File: TensorToLinalgPass.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (52 lines) | stat: -rw-r--r-- 1,831 bytes parent folder | download | duplicates (10)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
//===- TensorToLinalgPass.cpp - Tensor to Linalg Passes -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert Tensor dialect to Linalg dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/TensorToLinalg/TensorToLinalgPass.h"

#include "mlir/Conversion/TensorToLinalg/TensorToLinalg.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Linalg/IR/Linalg.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"

namespace mlir {
#define GEN_PASS_DEF_CONVERTTENSORTOLINALG
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir

using namespace mlir;

namespace {
/// A pass converting MLIR Tensor operations into the Linalg dialect.
class ConvertTensorToLinalgPass
    : public impl::ConvertTensorToLinalgBase<ConvertTensorToLinalgPass> {
  void runOnOperation() override {
    auto &context = getContext();
    ConversionTarget target(context);
    target
        .addLegalDialect<mlir::arith::ArithDialect, mlir::linalg::LinalgDialect,
                         mlir::tensor::TensorDialect>();
    target.addIllegalOp<mlir::tensor::PadOp>();

    RewritePatternSet patterns(&context);
    populateTensorToLinalgPatterns(patterns);

    if (failed(applyPartialConversion(getOperation(), target,
                                      std::move(patterns))))
      return signalPassFailure();
  }
};
} // namespace

std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertTensorToLinalgPass() {
  return std::make_unique<ConvertTensorToLinalgPass>();
}