
                                    this->typeConverter, /*alignment=*/0,
                                    /*isVolatile=*/false,
                                    /*isNonTemporal=*/false);
    }
    auto memoryAccess = *op.getMemoryAccess();
    switch (memoryAccess) {
    case spirv::MemoryAccess::Aligned:
    case spirv::MemoryAccess::None:
    case spirv::MemoryAccess::Nontemporal:
    case spirv::MemoryAccess::Volatile: {
      unsigned alignment =
          memoryAccess == spirv::MemoryAccess::Aligned ? *op.getAlignment() : 0;
      bool isNonTemporal = memoryAccess == spirv::MemoryAccess::Nontemporal;
      bool isVolatile = memoryAccess == spirv::MemoryAccess::Volatile;
      return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter,
                                    this->typeConverter, alignment, isVolatile,
                                    isNonTemporal);
    }
    default:
      // There is no support of other memory access attributes.
      return failure();
    }
  }
};

/// Converts `spirv.Not` and `spirv.LogicalNot` into LLVM dialect.
template <typename SPIRVOp>
class NotPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp notOp, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = notOp.getType();
    auto dstType = this->typeConverter.convertType(srcType);
    if (!dstType)
      return failure();

    Location loc = notOp.getLoc();
    IntegerAttr minusOne = minusOneIntegerAttribute(srcType, rewriter);
    auto mask =
        isa<VectorType>(srcType)
            ? rewriter.create<LLVM::ConstantOp>(
                  loc, dstType,
                  SplatElementsAttr::get(cast<VectorType>(srcType), minusOne))
            : rewriter.create<LLVM::ConstantOp>(loc, dstType, minusOne);
    rewriter.template replaceOpWithNewOp<LLVM::XOrOp>(notOp, dstType,
                                                      notOp.getOperand(), mask);
    return success();
  }
};

/// A template pattern that erases the given `SPIRVOp`.
template <typename SPIRVOp>
class ErasePattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.eraseOp(op);
    return success();
  }
};

class ReturnPattern : public SPIRVToLLVMConversion<spirv::ReturnOp> {
public:
  using SPIRVToLLVMConversion<spirv::ReturnOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::ReturnOp returnOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnOp, ArrayRef<Type>(),
                                                ArrayRef<Value>());
    return success();
  }
};

class ReturnValuePattern : public SPIRVToLLVMConversion<spirv::ReturnValueOp> {
public:
  using SPIRVToLLVMConversion<spirv::ReturnValueOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::ReturnValueOp returnValueOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnValueOp, ArrayRef<Type>(),
                                                adaptor.getOperands());
    return success();
  }
};

/// Converts `spirv.mlir.loop` to LLVM dialect. All blocks within selection
/// should be reachable for conversion to succeed. The structure of the loop in
/// LLVM dialect will be the following:
///
///      +------------------------------------+
///      | <code before spirv.mlir.loop>        |
///      | llvm.br ^header                    |
///      +------------------------------------+
///                           |
///   +----------------+      |
///   |                |      |
///   |                V      V
///   |  +------------------------------------+
///   |  | ^header:                           |
///   |  |   <header code>                    |
///   |  |   llvm.cond_br %cond, ^body, ^exit |
///   |  +------------------------------------+
///   |                    |
///   |                    |----------------------+
///   |                    |                      |
///   |                    V                      |
///   |  +------------------------------------+   |
///   |  | ^body:                             |   |
///   |  |   <body code>                      |   |
///   |  |   llvm.br ^continue                |   |
///   |  +------------------------------------+   |
///   |                    |                      |
///   |                    V                      |
///   |  +------------------------------------+   |
///   |  | ^continue:                         |   |
///   |  |   <continue code>                  |   |
///   |  |   llvm.br ^header                  |   |
///   |  +------------------------------------+   |
///   |               |                           |
///   +---------------+    +----------------------+
///                        |
///                        V
///      +------------------------------------+
///      | ^exit:                             |
///      |   llvm.br ^remaining               |
///      +------------------------------------+
///                        |
///                        V
///      +------------------------------------+
///      | ^remaining:                        |
///      |   <code after spirv.mlir.loop>       |
///      +------------------------------------+
///
class LoopPattern : public SPIRVToLLVMConversion<spirv::LoopOp> {
public:
  using SPIRVToLLVMConversion<spirv::LoopOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::LoopOp loopOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // There is no support of loop control at the moment.
    if (loopOp.getLoopControl() != spirv::LoopControl::None)
      return failure();

    Location loc = loopOp.getLoc();

    // Split the current block after `spirv.mlir.loop`. The remaining ops will
    // be used in `endBlock`.
    Block *currentBlock = rewriter.getBlock();
    auto position = Block::iterator(loopOp);
    Block *endBlock = rewriter.splitBlock(currentBlock, position);

    // Remove entry block and create a branch in the current block going to the
    // header block.
    Block *entryBlock = loopOp.getEntryBlock();
    assert(entryBlock->getOperations().size() == 1);
    auto brOp = dyn_cast<spirv::BranchOp>(entryBlock->getOperations().front());
    if (!brOp)
      return failure();
    Block *headerBlock = loopOp.getHeaderBlock();
    rewriter.setInsertionPointToEnd(currentBlock);
    rewriter.create<LLVM::BrOp>(loc, brOp.getBlockArguments(), headerBlock);
    rewriter.eraseBlock(entryBlock);

    // Branch from merge block to end block.
    Block *mergeBlock = loopOp.getMergeBlock();
    Operation *terminator = mergeBlock->getTerminator();
    ValueRange terminatorOperands = terminator->getOperands();
    rewriter.setInsertionPointToEnd(mergeBlock);
    rewriter.create<LLVM::BrOp>(loc, terminatorOperands, endBlock);

    rewriter.inlineRegionBefore(loopOp.getBody(), endBlock);
    rewriter.replaceOp(loopOp, endBlock->getArguments());
    return success();
  }
};

/// Converts `spirv.mlir.selection` with `spirv.BranchConditional` in its header
/// block. All blocks within selection should be reachable for conversion to
/// succeed.
class SelectionPattern : public SPIRVToLLVMConversion<spirv::SelectionOp> {
public:
  using SPIRVToLLVMConversion<spirv::SelectionOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::SelectionOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    // There is no support for `Flatten` or `DontFlatten` selection control at
    // the moment. This are just compiler hints and can be performed during the
    // optimization passes.
    if (op.getSelectionControl() != spirv::SelectionControl::None)
      return failure();

    // `spirv.mlir.selection` should have at least two blocks: one selection
    // header block and one merge block. If no blocks are present, or control
    // flow branches straight to merge block (two blocks are present), the op is
    // redundant and it is erased.
    if (op.getBody().getBlocks().size() <= 2) {
      rewriter.eraseOp(op);
      return success();
    }

    Location loc = op.getLoc();

    // Split the current block after `spirv.mlir.selection`. The remaining ops
    // will be used in `continueBlock`.
    auto *currentBlock = rewriter.getInsertionBlock();
    rewriter.setInsertionPointAfter(op);
    auto position = rewriter.getInsertionPoint();
    auto *continueBlock = rewriter.splitBlock(currentBlock, position);

    // Extract conditional branch information from the header block. By SPIR-V
    // dialect spec, it should contain `spirv.BranchConditional` or
    // `spirv.Switch` op. Note that `spirv.Switch op` is not supported at the
    // moment in the SPIR-V dialect. Remove this block when finished.
    auto *headerBlock = op.getHeaderBlock();
    assert(headerBlock->getOperations().size() == 1);
    auto condBrOp = dyn_cast<spirv::BranchConditionalOp>(
        headerBlock->getOperations().front());
    if (!condBrOp)
      return failure();
    rewriter.eraseBlock(headerBlock);

    // Branch from merge block to continue block.
    auto *mergeBlock = op.getMergeBlock();
    Operation *terminator = mergeBlock->getTerminator();
    ValueRange terminatorOperands = terminator->getOperands();
    rewriter.setInsertionPointToEnd(mergeBlock);
    rewriter.create<LLVM::BrOp>(loc, terminatorOperands, continueBlock);

    // Link current block to `true` and `false` blocks within the selection.
    Block *trueBlock = condBrOp.getTrueBlock();
    Block *falseBlock = condBrOp.getFalseBlock();
    rewriter.setInsertionPointToEnd(currentBlock);
    rewriter.create<LLVM::CondBrOp>(loc, condBrOp.getCondition(), trueBlock,
                                    condBrOp.getTrueTargetOperands(),
                                    falseBlock,
                                    condBrOp.getFalseTargetOperands());

    rewriter.inlineRegionBefore(op.getBody(), continueBlock);
    rewriter.replaceOp(op, continueBlock->getArguments());
    return success();
  }
};

/// Converts SPIR-V shift ops to LLVM shift ops. Since LLVM dialect
/// puts a restriction on `Shift` and `Base` to have the same bit width,
/// `Shift` is zero or sign extended to match this specification. Cases when
/// `Shift` bit width > `Base` bit width are considered to be illegal.
template <typename SPIRVOp, typename LLVMOp>
class ShiftPattern : public SPIRVToLLVMConversion<SPIRVOp> {
public:
  using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    auto dstType = this->typeConverter.convertType(operation.getType());
    if (!dstType)
      return failure();

    Type op1Type = operation.getOperand1().getType();
    Type op2Type = operation.getOperand2().getType();

    if (op1Type == op2Type) {
      rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType,
                                                   adaptor.getOperands());
      return success();
    }

    std::optional<uint64_t> dstTypeWidth =
        getIntegerOrVectorElementWidth(dstType);
    std::optional<uint64_t> op2TypeWidth =
        getIntegerOrVectorElementWidth(op2Type);

    if (!dstTypeWidth || !op2TypeWidth)
      return failure();

    Location loc = operation.getLoc();
    Value extended;
    if (op2TypeWidth < dstTypeWidth) {
      if (isUnsignedIntegerOrVector(op2Type)) {
        extended = rewriter.template create<LLVM::ZExtOp>(
            loc, dstType, adaptor.getOperand2());
      } else {
        extended = rewriter.template create<LLVM::SExtOp>(
            loc, dstType, adaptor.getOperand2());
      }
    } else if (op2TypeWidth == dstTypeWidth) {
      extended = adaptor.getOperand2();
    } else {
      return failure();
    }

    Value result = rewriter.template create<LLVMOp>(
        loc, dstType, adaptor.getOperand1(), extended);
    rewriter.replaceOp(operation, result);
    return success();
  }
};

class TanPattern : public SPIRVToLLVMConversion<spirv::GLTanOp> {
public:
  using SPIRVToLLVMConversion<spirv::GLTanOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::GLTanOp tanOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = typeConverter.convertType(tanOp.getType());
    if (!dstType)
      return failure();

    Location loc = tanOp.getLoc();
    Value sin = rewriter.create<LLVM::SinOp>(loc, dstType, tanOp.getOperand());
    Value cos = rewriter.create<LLVM::CosOp>(loc, dstType, tanOp.getOperand());
    rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanOp, dstType, sin, cos);
    return success();
  }
};

/// Convert `spirv.Tanh` to
///
///   exp(2x) - 1
///   -----------
///   exp(2x) + 1
///
class TanhPattern : public SPIRVToLLVMConversion<spirv::GLTanhOp> {
public:
  using SPIRVToLLVMConversion<spirv::GLTanhOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::GLTanhOp tanhOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = tanhOp.getType();
    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();

    Location loc = tanhOp.getLoc();
    Value two = createFPConstant(loc, srcType, dstType, rewriter, 2.0);
    Value multiplied =
        rewriter.create<LLVM::FMulOp>(loc, dstType, two, tanhOp.getOperand());
    Value exponential = rewriter.create<LLVM::ExpOp>(loc, dstType, multiplied);
    Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0);
    Value numerator =
        rewriter.create<LLVM::FSubOp>(loc, dstType, exponential, one);
    Value denominator =
        rewriter.create<LLVM::FAddOp>(loc, dstType, exponential, one);
    rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanhOp, dstType, numerator,
                                              denominator);
    return success();
  }
};

class VariablePattern : public SPIRVToLLVMConversion<spirv::VariableOp> {
public:
  using SPIRVToLLVMConversion<spirv::VariableOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::VariableOp varOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto srcType = varOp.getType();
    // Initialization is supported for scalars and vectors only.
    auto pointerTo = cast<spirv::PointerType>(srcType).getPointeeType();
    auto init = varOp.getInitializer();
    if (init && !pointerTo.isIntOrFloat() && !isa<VectorType>(pointerTo))
      return failure();

    auto dstType = typeConverter.convertType(srcType);
    if (!dstType)
      return failure();

    Location loc = varOp.getLoc();
    Value size = createI32ConstantOf(loc, rewriter, 1);
    if (!init) {
      rewriter.replaceOpWithNewOp<LLVM::AllocaOp>(
          varOp, dstType, typeConverter.convertType(pointerTo), size);
      return success();
    }
    Value allocated = rewriter.create<LLVM::AllocaOp>(
        loc, dstType, typeConverter.convertType(pointerTo), size);
    rewriter.create<LLVM::StoreOp>(loc, adaptor.getInitializer(), allocated);
    rewriter.replaceOp(varOp, allocated);
    return success();
  }
};

//===----------------------------------------------------------------------===//
// BitcastOp conversion
//===----------------------------------------------------------------------===//

class BitcastConversionPattern
    : public SPIRVToLLVMConversion<spirv::BitcastOp> {
public:
  using SPIRVToLLVMConversion<spirv::BitcastOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::BitcastOp bitcastOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto dstType = typeConverter.convertType(bitcastOp.getType());
    if (!dstType)
      return failure();

    if (typeConverter.useOpaquePointers() &&
        isa<LLVM::LLVMPointerType>(dstType)) {
      rewriter.replaceOp(bitcastOp, adaptor.getOperand());
      return success();
    }

    rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(
        bitcastOp, dstType, adaptor.getOperands(), bitcastOp->getAttrs());
    return success();
  }
};

//===----------------------------------------------------------------------===//
// FuncOp conversion
//===----------------------------------------------------------------------===//

class FuncConversionPattern : public SPIRVToLLVMConversion<spirv::FuncOp> {
public:
  using SPIRVToLLVMConversion<spirv::FuncOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::FuncOp funcOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    // Convert function signature. At the moment LLVMType converter is enough
    // for currently supported types.
    auto funcType = funcOp.getFunctionType();
    TypeConverter::SignatureConversion signatureConverter(
        funcType.getNumInputs());
    auto llvmType = typeConverter.convertFunctionSignature(
        funcType, /*isVariadic=*/false, /*useBarePtrCallConv=*/false,
        signatureConverter);
    if (!llvmType)
      return failure();

    // Create a new `LLVMFuncOp`
    Location loc = funcOp.getLoc();
    StringRef name = funcOp.getName();
    auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(loc, name, llvmType);

    // Convert SPIR-V Function Control to equivalent LLVM function attribute
    MLIRContext *context = funcOp.getContext();
    switch (funcOp.getFunctionControl()) {
#define DISPATCH(functionControl, llvmAttr)                                    \
  case functionControl:                                                        \
    newFuncOp->setAttr("passthrough", ArrayAttr::get(context, {llvmAttr}));    \
    break;

      DISPATCH(spirv::FunctionControl::Inline,
               StringAttr::get(context, "alwaysinline"));
      DISPATCH(spirv::FunctionControl::DontInline,
               StringAttr::get(context, "noinline"));
      DISPATCH(spirv::FunctionControl::Pure,
               StringAttr::get(context, "readonly"));
      DISPATCH(spirv::FunctionControl::Const,
               StringAttr::get(context, "readnone"));

#undef DISPATCH

    // Default: if `spirv::FunctionControl::None`, then no attributes are
    // needed.
    default:
      break;
    }

    rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
                                newFuncOp.end());
    if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter,
                                           &signatureConverter))) {
      return failure();
    }
    rewriter.eraseOp(funcOp);
    return success();
  }
};

//===----------------------------------------------------------------------===//
// ModuleOp conversion
//===----------------------------------------------------------------------===//

class ModuleConversionPattern : public SPIRVToLLVMConversion<spirv::ModuleOp> {
public:
  using SPIRVToLLVMConversion<spirv::ModuleOp>::SPIRVToLLVMConversion;

  LogicalResult
  matchAndRewrite(spirv::ModuleOp spvModuleOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {

    auto newModuleOp =
        rewriter.create<ModuleOp>(spvModuleOp.getLoc(), spvModuleOp.getName());
    rewriter.inlineRegionBefore(spvModuleOp.getRegion(), newModuleOp.getBody());

    // Remove the terminator block that was automatically added by builder
    rewriter.eraseBlock(&newModuleOp.getBodyRegion().back());
    rewriter.eraseOp(spvModuleOp);
    return success();
  }
};

//===----------------------------------------------------------------------===//
// VectorShuffleOp conversion
//===----------------------------------------------------------------------===//

class VectorShufflePattern
    : public SPIRVToLLVMConversion<spirv::VectorShuffleOp> {
public:
  using SPIRVToLLVMConversion<spirv::VectorShuffleOp>::SPIRVToLLVMConversion;
  LogicalResult
  matchAndRewrite(spirv::VectorShuffleOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    Location loc = op.getLoc();
    auto components = adaptor.getComponents();
    auto vector1 = adaptor.getVector1();
    auto vector2 = adaptor.getVector2();
    int vector1Size = cast<VectorType>(vector1.getType()).getNumElements();
    int vector2Size = cast<VectorType>(vector2.getType()).getNumElements();
    if (vector1Size == vector2Size) {
      rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(
          op, vector1, vector2,
          LLVM::convertArrayToIndices<int32_t>(components));
      return success();
    }

    auto dstType = typeConverter.convertType(op.getType());
    auto scalarType = cast<VectorType>(dstType).getElementType();
    auto componentsArray = components.getValue();
    auto *context = rewriter.getContext();
    auto llvmI32Type = IntegerType::get(context, 32);
    Value targetOp = rewriter.create<LLVM::UndefOp>(loc, dstType);
    for (unsigned i = 0; i < componentsArray.size(); i++) {
      if (!isa<IntegerAttr>(componentsArray[i]))
        return op.emitError("unable to support non-constant component");

      int indexVal = cast<IntegerAttr>(componentsArray[i]).getInt();
      if (indexVal == -1)
        continue;

      int offsetVal = 0;
      Value baseVector = vector1;
      if (indexVal >= vector1Size) {
        offsetVal = vector1Size;
        baseVector = vector2;
      }

      Value dstIndex = rewriter.create<LLVM::ConstantOp>(
          loc, llvmI32Type, rewriter.getIntegerAttr(rewriter.getI32Type(), i));
      Value index = rewriter.create<LLVM::ConstantOp>(
          loc, llvmI32Type,
          rewriter.getIntegerAttr(rewriter.getI32Type(), indexVal - offsetVal));

      auto extractOp = rewriter.create<LLVM::ExtractElementOp>(
          loc, scalarType, baseVector, index);
      targetOp = rewriter.create<LLVM::InsertElementOp>(loc, dstType, targetOp,
                                                        extractOp, dstIndex);
    }
    rewriter.replaceOp(op, targetOp);
    return success();
  }
};
} // namespace

//===----------------------------------------------------------------------===//
// Pattern population
//===----------------------------------------------------------------------===//

void mlir::populateSPIRVToLLVMTypeConversion(LLVMTypeConverter &typeConverter) {
  typeConverter.addConversion([&](spirv::ArrayType type) {
    return convertArrayType(type, typeConverter);
  });
  typeConverter.addConversion([&](spirv::PointerType type) {
    return convertPointerType(type, typeConverter);
  });
  typeConverter.addConversion([&](spirv::RuntimeArrayType type) {
    return convertRuntimeArrayType(type, typeConverter);
  });
  typeConverter.addConversion([&](spirv::StructType type) {
    return convertStructType(type, typeConverter);
  });
}

void mlir::populateSPIRVToLLVMConversionPatterns(
    LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
  patterns.add<
      // Arithmetic ops
      DirectConversionPattern<spirv::IAddOp, LLVM::AddOp>,
      DirectConversionPattern<spirv::IMulOp, LLVM::MulOp>,
      DirectConversionPattern<spirv::ISubOp, LLVM::SubOp>,
      DirectConversionPattern<spirv::FAddOp, LLVM::FAddOp>,
      DirectConversionPattern<spirv::FDivOp, LLVM::FDivOp>,
      DirectConversionPattern<spirv::FMulOp, LLVM::FMulOp>,
      DirectConversionPattern<spirv::FNegateOp, LLVM::FNegOp>,
      DirectConversionPattern<spirv::FRemOp, LLVM::FRemOp>,
      DirectConversionPattern<spirv::FSubOp, LLVM::FSubOp>,
      DirectConversionPattern<spirv::SDivOp, LLVM::SDivOp>,
      DirectConversionPattern<spirv::SRemOp, LLVM::SRemOp>,
      DirectConversionPattern<spirv::UDivOp, LLVM::UDivOp>,
      DirectConversionPattern<spirv::UModOp, LLVM::URemOp>,

      // Bitwise ops
      BitFieldInsertPattern, BitFieldUExtractPattern, BitFieldSExtractPattern,
      DirectConversionPattern<spirv::BitCountOp, LLVM::CtPopOp>,
      DirectConversionPattern<spirv::BitReverseOp, LLVM::BitReverseOp>,
      DirectConversionPattern<spirv::BitwiseAndOp, LLVM::AndOp>,
      DirectConversionPattern<spirv::BitwiseOrOp, LLVM::OrOp>,
      DirectConversionPattern<spirv::BitwiseXorOp, LLVM::XOrOp>,
      NotPattern<spirv::NotOp>,

      // Cast ops
      BitcastConversionPattern,
      DirectConversionPattern<spirv::ConvertFToSOp, LLVM::FPToSIOp>,
      DirectConversionPattern<spirv::ConvertFToUOp, LLVM::FPToUIOp>,
      DirectConversionPattern<spirv::ConvertSToFOp, LLVM::SIToFPOp>,
      DirectConversionPattern<spirv::ConvertUToFOp, LLVM::UIToFPOp>,
      IndirectCastPattern<spirv::FConvertOp, LLVM::FPExtOp, LLVM::FPTruncOp>,
      IndirectCastPattern<spirv::SConvertOp, LLVM::SExtOp, LLVM::TruncOp>,
      IndirectCastPattern<spirv::UConvertOp, LLVM::ZExtOp, LLVM::TruncOp>,

      // Comparison ops
      IComparePattern<spirv::IEqualOp, LLVM::ICmpPredicate::eq>,
      IComparePattern<spirv::INotEqualOp, LLVM::ICmpPredicate::ne>,
      FComparePattern<spirv::FOrdEqualOp, LLVM::FCmpPredicate::oeq>,
      FComparePattern<spirv::FOrdGreaterThanOp, LLVM::FCmpPredicate::ogt>,
      FComparePattern<spirv::FOrdGreaterThanEqualOp, LLVM::FCmpPredicate::oge>,
      FComparePattern<spirv::FOrdLessThanEqualOp, LLVM::FCmpPredicate::ole>,
      FComparePattern<spirv::FOrdLessThanOp, LLVM::FCmpPredicate::olt>,
      FComparePattern<spirv::FOrdNotEqualOp, LLVM::FCmpPredicate::one>,
      FComparePattern<spirv::FUnordEqualOp, LLVM::FCmpPredicate::ueq>,
      FComparePattern<spirv::FUnordGreaterThanOp, LLVM::FCmpPredicate::ugt>,
      FComparePattern<spirv::FUnordGreaterThanEqualOp,
                      LLVM::FCmpPredicate::uge>,
      FComparePattern<spirv::FUnordLessThanEqualOp, LLVM::FCmpPredicate::ule>,
      FComparePattern<spirv::FUnordLessThanOp, LLVM::FCmpPredicate::ult>,
      FComparePattern<spirv::FUnordNotEqualOp, LLVM::FCmpPredicate::une>,
      IComparePattern<spirv::SGreaterThanOp, LLVM::ICmpPredicate::sgt>,
      IComparePattern<spirv::SGreaterThanEqualOp, LLVM::ICmpPredicate::sge>,
      IComparePattern<spirv::SLessThanEqualOp, LLVM::ICmpPredicate::sle>,
      IComparePattern<spirv::SLessThanOp, LLVM::ICmpPredicate::slt>,
      IComparePattern<spirv::UGreaterThanOp, LLVM::ICmpPredicate::ugt>,
      IComparePattern<spirv::UGreaterThanEqualOp, LLVM::ICmpPredicate::uge>,
      IComparePattern<spirv::ULessThanEqualOp, LLVM::ICmpPredicate::ule>,
      IComparePattern<spirv::ULessThanOp, LLVM::ICmpPredicate::ult>,

      // Constant op
      ConstantScalarAndVectorPattern,

      // Control Flow ops
      BranchConversionPattern, BranchConditionalConversionPattern,
      FunctionCallPattern, LoopPattern, SelectionPattern,
      ErasePattern<spirv::MergeOp>,

      // Entry points and execution mode are handled separately.
      ErasePattern<spirv::EntryPointOp>, ExecutionModePattern,

      // GLSL extended instruction set ops
      DirectConversionPattern<spirv::GLCeilOp, LLVM::FCeilOp>,
      DirectConversionPattern<spirv::GLCosOp, LLVM::CosOp>,
      DirectConversionPattern<spirv::GLExpOp, LLVM::ExpOp>,
      DirectConversionPattern<spirv::GLFAbsOp, LLVM::FAbsOp>,
      DirectConversionPattern<spirv::GLFloorOp, LLVM::FFloorOp>,
      DirectConversionPattern<spirv::GLFMaxOp, LLVM::MaxNumOp>,
      DirectConversionPattern<spirv::GLFMinOp, LLVM::MinNumOp>,
      DirectConversionPattern<spirv::GLLogOp, LLVM::LogOp>,
      DirectConversionPattern<spirv::GLSinOp, LLVM::SinOp>,
      DirectConversionPattern<spirv::GLSMaxOp, LLVM::SMaxOp>,
      DirectConversionPattern<spirv::GLSMinOp, LLVM::SMinOp>,
      DirectConversionPattern<spirv::GLSqrtOp, LLVM::SqrtOp>,
      InverseSqrtPattern, TanPattern, TanhPattern,

      // Logical ops
      DirectConversionPattern<spirv::LogicalAndOp, LLVM::AndOp>,
      DirectConversionPattern<spirv::LogicalOrOp, LLVM::OrOp>,
      IComparePattern<spirv::LogicalEqualOp, LLVM::ICmpPredicate::eq>,
      IComparePattern<spirv::LogicalNotEqualOp, LLVM::ICmpPredicate::ne>,
      NotPattern<spirv::LogicalNotOp>,

      // Memory ops
      AccessChainPattern, AddressOfPattern, GlobalVariablePattern,
      LoadStorePattern<spirv::LoadOp>, LoadStorePattern<spirv::StoreOp>,
      VariablePattern,

      // Miscellaneous ops
      CompositeExtractPattern, CompositeInsertPattern,
      DirectConversionPattern<spirv::SelectOp, LLVM::SelectOp>,
      DirectConversionPattern<spirv::UndefOp, LLVM::UndefOp>,
      VectorShufflePattern,

      // Shift ops
      ShiftPattern<spirv::ShiftRightArithmeticOp, LLVM::AShrOp>,
      ShiftPattern<spirv::ShiftRightLogicalOp, LLVM::LShrOp>,
      ShiftPattern<spirv::ShiftLeftLogicalOp, LLVM::ShlOp>,

      // Return ops
      ReturnPattern, ReturnValuePattern>(patterns.getContext(), typeConverter);
}

void mlir::populateSPIRVToLLVMFunctionConversionPatterns(
    LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
  patterns.add<FuncConversionPattern>(patterns.getContext(), typeConverter);
}

void mlir::populateSPIRVToLLVMModuleConversionPatterns(
    LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) {
  patterns.add<ModuleConversionPattern>(patterns.getContext(), typeConverter);
}

//===----------------------------------------------------------------------===//
// Pre-conversion hooks
//===----------------------------------------------------------------------===//

/// Hook for descriptor set and binding number encoding.
static constexpr StringRef kBinding = "binding";
static constexpr StringRef kDescriptorSet = "descriptor_set";
void mlir::encodeBindAttribute(ModuleOp module) {
  auto spvModules = module.getOps<spirv::ModuleOp>();
  for (auto spvModule : spvModules) {
    spvModule.walk([&](spirv::GlobalVariableOp op) {
      IntegerAttr descriptorSet =
          op->getAttrOfType<IntegerAttr>(kDescriptorSet);
      IntegerAttr binding = op->getAttrOfType<IntegerAttr>(kBinding);
      // For every global variable in the module, get the ones with descriptor
      // set and binding numbers.
      if (descriptorSet && binding) {
        // Encode these numbers into the variable's symbolic name. If the
        // SPIR-V module has a name, add it at the beginning.
        auto moduleAndName =
            spvModule.getName().has_value()
                ? spvModule.getName()->str() + "_" + op.getSymName().str()
                : op.getSymName().str();
        std::string name =
            llvm::formatv("{0}_descriptor_set{1}_binding{2}", moduleAndName,
                          std::to_string(descriptorSet.getInt()),
                          std::to_string(binding.getInt()));
        auto nameAttr = StringAttr::get(op->getContext(), name);

        // Replace all symbol uses and set the new symbol name. Finally, remove
        // descriptor set and binding attributes.
        if (failed(SymbolTable::replaceAllSymbolUses(op, nameAttr, spvModule)))
          op.emitError("unable to replace all symbol uses for ") << name;
        SymbolTable::setSymbolName(op, nameAttr);
        op->removeAttr(kDescriptorSet);
        op->removeAttr(kBinding);
      }
    });
  }
}