File: TosaToTensor.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (420 lines) | stat: -rw-r--r-- 15,373 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
//===- TosaToTensor.cpp - Lowering Tosa to Tensor Dialect -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Tensor dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Conversion/TosaToTensor/TosaToTensor.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"

using namespace mlir;
using namespace tosa;

static bool findIntermediateShape(ArrayRef<int64_t> lhsShape,
                                  ArrayRef<int64_t> rhsShape,
                                  SmallVector<int64_t> &intermediateShape,
                                  bool isDynamic) {
  if (isDynamic) {
    // TODO (natashaknk): Make dynamic intermediate shape not always be rank-1
    intermediateShape = {ShapedType::kDynamic};
    return true;
  }

  if (lhsShape.empty() || rhsShape.empty()) {
    intermediateShape = {};
    return true;
  }

  unsigned currLhsDim = 0, currRhsDim = 0;
  while (currLhsDim < lhsShape.size() && currRhsDim < rhsShape.size()) {
    int64_t rhsSize = rhsShape[currRhsDim];
    int64_t lhsSize = lhsShape[currLhsDim];
    while (lhsSize != rhsSize && currLhsDim < lhsShape.size() &&
           currRhsDim < rhsShape.size()) {
      if (lhsSize < rhsSize) {
        currLhsDim++;
        if (currLhsDim < lhsShape.size()) {
          lhsSize *= lhsShape[currLhsDim];
        }
      } else {
        currRhsDim++;
        if (currRhsDim < rhsShape.size()) {
          rhsSize *= rhsShape[currRhsDim];
        }
      }
    }
    if (lhsSize == rhsSize) {
      intermediateShape.push_back(lhsSize);
    }
    currRhsDim++;
    currLhsDim++;
  }

  // If the iterators didn't reach the end and their leftover dimensions are not
  // equal to 1 an intermediate shape was not found.
  while (currLhsDim < lhsShape.size()) {
    if (lhsShape[currLhsDim++] != 1) {
      return false;
    }
  }

  while (currRhsDim < rhsShape.size()) {
    if (rhsShape[currRhsDim++] != 1) {
      return false;
    }
  }

  return true;
}

static bool createReassociationMapsForCollapse(
    PatternRewriter &rewriter, ArrayRef<int64_t> srcShape,
    ArrayRef<int64_t> dstShape,
    SmallVector<ReassociationExprs, 4> &reassociationMap, bool isDynamic) {

  // If the shape is dynamic, create a map for collapsing into one dimension.
  if (isDynamic) {
    SmallVector<AffineExpr, 2> exprs;
    for (int i = 0, s = srcShape.size(); i < s; ++i)
      exprs.push_back(rewriter.getAffineDimExpr(i));
    reassociationMap = {exprs};
    return true;
  }

  if (dstShape.empty()) {
    reassociationMap = {};
    return true;
  }

  reassociationMap.resize(dstShape.size());
  unsigned currSrcDim = 0, currDstDim = 0;
  while (currSrcDim < srcShape.size() && currDstDim < dstShape.size()) {
    int64_t dstSize = dstShape[currDstDim];
    int64_t srcSize = srcShape[currSrcDim];
    while (srcSize < dstSize && currSrcDim < srcShape.size()) {
      reassociationMap[currDstDim].push_back(
          rewriter.getAffineDimExpr(currSrcDim++));
      srcSize *= srcShape[currSrcDim];
    }
    if (srcSize == dstSize) {
      reassociationMap[currDstDim].push_back(
          rewriter.getAffineDimExpr(currSrcDim++));
      // If the next dim in collapsedShape is not 1, treat subsequent dims in
      // expandedShape which are 1 to be collapsed.
      if (currDstDim == dstShape.size() - 1 || dstShape[currDstDim + 1] != 1) {
        while (currSrcDim < srcShape.size() && srcShape[currSrcDim] == 1) {
          reassociationMap[currDstDim].push_back(
              rewriter.getAffineDimExpr(currSrcDim++));
        }
      }
    }
    currDstDim++;
  }

  // If both iterators didn't reach the end, we have leftover dimentions which
  // implies that we have a mismatch in shape.
  return currSrcDim == srcShape.size() && currDstDim == dstShape.size();
}

namespace {
Value createCollapse(ConversionPatternRewriter &rewriter, Location loc,
                     ShapedType resultTy, Value operand) {
  ShapedType operandTy = cast<ShapedType>(operand.getType());
  if (resultTy == operandTy)
    return operand;

  bool isDynamic = !operandTy.hasStaticShape();

  if (isDynamic && resultTy.getRank() != 1) {
    (void)rewriter.notifyMatchFailure(
        loc, "Cannot collapse dynamic dims to more than one dimension");
    return {};
  }

  SmallVector<ReassociationExprs, 4> reassociationMap;
  if (!createReassociationMapsForCollapse(rewriter, operandTy.getShape(),
                                          resultTy.getShape(),
                                          reassociationMap, isDynamic)) {
    (void)rewriter.notifyMatchFailure(
        loc, "tosa.reshape Attempting to collapse into an incompatible shape");
    return {};
  }

  SmallVector<int64_t> intermediateShape;
  if (!findIntermediateShape(operandTy.getShape(), resultTy.getShape(),
                             intermediateShape, isDynamic)) {
    (void)rewriter.notifyMatchFailure(
        loc, "tosa.reshape Cannot collapse into given shape");
    return {};
  }
  return rewriter.create<tensor::CollapseShapeOp>(loc, resultTy, operand,
                                                  reassociationMap);
}

Value createExpand(ConversionPatternRewriter &rewriter, Location loc,
                   ShapedType resultTy, Value operand) {
  ShapedType operandTy = cast<ShapedType>(operand.getType());
  if (resultTy == operandTy)
    return operand;

  bool isDynamic = !operandTy.hasStaticShape();

  if (isDynamic && operandTy.getRank() != 1) {
    (void)rewriter.notifyMatchFailure(
        loc, "Cannot expand dynamic dims from more than one dimension");
    return {};
  }

  SmallVector<ReassociationExprs, 4> reassociationMap;
  if (!createReassociationMapsForCollapse(rewriter, resultTy.getShape(),
                                          operandTy.getShape(),
                                          reassociationMap, isDynamic)) {
    (void)rewriter.notifyMatchFailure(
        loc, "tosa.reshape Attempting to expand into an incompatible shape");
    return {};
  }

  SmallVector<int64_t> intermediateShape;
  if (!findIntermediateShape(operandTy.getShape(), resultTy.getShape(),
                             intermediateShape, isDynamic) ||
      intermediateShape != operandTy.getShape()) {
    (void)rewriter.notifyMatchFailure(
        loc, "tosa.reshape Cannot expand into given shape");
    return {};
  }
  return rewriter.create<tensor::ExpandShapeOp>(loc, resultTy, operand,
                                                reassociationMap);
}

class ReshapeConverterCollapseExpand
    : public OpConversionPattern<tosa::ReshapeOp> {
public:
  using OpConversionPattern<tosa::ReshapeOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    ShapedType operandTy = cast<ShapedType>(adaptor.getInput1().getType());
    ShapedType resultTy = cast<ShapedType>(reshape.getType());
    bool isDynamic = !operandTy.hasStaticShape();

    SmallVector<int64_t> intermediateShape;
    if (!findIntermediateShape(resultTy.getShape(), operandTy.getShape(),
                               intermediateShape, isDynamic)) {
      return rewriter.notifyMatchFailure(
          reshape, "tosa.reshape Cannot identify an intermediate shape between "
                   "the given two shapes");
    }
    auto intermediateTy = RankedTensorType::get(
        intermediateShape, reshape.getType().getElementType());

    Value collapse = createCollapse(rewriter, reshape.getLoc(), intermediateTy,
                                    adaptor.getInput1());
    if (!collapse)
      return failure();

    Value expand = createExpand(rewriter, reshape.getLoc(), resultTy, collapse);
    if (!expand)
      return failure();

    rewriter.replaceOp(reshape, expand);
    return success();
  }
};

class SliceConverter : public OpConversionPattern<tosa::SliceOp> {
public:
  using OpConversionPattern<tosa::SliceOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(tosa::SliceOp sliceOp, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const final {
    Location loc = sliceOp.getLoc();
    Value input = adaptor.getInput();
    SmallVector<int64_t> strides, sizes;
    ArrayRef<int64_t> starts = sliceOp.getStart();
    strides.resize(cast<ShapedType>(sliceOp.getType()).getRank(), 1);

    SmallVector<Value> dynSizes;
    for (const auto &i : llvm::enumerate(sliceOp.getSize())) {
      int64_t size = i.value();
      size_t index = i.index();
      sizes.push_back(size == -1 ? ShapedType::kDynamic : size);
      if (!ShapedType::isDynamic(sizes.back()))
        continue;

      auto dim = rewriter.create<tensor::DimOp>(loc, input, index);
      auto offset = rewriter.create<arith::ConstantOp>(
          loc, rewriter.getIndexAttr(starts[index]));
      dynSizes.push_back(rewriter.create<arith::SubIOp>(loc, dim, offset));
    }

    auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
        sliceOp.getLoc(), sliceOp.getType(), input, ValueRange({}), dynSizes,
        ValueRange({}), rewriter.getDenseI64ArrayAttr(starts),
        rewriter.getDenseI64ArrayAttr(sizes),
        rewriter.getDenseI64ArrayAttr(strides));

    rewriter.replaceOp(sliceOp, newSliceOp.getResult());
    return success();
  }
};

class PadConverter : public OpRewritePattern<tosa::PadOp> {
public:
  using OpRewritePattern<tosa::PadOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::PadOp padOp,
                                PatternRewriter &rewriter) const final {
    auto loc = padOp.getLoc();
    auto input = padOp.getInput1();
    auto padding = padOp.getPadding();

    ShapedType inputTy = cast<ShapedType>(input.getType());
    Type elementTy = inputTy.getElementType();
    int64_t rank = inputTy.getRank();

    // Setup the default constantAttr.

    Value padConstant;

    if (padOp.getPadConst()) {
      padConstant = rewriter.createOrFold<tensor::ExtractOp>(
          loc, padOp.getPadConst(), ValueRange({}));
    } else {
      TypedAttr constantAttr;
      if (isa<FloatType>(elementTy)) {
        constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
      } else if (isa<IntegerType>(elementTy) && !padOp.getQuantizationInfo()) {
        constantAttr = rewriter.getIntegerAttr(elementTy, 0);
      } else if (isa<IntegerType>(elementTy) && padOp.getQuantizationInfo()) {
        int64_t value = padOp.getQuantizationInfo()->getInputZp();
        constantAttr = rewriter.getIntegerAttr(elementTy, value);
      }
      if (constantAttr)
        padConstant = rewriter.create<arith::ConstantOp>(loc, constantAttr);
    }

    if (!padConstant) {
      return rewriter.notifyMatchFailure(
          padOp, "tosa.pad was unable to determine the pad constant value.");
    }

    Value lowIndex =
        rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
    Value highIndex =
        rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));

    SmallVector<OpFoldResult, 3> lowValues;
    SmallVector<OpFoldResult, 3> highValues;

    lowValues.reserve(rank);
    highValues.reserve(rank);

    for (int i = 0; i < rank; i++) {
      Value inputIndex = rewriter.createOrFold<arith::ConstantIndexOp>(loc, i);
      Value lowVal = rewriter.createOrFold<tensor::ExtractOp>(
          loc, padding, ValueRange({inputIndex, lowIndex}));
      Value highVal = rewriter.createOrFold<tensor::ExtractOp>(
          loc, padding, ValueRange({inputIndex, highIndex}));

      lowVal = rewriter.createOrFold<arith::IndexCastOp>(
          loc, rewriter.getIndexType(), lowVal);
      highVal = rewriter.createOrFold<arith::IndexCastOp>(
          loc, rewriter.getIndexType(), highVal);

      lowValues.push_back(lowVal);
      highValues.push_back(highVal);
    }

    auto newPadOp = rewriter.create<tensor::PadOp>(
        loc, padOp.getType(), input, lowValues, highValues, padConstant);

    rewriter.replaceOp(padOp, newPadOp.getResult());
    return success();
  }
};

struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
  using OpConversionPattern<tosa::ConcatOp>::OpConversionPattern;

  LogicalResult
  matchAndRewrite(tosa::ConcatOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    auto resultType = dyn_cast<RankedTensorType>(op.getType());

    Location loc = op.getLoc();
    int axis = op.getAxis();
    Value axisValue = rewriter.createOrFold<arith::ConstantOp>(
        loc, rewriter.getIndexAttr(axis));
    int64_t rank = resultType.getRank();

    SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
    SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
    SmallVector<OpFoldResult> sizes =
        tensor::getMixedSizes(rewriter, op.getLoc(), adaptor.getOperands()[0]);

    // Pre-compute the offsets along the axis dimension.
    // The axisOffsets will be of size rank + 1, where the last value
    // will hold the total size of the tensor along the 'axis' dimension.
    SmallVector<OpFoldResult> axisOffsets;
    axisOffsets.push_back(rewriter.getIndexAttr(0));
    axisOffsets.push_back(sizes[axis]);

    for (auto arg : adaptor.getOperands().drop_front()) {
      auto size = rewriter.createOrFold<tensor::DimOp>(loc, arg, axisValue);
      auto currentOffset =
          getValueOrCreateConstantIndexOp(rewriter, loc, axisOffsets.back());
      auto total =
          rewriter.createOrFold<arith::AddIOp>(loc, currentOffset, size);
      axisOffsets.push_back(getAsOpFoldResult(total));
    }
    sizes[axis] = axisOffsets.back();

    // Compute the dynamic sizes of the tensor.empty operation.
    // This is based off of the specified result type of the tosa.concat
    // operation, since we don't want to change the result type of the operation
    // during the conversion.
    SmallVector<Value> dynDims;
    for (int64_t i = 0; i < rank; ++i) {
      if (resultType.isDynamicDim(i)) {
        dynDims.push_back(
            getValueOrCreateConstantIndexOp(rewriter, loc, sizes[i]));
      }
    }

    Value result = rewriter.create<tensor::EmptyOp>(
        loc, resultType.getShape(), resultType.getElementType(), dynDims);

    for (auto [arg, offset] : llvm::zip(adaptor.getOperands(), axisOffsets)) {
      auto sizes = tensor::getMixedSizes(rewriter, op.getLoc(), arg);
      offsets[axis] = offset;
      result = rewriter.createOrFold<tensor::InsertSliceOp>(
          loc, arg, result, offsets, sizes, strides);
    }
    rewriter.replaceOp(op, result);
    return success();
  }
};

} // namespace

void mlir::tosa::populateTosaToTensorConversionPatterns(
    RewritePatternSet *patterns) {
  patterns->add<SliceConverter, PadConverter, ConcatConverter>(
      patterns->getContext());

  patterns->add<ReshapeConverterCollapseExpand>(patterns->getContext());
}