1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
//===- TosaToArith.cpp - Lowering Tosa to Arith Dialect -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Arith dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/TosaToArith/TosaToArith.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace tosa;
namespace {
class ConstOpConverter : public OpRewritePattern<tosa::ConstOp> {
public:
using OpRewritePattern<tosa::ConstOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ConstOp op,
PatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<arith::ConstantOp>(op, op.getValue());
return success();
}
};
Type matchContainerType(Type element, Type container) {
if (auto shapedTy = dyn_cast<ShapedType>(container))
return shapedTy.clone(element);
return element;
}
TypedAttr getConstantAttr(Type type, int64_t value, PatternRewriter &rewriter) {
if (auto shapedTy = dyn_cast<ShapedType>(type)) {
Type eTy = shapedTy.getElementType();
APInt valueInt(eTy.getIntOrFloatBitWidth(), value);
return DenseIntElementsAttr::get(shapedTy, valueInt);
}
return rewriter.getIntegerAttr(type, value);
}
Value getConstantValue(Location loc, Type type, int64_t value,
PatternRewriter &rewriter) {
return rewriter.create<arith::ConstantOp>(
loc, getConstantAttr(type, value, rewriter));
}
// This converts the TOSA ApplyScale operator to a set of arithmetic ops,
// using 64-bit operations to perform the necessary multiply, bias, and shift.
class ApplyScaleGenericOpConverter
: public OpRewritePattern<tosa::ApplyScaleOp> {
public:
using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ApplyScaleOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Value value = op.getValue();
Value multiplier32 = op.getMultiplier();
Type resultTy = op.getType();
Type valueTy = value.getType();
Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy);
Type i64Ty = matchContainerType(rewriter.getI64Type(), resultTy);
Value zero = getConstantValue(loc, valueTy, 0, rewriter);
Value one64 = getConstantValue(loc, i64Ty, 1, rewriter);
Value thirtyOne32 = getConstantValue(loc, i32Ty, 31, rewriter);
Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift());
// Compute the multiplication in 64-bits then select the high / low parts.
Value value64 = rewriter.create<arith::ExtSIOp>(loc, i64Ty, value);
Value multiplier64 =
rewriter.create<arith::ExtSIOp>(loc, i64Ty, multiplier32);
Value multiply64 =
rewriter.create<arith::MulIOp>(loc, value64, multiplier64);
// Apply normal rounding.
Value shift64 = rewriter.create<arith::ExtUIOp>(loc, i64Ty, shift32);
Value round = rewriter.create<arith::ShLIOp>(loc, one64, shift64);
round = rewriter.create<arith::ShRUIOp>(loc, round, one64);
multiply64 = rewriter.create<arith::AddIOp>(loc, multiply64, round);
// Apply double rounding if necessary.
if (op.getDoubleRound()) {
int64_t roundInt = 1 << 30;
Value roundUp = getConstantValue(loc, i64Ty, roundInt, rewriter);
Value roundDown = getConstantValue(loc, i64Ty, -roundInt, rewriter);
Value positive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value, zero);
Value dir =
rewriter.create<arith::SelectOp>(loc, positive, roundUp, roundDown);
Value val = rewriter.create<arith::AddIOp>(loc, dir, multiply64);
Value valid = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, shift32, thirtyOne32);
multiply64 =
rewriter.create<arith::SelectOp>(loc, valid, val, multiply64);
}
Value result64 = rewriter.create<arith::ShRSIOp>(loc, multiply64, shift64);
Value result32 = rewriter.create<arith::TruncIOp>(loc, i32Ty, result64);
rewriter.replaceOp(op, result32);
return success();
}
};
class ApplyScale32BitOpConverter : public OpRewritePattern<tosa::ApplyScaleOp> {
public:
using OpRewritePattern<tosa::ApplyScaleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ApplyScaleOp op,
PatternRewriter &rewriter) const final {
Location loc = op.getLoc();
Type resultTy = op.getType();
Type i32Ty = matchContainerType(rewriter.getI32Type(), resultTy);
Value value = op.getValue();
if (getElementTypeOrSelf(value.getType()).getIntOrFloatBitWidth() > 32) {
return failure();
}
Value value32 = op.getValue();
Value multiplier32 = op.getMultiplier();
Value shift32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, op.getShift());
// Constants used during the scaling operation.
Value zero32 = getConstantValue(loc, i32Ty, 0, rewriter);
Value one32 = getConstantValue(loc, i32Ty, 1, rewriter);
Value two32 = getConstantValue(loc, i32Ty, 2, rewriter);
Value thirty32 = getConstantValue(loc, i32Ty, 30, rewriter);
Value thirtyTwo32 = getConstantValue(loc, i32Ty, 32, rewriter);
// Compute the multiplication in 64-bits then select the high / low parts.
// Grab out the high/low of the computation
auto value64 =
rewriter.create<arith::MulSIExtendedOp>(loc, value32, multiplier32);
Value low32 = value64.getLow();
Value high32 = value64.getHigh();
// Determine the direction and amount to shift the high bits.
Value shiftOver32 = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, shift32, thirtyTwo32);
Value roundHighBits = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sgt, shift32, thirtyTwo32);
Value shiftHighL =
rewriter.create<arith::SubIOp>(loc, thirtyTwo32, shift32);
Value shiftHighR =
rewriter.create<arith::SubIOp>(loc, shift32, thirtyTwo32);
shiftHighL =
rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, shiftHighL);
shiftHighR =
rewriter.create<arith::SelectOp>(loc, shiftOver32, shiftHighR, zero32);
// Conditionally perform our double round.
if (op.getDoubleRound()) {
Value negOne32 = getConstantValue(loc, i32Ty, -1, rewriter);
Value valuePositive = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value32, zero32);
Value roundDir =
rewriter.create<arith::SelectOp>(loc, valuePositive, one32, negOne32);
roundDir =
rewriter.create<arith::SelectOp>(loc, shiftOver32, roundDir, zero32);
Value shiftLow = rewriter.create<arith::ShRUIOp>(loc, low32, thirty32);
Value rounded = rewriter.create<arith::AddIOp>(loc, shiftLow, roundDir);
Value carry = rewriter.create<arith::ShRSIOp>(loc, rounded, two32);
Value shiftRound =
rewriter.create<arith::ShLIOp>(loc, roundDir, thirty32);
low32 = rewriter.create<arith::AddIOp>(loc, low32, shiftRound);
high32 = rewriter.create<arith::AddIOp>(loc, high32, carry);
}
// Conditionally apply rounding in the low bits.
{
Value shiftSubOne = rewriter.create<arith::SubIOp>(loc, shift32, one32);
Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne);
roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, zero32,
roundBit);
Value newLow32 = rewriter.create<arith::AddIOp>(loc, low32, roundBit);
Value wasRounded = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::ugt, low32, newLow32);
low32 = newLow32;
Value rounded32 = rewriter.create<arith::ExtUIOp>(loc, i32Ty, wasRounded);
high32 = rewriter.create<arith::AddIOp>(loc, high32, rounded32);
}
// Conditionally apply rounding in the high bits.
{
Value shiftSubOne =
rewriter.create<arith::SubIOp>(loc, shiftHighR, one32);
Value roundBit = rewriter.create<arith::ShLIOp>(loc, one32, shiftSubOne);
roundBit = rewriter.create<arith::SelectOp>(loc, roundHighBits, roundBit,
zero32);
high32 = rewriter.create<arith::AddIOp>(loc, high32, roundBit);
}
// Combine the correct high/low bits into the final rescale result.
high32 = rewriter.create<arith::ShLIOp>(loc, high32, shiftHighL);
high32 = rewriter.create<arith::ShRSIOp>(loc, high32, shiftHighR);
low32 = rewriter.create<arith::ShRUIOp>(loc, low32, shift32);
low32 = rewriter.create<arith::SelectOp>(loc, shiftOver32, zero32, low32);
// Apply the rounding behavior and shift to the final alignment.
Value result = rewriter.create<arith::AddIOp>(loc, low32, high32);
// Truncate if necessary.
if (!getElementTypeOrSelf(resultTy).isInteger(32)) {
result = rewriter.create<arith::TruncIOp>(loc, resultTy, result);
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToArithConversionPatterns(
RewritePatternSet *patterns) {
patterns->add<ConstOpConverter>(patterns->getContext());
}
void mlir::tosa::populateTosaRescaleToArithConversionPatterns(
RewritePatternSet *patterns, bool include32Bit) {
patterns->add<ApplyScaleGenericOpConverter>(patterns->getContext(), 100);
if (include32Bit) {
patterns->add<ApplyScale32BitOpConverter>(patterns->getContext(), 200);
}
}
|