1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
//===- TosaToTensor.cpp - Lowering Tosa to Tensor Dialect -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These rewriters lower from the Tosa to the Tensor dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/TosaToTensor/TosaToTensor.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tensor/Utils/Utils.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/DialectConversion.h"
using namespace mlir;
using namespace tosa;
static bool findIntermediateShape(ArrayRef<int64_t> lhsShape,
ArrayRef<int64_t> rhsShape,
SmallVector<int64_t> &intermediateShape,
bool isDynamic) {
if (isDynamic) {
// TODO (natashaknk): Make dynamic intermediate shape not always be rank-1
intermediateShape = {ShapedType::kDynamic};
return true;
}
if (lhsShape.empty() || rhsShape.empty()) {
intermediateShape = {};
return true;
}
unsigned currLhsDim = 0, currRhsDim = 0;
while (currLhsDim < lhsShape.size() && currRhsDim < rhsShape.size()) {
int64_t rhsSize = rhsShape[currRhsDim];
int64_t lhsSize = lhsShape[currLhsDim];
while (lhsSize != rhsSize && currLhsDim < lhsShape.size() &&
currRhsDim < rhsShape.size()) {
if (lhsSize < rhsSize) {
currLhsDim++;
if (currLhsDim < lhsShape.size()) {
lhsSize *= lhsShape[currLhsDim];
}
} else {
currRhsDim++;
if (currRhsDim < rhsShape.size()) {
rhsSize *= rhsShape[currRhsDim];
}
}
}
if (lhsSize == rhsSize) {
intermediateShape.push_back(lhsSize);
}
currRhsDim++;
currLhsDim++;
}
// If the iterators didn't reach the end and their leftover dimensions are not
// equal to 1 an intermediate shape was not found.
while (currLhsDim < lhsShape.size()) {
if (lhsShape[currLhsDim++] != 1) {
return false;
}
}
while (currRhsDim < rhsShape.size()) {
if (rhsShape[currRhsDim++] != 1) {
return false;
}
}
return true;
}
static bool createReassociationMapsForCollapse(
PatternRewriter &rewriter, ArrayRef<int64_t> srcShape,
ArrayRef<int64_t> dstShape,
SmallVector<ReassociationExprs, 4> &reassociationMap, bool isDynamic) {
// If the shape is dynamic, create a map for collapsing into one dimension.
if (isDynamic) {
SmallVector<AffineExpr, 2> exprs;
for (int i = 0, s = srcShape.size(); i < s; ++i)
exprs.push_back(rewriter.getAffineDimExpr(i));
reassociationMap = {exprs};
return true;
}
if (dstShape.empty()) {
reassociationMap = {};
return true;
}
reassociationMap.resize(dstShape.size());
unsigned currSrcDim = 0, currDstDim = 0;
while (currSrcDim < srcShape.size() && currDstDim < dstShape.size()) {
int64_t dstSize = dstShape[currDstDim];
int64_t srcSize = srcShape[currSrcDim];
while (srcSize < dstSize && currSrcDim < srcShape.size()) {
reassociationMap[currDstDim].push_back(
rewriter.getAffineDimExpr(currSrcDim++));
srcSize *= srcShape[currSrcDim];
}
if (srcSize == dstSize) {
reassociationMap[currDstDim].push_back(
rewriter.getAffineDimExpr(currSrcDim++));
// If the next dim in collapsedShape is not 1, treat subsequent dims in
// expandedShape which are 1 to be collapsed.
if (currDstDim == dstShape.size() - 1 || dstShape[currDstDim + 1] != 1) {
while (currSrcDim < srcShape.size() && srcShape[currSrcDim] == 1) {
reassociationMap[currDstDim].push_back(
rewriter.getAffineDimExpr(currSrcDim++));
}
}
}
currDstDim++;
}
// If both iterators didn't reach the end, we have leftover dimentions which
// implies that we have a mismatch in shape.
return currSrcDim == srcShape.size() && currDstDim == dstShape.size();
}
namespace {
Value createCollapse(ConversionPatternRewriter &rewriter, Location loc,
ShapedType resultTy, Value operand) {
ShapedType operandTy = cast<ShapedType>(operand.getType());
if (resultTy == operandTy)
return operand;
bool isDynamic = !operandTy.hasStaticShape();
if (isDynamic && resultTy.getRank() != 1) {
(void)rewriter.notifyMatchFailure(
loc, "Cannot collapse dynamic dims to more than one dimension");
return {};
}
SmallVector<ReassociationExprs, 4> reassociationMap;
if (!createReassociationMapsForCollapse(rewriter, operandTy.getShape(),
resultTy.getShape(),
reassociationMap, isDynamic)) {
(void)rewriter.notifyMatchFailure(
loc, "tosa.reshape Attempting to collapse into an incompatible shape");
return {};
}
SmallVector<int64_t> intermediateShape;
if (!findIntermediateShape(operandTy.getShape(), resultTy.getShape(),
intermediateShape, isDynamic)) {
(void)rewriter.notifyMatchFailure(
loc, "tosa.reshape Cannot collapse into given shape");
return {};
}
return rewriter.create<tensor::CollapseShapeOp>(loc, resultTy, operand,
reassociationMap);
}
Value createExpand(ConversionPatternRewriter &rewriter, Location loc,
ShapedType resultTy, Value operand) {
ShapedType operandTy = cast<ShapedType>(operand.getType());
if (resultTy == operandTy)
return operand;
bool isDynamic = !operandTy.hasStaticShape();
if (isDynamic && operandTy.getRank() != 1) {
(void)rewriter.notifyMatchFailure(
loc, "Cannot expand dynamic dims from more than one dimension");
return {};
}
SmallVector<ReassociationExprs, 4> reassociationMap;
if (!createReassociationMapsForCollapse(rewriter, resultTy.getShape(),
operandTy.getShape(),
reassociationMap, isDynamic)) {
(void)rewriter.notifyMatchFailure(
loc, "tosa.reshape Attempting to expand into an incompatible shape");
return {};
}
SmallVector<int64_t> intermediateShape;
if (!findIntermediateShape(operandTy.getShape(), resultTy.getShape(),
intermediateShape, isDynamic) ||
intermediateShape != operandTy.getShape()) {
(void)rewriter.notifyMatchFailure(
loc, "tosa.reshape Cannot expand into given shape");
return {};
}
return rewriter.create<tensor::ExpandShapeOp>(loc, resultTy, operand,
reassociationMap);
}
class ReshapeConverterCollapseExpand
: public OpConversionPattern<tosa::ReshapeOp> {
public:
using OpConversionPattern<tosa::ReshapeOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::ReshapeOp reshape, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
ShapedType operandTy = cast<ShapedType>(adaptor.getInput1().getType());
ShapedType resultTy = cast<ShapedType>(reshape.getType());
bool isDynamic = !operandTy.hasStaticShape();
SmallVector<int64_t> intermediateShape;
if (!findIntermediateShape(resultTy.getShape(), operandTy.getShape(),
intermediateShape, isDynamic)) {
return rewriter.notifyMatchFailure(
reshape, "tosa.reshape Cannot identify an intermediate shape between "
"the given two shapes");
}
auto intermediateTy = RankedTensorType::get(
intermediateShape, reshape.getType().getElementType());
Value collapse = createCollapse(rewriter, reshape.getLoc(), intermediateTy,
adaptor.getInput1());
if (!collapse)
return failure();
Value expand = createExpand(rewriter, reshape.getLoc(), resultTy, collapse);
if (!expand)
return failure();
rewriter.replaceOp(reshape, expand);
return success();
}
};
class SliceConverter : public OpConversionPattern<tosa::SliceOp> {
public:
using OpConversionPattern<tosa::SliceOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::SliceOp sliceOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
Location loc = sliceOp.getLoc();
Value input = adaptor.getInput();
SmallVector<int64_t> strides, sizes;
ArrayRef<int64_t> starts = sliceOp.getStart();
strides.resize(cast<ShapedType>(sliceOp.getType()).getRank(), 1);
SmallVector<Value> dynSizes;
for (const auto &i : llvm::enumerate(sliceOp.getSize())) {
int64_t size = i.value();
size_t index = i.index();
sizes.push_back(size == -1 ? ShapedType::kDynamic : size);
if (!ShapedType::isDynamic(sizes.back()))
continue;
auto dim = rewriter.create<tensor::DimOp>(loc, input, index);
auto offset = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexAttr(starts[index]));
dynSizes.push_back(rewriter.create<arith::SubIOp>(loc, dim, offset));
}
auto newSliceOp = rewriter.create<tensor::ExtractSliceOp>(
sliceOp.getLoc(), sliceOp.getType(), input, ValueRange({}), dynSizes,
ValueRange({}), rewriter.getDenseI64ArrayAttr(starts),
rewriter.getDenseI64ArrayAttr(sizes),
rewriter.getDenseI64ArrayAttr(strides));
rewriter.replaceOp(sliceOp, newSliceOp.getResult());
return success();
}
};
class PadConverter : public OpRewritePattern<tosa::PadOp> {
public:
using OpRewritePattern<tosa::PadOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::PadOp padOp,
PatternRewriter &rewriter) const final {
auto loc = padOp.getLoc();
auto input = padOp.getInput1();
auto padding = padOp.getPadding();
ShapedType inputTy = cast<ShapedType>(input.getType());
Type elementTy = inputTy.getElementType();
int64_t rank = inputTy.getRank();
// Setup the default constantAttr.
Value padConstant;
if (padOp.getPadConst()) {
padConstant = rewriter.createOrFold<tensor::ExtractOp>(
loc, padOp.getPadConst(), ValueRange({}));
} else {
TypedAttr constantAttr;
if (isa<FloatType>(elementTy)) {
constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
} else if (isa<IntegerType>(elementTy) && !padOp.getQuantizationInfo()) {
constantAttr = rewriter.getIntegerAttr(elementTy, 0);
} else if (isa<IntegerType>(elementTy) && padOp.getQuantizationInfo()) {
int64_t value = padOp.getQuantizationInfo()->getInputZp();
constantAttr = rewriter.getIntegerAttr(elementTy, value);
}
if (constantAttr)
padConstant = rewriter.create<arith::ConstantOp>(loc, constantAttr);
}
if (!padConstant) {
return rewriter.notifyMatchFailure(
padOp, "tosa.pad was unable to determine the pad constant value.");
}
Value lowIndex =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
Value highIndex =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
SmallVector<OpFoldResult, 3> lowValues;
SmallVector<OpFoldResult, 3> highValues;
lowValues.reserve(rank);
highValues.reserve(rank);
for (int i = 0; i < rank; i++) {
Value inputIndex = rewriter.createOrFold<arith::ConstantIndexOp>(loc, i);
Value lowVal = rewriter.createOrFold<tensor::ExtractOp>(
loc, padding, ValueRange({inputIndex, lowIndex}));
Value highVal = rewriter.createOrFold<tensor::ExtractOp>(
loc, padding, ValueRange({inputIndex, highIndex}));
lowVal = rewriter.createOrFold<arith::IndexCastOp>(
loc, rewriter.getIndexType(), lowVal);
highVal = rewriter.createOrFold<arith::IndexCastOp>(
loc, rewriter.getIndexType(), highVal);
lowValues.push_back(lowVal);
highValues.push_back(highVal);
}
auto newPadOp = rewriter.create<tensor::PadOp>(
loc, padOp.getType(), input, lowValues, highValues, padConstant);
rewriter.replaceOp(padOp, newPadOp.getResult());
return success();
}
};
struct ConcatConverter : public OpConversionPattern<tosa::ConcatOp> {
using OpConversionPattern<tosa::ConcatOp>::OpConversionPattern;
LogicalResult
matchAndRewrite(tosa::ConcatOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto resultType = dyn_cast<RankedTensorType>(op.getType());
Location loc = op.getLoc();
int axis = op.getAxis();
Value axisValue = rewriter.createOrFold<arith::ConstantOp>(
loc, rewriter.getIndexAttr(axis));
int64_t rank = resultType.getRank();
SmallVector<OpFoldResult> strides(rank, rewriter.getIndexAttr(1));
SmallVector<OpFoldResult> offsets(rank, rewriter.getIndexAttr(0));
SmallVector<OpFoldResult> sizes =
tensor::getMixedSizes(rewriter, op.getLoc(), adaptor.getOperands()[0]);
// Pre-compute the offsets along the axis dimension.
// The axisOffsets will be of size rank + 1, where the last value
// will hold the total size of the tensor along the 'axis' dimension.
SmallVector<OpFoldResult> axisOffsets;
axisOffsets.push_back(rewriter.getIndexAttr(0));
axisOffsets.push_back(sizes[axis]);
for (auto arg : adaptor.getOperands().drop_front()) {
auto size = rewriter.createOrFold<tensor::DimOp>(loc, arg, axisValue);
auto currentOffset =
getValueOrCreateConstantIndexOp(rewriter, loc, axisOffsets.back());
auto total =
rewriter.createOrFold<arith::AddIOp>(loc, currentOffset, size);
axisOffsets.push_back(getAsOpFoldResult(total));
}
sizes[axis] = axisOffsets.back();
// Compute the dynamic sizes of the tensor.empty operation.
// This is based off of the specified result type of the tosa.concat
// operation, since we don't want to change the result type of the operation
// during the conversion.
SmallVector<Value> dynDims;
for (int64_t i = 0; i < rank; ++i) {
if (resultType.isDynamicDim(i)) {
dynDims.push_back(
getValueOrCreateConstantIndexOp(rewriter, loc, sizes[i]));
}
}
Value result = rewriter.create<tensor::EmptyOp>(
loc, resultType.getShape(), resultType.getElementType(), dynDims);
for (auto [arg, offset] : llvm::zip(adaptor.getOperands(), axisOffsets)) {
auto sizes = tensor::getMixedSizes(rewriter, op.getLoc(), arg);
offsets[axis] = offset;
result = rewriter.createOrFold<tensor::InsertSliceOp>(
loc, arg, result, offsets, sizes, strides);
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
void mlir::tosa::populateTosaToTensorConversionPatterns(
RewritePatternSet *patterns) {
patterns->add<SliceConverter, PadConverter, ConcatConverter>(
patterns->getContext());
patterns->add<ReshapeConverterCollapseExpand>(patterns->getContext());
}
|