1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328
|
//===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of vector operations to GPU dialect ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToGPU/VectorToGPU.h"
#include <type_traits>
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Utils/MMAUtils.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Utils/StructuredOpsUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Dialect/Vector/Transforms/VectorRewritePatterns.h"
#include "mlir/Dialect/Vector/Utils/VectorUtils.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/Region.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/TypeSwitch.h"
#define DEBUG_TYPE "vector-to-gpu"
#define DBGS() (llvm::dbgs() << "[" DEBUG_TYPE "]: ")
#define DBGSNL() (llvm::dbgs() << "\n")
namespace mlir {
#define GEN_PASS_DEF_CONVERTVECTORTOGPU
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
/// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an
/// AffineMap representing offsets to apply to indices, the function fills
/// `indices` with the original indices plus the offsets. The offsets are
/// applied by taking into account the permutation map of the transfer op. If
/// the `offsetMap` has dimension placeholders, those should be provided in
/// `dimValues`.
template <typename TransferOpType>
static void getXferIndices(RewriterBase &rewriter, TransferOpType xferOp,
AffineMap offsetMap, ArrayRef<Value> dimValues,
SmallVector<Value, 4> &indices) {
indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end());
Location loc = xferOp.getLoc();
unsigned offsetsIdx = 0;
for (auto expr : xferOp.getPermutationMap().getResults()) {
if (auto dim = expr.template dyn_cast<AffineDimExpr>()) {
Value prevIdx = indices[dim.getPosition()];
SmallVector<OpFoldResult, 3> dims(dimValues.begin(), dimValues.end());
dims.push_back(prevIdx);
AffineExpr d0 = rewriter.getAffineDimExpr(offsetMap.getNumDims());
indices[dim.getPosition()] = affine::makeComposedAffineApply(
rewriter, loc, d0 + offsetMap.getResult(offsetsIdx++), dims);
continue;
}
}
}
// Return true if the contract op can be convert to MMA matmul.
static bool contractSupportsMMAMatrixType(vector::ContractionOp contract,
bool useNvGpu) {
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(contract.getContext(), m, n, k);
auto iteratorTypes = contract.getIteratorTypes().getValue();
if (!(vector::isParallelIterator(iteratorTypes[0]) &&
vector::isParallelIterator(iteratorTypes[1]) &&
vector::isReductionIterator(iteratorTypes[2])))
return false;
// The contract needs to represent a matmul to be able to convert to
// MMAMatrix matmul.
if (!useNvGpu &&
contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}}))
return false;
if (useNvGpu &&
contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}}))
return false;
return true;
}
// Return true if the given map represents a transposed matrix load,
// i.e. (d0, d1, ...) -> (dn-1, dn-2).
static bool isTransposeMatrixLoadMap(AffineMap permutationMap) {
MLIRContext *ctx = permutationMap.getContext();
// Local OpBuilder is fine here, we just build attributes.
OpBuilder b(ctx);
auto nDim = permutationMap.getNumDims();
AffineExpr zero = b.getAffineConstantExpr(0);
if (nDim < 2) {
// Support transposed+broadcasted cases: affine_map<(d0) -> (d0, 0)>.
AffineExpr dim0 = b.getAffineDimExpr(0);
return permutationMap == AffineMap::get(1, 0, {dim0, zero}, ctx);
}
AffineExpr innerDim = b.getAffineDimExpr(nDim - 1);
AffineExpr outerDim = b.getAffineDimExpr(nDim - 2);
// Support both transposed and transposed+broadcasted cases.
return permutationMap == AffineMap::get(nDim, 0, {innerDim, outerDim}, ctx) ||
permutationMap == AffineMap::get(nDim, 0, {innerDim, zero}, ctx);
}
// Return the stide for the dimension 0 of |type| if it is a memref and has a
// constant stride.
static std::optional<int64_t>
getMemrefConstantHorizontalStride(ShapedType type) {
auto memrefType = dyn_cast<MemRefType>(type);
if (!memrefType)
return false;
// If the memref is 0 or 1D the horizontal stride is 0.
if (memrefType.getRank() < 2)
return 0;
int64_t offset = 0;
SmallVector<int64_t, 2> strides;
if (failed(getStridesAndOffset(memrefType, strides, offset)) ||
strides.back() != 1)
return std::nullopt;
int64_t stride = strides[strides.size() - 2];
if (stride == ShapedType::kDynamic)
return std::nullopt;
return stride;
}
// Return true if the transfer op can be converted to a MMA matrix load.
static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp,
bool useNvGpu) {
if (readOp.getMask() || readOp.hasOutOfBoundsDim() ||
readOp.getVectorType().getRank() != 2)
return false;
if (!getMemrefConstantHorizontalStride(readOp.getShapedType()))
return false;
// Only allow integer types if the signedness can be inferred.
if (!useNvGpu && readOp.getVectorType().getElementType().isInteger(8))
if (!readOp->hasOneUse() || (!isa<arith::ExtSIOp>(*readOp->user_begin()) &&
!isa<arith::ExtUIOp>(*readOp->user_begin())))
return false;
AffineMap map = readOp.getPermutationMap();
MLIRContext *ctx = readOp.getContext();
AffineExpr innerDim = getAffineDimExpr(map.getNumDims() - 1, ctx);
AffineExpr zero = getAffineConstantExpr(0, ctx);
auto broadcastInnerDim =
AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, ctx);
if (!useNvGpu) {
bool result = map.isMinorIdentity() || map == broadcastInnerDim ||
isTransposeMatrixLoadMap(map);
return result;
}
return true;
}
// Return true if the transfer op can be converted to a MMA matrix store.
static bool
transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) {
// TODO: support 0-d corner case.
if (writeOp.getTransferRank() == 0)
return false;
if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() ||
writeOp.getVectorType().getRank() != 2)
return false;
if (!getMemrefConstantHorizontalStride(writeOp.getShapedType()))
return false;
// TODO: Support transpose once it is added to GPU dialect ops.
if (!writeOp.getPermutationMap().isMinorIdentity())
return false;
return true;
}
/// Return true if the constant is a splat to a 2D vector so that it can be
/// converted to a MMA constant matrix op.
static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) {
auto vecType = dyn_cast<VectorType>(constantOp.getType());
if (!vecType || vecType.getRank() != 2)
return false;
return isa<SplatElementsAttr>(constantOp.getValue());
}
/// Return true if this is a broadcast from scalar to a 2D vector.
static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) {
return broadcastOp.getResultVectorType().getRank() == 2;
}
/// Return true if this integer extend op can be folded into a contract op.
template <typename ExtOpTy>
static bool integerExtendSupportsMMAMatrixType(ExtOpTy extOp) {
if (!isa<vector::TransferReadOp>(extOp.getOperand().getDefiningOp()))
return false;
return llvm::all_of(extOp->getUsers(), [](Operation *user) {
return isa<vector::ContractionOp>(user);
});
}
/// Return the MMA elementwise enum associated with `op` if it is supported.
/// Return `std::nullopt` otherwise.
static std::optional<gpu::MMAElementwiseOp>
convertElementwiseOpToMMA(Operation *op) {
if (isa<arith::AddFOp>(op))
return gpu::MMAElementwiseOp::ADDF;
if (isa<arith::MulFOp>(op))
return gpu::MMAElementwiseOp::MULF;
if (isa<arith::SubFOp>(op))
return gpu::MMAElementwiseOp::SUBF;
if (isa<arith::MaxFOp>(op))
return gpu::MMAElementwiseOp::MAXF;
if (isa<arith::MinFOp>(op))
return gpu::MMAElementwiseOp::MINF;
if (isa<arith::DivFOp>(op))
return gpu::MMAElementwiseOp::DIVF;
if (isa<arith::AddIOp>(op))
return gpu::MMAElementwiseOp::ADDI;
if (isa<arith::MulIOp>(op))
return gpu::MMAElementwiseOp::MULI;
if (isa<arith::SubIOp>(op))
return gpu::MMAElementwiseOp::SUBI;
if (isa<arith::DivSIOp>(op))
return gpu::MMAElementwiseOp::DIVS;
if (isa<arith::DivUIOp>(op))
return gpu::MMAElementwiseOp::DIVU;
if (isa<arith::NegFOp>(op))
return gpu::MMAElementwiseOp::NEGATEF;
return std::nullopt;
}
/// Return true if the op is supported as elementwise op on MMAMatrix type.
static bool elementwiseSupportsMMAMatrixType(Operation *op) {
return convertElementwiseOpToMMA(op).has_value();
}
/// Returns true if the extract strided slice op is supported with `mma.sync`
/// path.
static bool
extractStridedSliceSupportsMMAMatrixType(vector::ExtractStridedSliceOp op) {
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return false;
FailureOr<vector::ContractionOp> contractOp = nvgpu::getUserContract(op);
if (failed(contractOp))
return false;
// Handle vector.extract_strided_slice on registers containing
// matrixB and matrixC operands. vector.extract_strided_slice op
// is not supported on registers containing matrixA operands.
if (warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::B)
return (cast<VectorType>(op->getResult(0).getType()) ==
cast<VectorType>((*contractOp).getRhs().getType()));
if (warpMatrixInfo->operandRole == nvgpu::MatMulOperandRole::C)
return (cast<VectorType>(op->getResult(0).getType()) ==
cast<VectorType>((*contractOp).getAcc().getType()));
return false;
}
static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) {
if (isa<scf::ForOp, scf::YieldOp>(op))
return true;
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op))
return transferReadSupportsMMAMatrixType(transferRead, useNvGpu);
if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
return transferWriteSupportsMMAMatrixType(transferWrite);
if (auto extractStridedSlice = dyn_cast<vector::ExtractStridedSliceOp>(op))
return useNvGpu &&
extractStridedSliceSupportsMMAMatrixType(extractStridedSlice);
if (auto contract = dyn_cast<vector::ContractionOp>(op))
return contractSupportsMMAMatrixType(contract, useNvGpu);
if (auto constant = dyn_cast<arith::ConstantOp>(op))
return constantSupportsMMAMatrixType(constant);
if (auto broadcast = dyn_cast<vector::BroadcastOp>(op))
return broadcastSupportsMMAMatrixType(broadcast);
if (auto signedExtend = dyn_cast<arith::ExtSIOp>(op))
return integerExtendSupportsMMAMatrixType<arith::ExtSIOp>(signedExtend);
if (auto unsignedExtend = dyn_cast<arith::ExtUIOp>(op))
return integerExtendSupportsMMAMatrixType<arith::ExtUIOp>(unsignedExtend);
return elementwiseSupportsMMAMatrixType(op);
}
/// Return an unsorted slice handling scf.for region differently than
/// `getSlice`. In scf.for we only want to include as part of the slice elements
/// that are part of the use/def chain.
static SetVector<Operation *>
getSliceContract(Operation *op, BackwardSliceOptions backwardSliceOptions,
ForwardSliceOptions forwardSliceOptions) {
SetVector<Operation *> slice;
slice.insert(op);
unsigned currentIndex = 0;
SetVector<Operation *> backwardSlice;
SetVector<Operation *> forwardSlice;
while (currentIndex != slice.size()) {
auto *currentOp = (slice)[currentIndex];
// Compute and insert the backwardSlice starting from currentOp.
backwardSlice.clear();
getBackwardSlice(currentOp, &backwardSlice, backwardSliceOptions);
slice.insert(backwardSlice.begin(), backwardSlice.end());
// Compute and insert the forwardSlice starting from currentOp.
forwardSlice.clear();
// Special case for ForOp, we don't want to include the whole region but
// only the value using the region arguments.
// TODO: We should refine this to only care about the region arguments being
// converted to matrix type.
if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) {
for (Value forOpResult : forOp.getResults())
getForwardSlice(forOpResult, &forwardSlice, forwardSliceOptions);
for (BlockArgument &arg : forOp.getRegionIterArgs())
getForwardSlice(arg, &forwardSlice, forwardSliceOptions);
} else {
getForwardSlice(currentOp, &forwardSlice, forwardSliceOptions);
}
slice.insert(forwardSlice.begin(), forwardSlice.end());
++currentIndex;
}
return slice;
}
// Analyze slice of operations based on convert op to figure out if the whole
// slice can be converted to MMA operations.
static SetVector<Operation *> getOpToConvert(mlir::Operation *op,
bool useNvGpu) {
auto hasVectorDest = [](Operation *op) {
return llvm::any_of(op->getResultTypes(),
[](Type t) { return isa<VectorType>(t); });
};
BackwardSliceOptions backwardSliceOptions;
backwardSliceOptions.filter = hasVectorDest;
auto hasVectorSrc = [](Operation *op) {
return llvm::any_of(op->getOperandTypes(),
[](Type t) { return isa<VectorType>(t); });
};
ForwardSliceOptions forwardSliceOptions;
forwardSliceOptions.filter = hasVectorSrc;
SetVector<Operation *> opToConvert;
op->walk([&](vector::ContractionOp contract) {
if (opToConvert.contains(contract.getOperation()))
return;
SetVector<Operation *> dependentOps =
getSliceContract(contract, backwardSliceOptions, forwardSliceOptions);
// If any instruction cannot use MMA matrix type drop the whole
// chain. MMA matrix are stored in an opaque type so they cannot be used
// by all operations.
if (llvm::any_of(dependentOps, [useNvGpu](Operation *op) {
return !supportsMMaMatrixType(op, useNvGpu);
}))
return;
opToConvert.insert(dependentOps.begin(), dependentOps.end());
});
// Sort the operations so that we can convert them in topological order.
return topologicalSort(opToConvert);
}
namespace {
// Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted
// to MMA matmul.
struct PrepareContractToGPUMMA
: public OpRewritePattern<vector::ContractionOp> {
using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::ContractionOp op,
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc();
// Set up the parallel/reduction structure in right form.
using MapList = ArrayRef<ArrayRef<AffineExpr>>;
auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
AffineExpr m, n, k;
bindDims(rewriter.getContext(), m, n, k);
static constexpr std::array<int64_t, 2> perm = {1, 0};
auto iteratorTypes = op.getIteratorTypes().getValue();
SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray();
if (!(vector::isParallelIterator(iteratorTypes[0]) &&
vector::isParallelIterator(iteratorTypes[1]) &&
vector::isReductionIterator(iteratorTypes[2])))
return rewriter.notifyMatchFailure(op, "not a gemm contraction");
//
// Two outer parallel, one inner reduction (matmat flavor).
//
// This is the classical row-major matmul, nothing to do.
if (maps == infer({{m, k}, {k, n}, {m, n}}))
return rewriter.notifyMatchFailure(op, "contraction already prepared");
if (maps == infer({{m, k}, {n, k}, {m, n}})) {
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
std::swap(rhs, lhs);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
std::swap(rhs, lhs);
rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
} else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
std::swap(lhs, rhs);
lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
} else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
std::swap(lhs, rhs);
} else {
// TODO: llvm_unreachable ?
return rewriter.notifyMatchFailure(op, "unexpected contraction case");
}
rewriter.replaceOpWithNewOp<vector::ContractionOp>(
op, lhs, rhs, res,
rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})),
op.getIteratorTypes());
return success();
}
};
// Fold transpose op into the transfer read op. Nvgpu mma.sync op only supports
// row-, column-, and row-major layout for matrixA, matrixB, and matrixC,
// respectively. We can fold the transpose operation when loading the data from
// Shared Memory to registers.
struct CombineTransferReadOpTranspose final
: public OpRewritePattern<vector::TransposeOp> {
using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
LogicalResult matchAndRewrite(vector::TransposeOp op,
PatternRewriter &rewriter) const override {
// Look through integer extend ops.
Value source = op.getVector();
Type resultType = op.getType();
Operation *extOp;
if ((extOp = source.getDefiningOp<arith::ExtSIOp>()) ||
(extOp = source.getDefiningOp<arith::ExtUIOp>())) {
source = extOp->getOperand(0);
resultType =
VectorType::get(cast<VectorType>(resultType).getShape(),
cast<VectorType>(source.getType()).getElementType());
}
auto transferReadOp = source.getDefiningOp<vector::TransferReadOp>();
if (!transferReadOp)
return rewriter.notifyMatchFailure(op, "no transfer read");
// TODO: support 0-d corner case.
if (transferReadOp.getTransferRank() == 0)
return rewriter.notifyMatchFailure(op, "0-D transfer read");
if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim())
return rewriter.notifyMatchFailure(op, "not inbounds transfer read");
SmallVector<int64_t, 2> perm;
op.getTransp(perm);
SmallVector<unsigned, 2> permU;
for (int64_t o : perm)
permU.push_back(unsigned(o));
AffineMap permutationMap =
AffineMap::getPermutationMap(permU, op.getContext());
AffineMap newMap =
permutationMap.compose(transferReadOp.getPermutationMap());
auto loc = op.getLoc();
Value result =
rewriter
.create<vector::TransferReadOp>(
loc, resultType, transferReadOp.getSource(),
transferReadOp.getIndices(), AffineMapAttr::get(newMap),
transferReadOp.getPadding(), transferReadOp.getMask(),
transferReadOp.getInBoundsAttr())
.getResult();
// Fuse through the integer extend op.
if (extOp) {
if (isa<arith::ExtSIOp>(extOp))
result = rewriter.create<arith::ExtSIOp>(loc, op.getType(), result)
.getResult();
else
result = rewriter.create<arith::ExtUIOp>(loc, op.getType(), result)
.getResult();
}
rewriter.replaceOp(op, result);
return success();
}
};
} // namespace
// MMA types have different layout based on how they are used in matmul ops.
// Figure the right layout to use by looking at op uses.
// TODO: Change the GPU dialect to abstract the layout at the this level and
// only care about it during lowering to NVVM.
static const char *inferFragType(Operation *op) {
for (Operation *users : op->getUsers()) {
auto contract = dyn_cast<vector::ContractionOp>(users);
if (!contract)
continue;
assert(op->getNumResults() == 1);
if (contract.getLhs() == op->getResult(0))
return "AOp";
if (contract.getRhs() == op->getResult(0))
return "BOp";
}
return "COp";
}
static LogicalResult
convertTransferReadOp(RewriterBase &rewriter, vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
assert(op.getTransferRank() > 0 && "unexpected 0-d transfer");
assert(transferReadSupportsMMAMatrixType(op, /*useNvGpu=*/false));
std::optional<int64_t> stride =
getMemrefConstantHorizontalStride(op.getShapedType());
if (!stride.has_value()) {
LLVM_DEBUG(DBGS() << "no stride\n");
return rewriter.notifyMatchFailure(op, "no stride");
}
AffineMap map = op.getPermutationMap();
bool isTranspose = isTransposeMatrixLoadMap(map);
// Handle broadcast by setting the stride to 0.
if (auto cstExpr =
map.getResult(isTranspose).dyn_cast<AffineConstantExpr>()) {
assert(cstExpr.getValue() == 0);
stride = 0;
}
Value mappingResult = op.getResult();
auto elType = op.getVectorType().getElementType();
const char *fragType = inferFragType(op);
if (op->hasOneUse()) {
auto user = *op->user_begin();
// Infer the signedness of the mma type from the integer extend.
bool isSignedExtend = isa<arith::ExtSIOp>(user);
if (isSignedExtend || isa<arith::ExtUIOp>(user)) {
elType = IntegerType::get(
op.getContext(), cast<IntegerType>(elType).getWidth(),
isSignedExtend ? IntegerType::Signed : IntegerType::Unsigned);
mappingResult = user->getResult(0);
fragType = inferFragType(user);
}
}
gpu::MMAMatrixType type =
gpu::MMAMatrixType::get(op.getVectorType().getShape(), elType, fragType);
Value load = rewriter.create<gpu::SubgroupMmaLoadMatrixOp>(
op.getLoc(), type, op.getSource(), op.getIndices(),
rewriter.getIndexAttr(*stride),
isTranspose ? rewriter.getUnitAttr() : UnitAttr());
valueMapping[mappingResult] = load;
LLVM_DEBUG(DBGS() << "transfer read to: " << load << "\n");
return success();
}
static LogicalResult
convertTransferWriteOp(RewriterBase &rewriter, vector::TransferWriteOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
assert(transferWriteSupportsMMAMatrixType(op));
std::optional<int64_t> stride =
getMemrefConstantHorizontalStride(op.getShapedType());
if (!stride.has_value()) {
LLVM_DEBUG(DBGS() << "no stride\n");
return rewriter.notifyMatchFailure(op, "no stride");
}
auto it = valueMapping.find(op.getVector());
if (it == valueMapping.end()) {
LLVM_DEBUG(DBGS() << "no mapping\n");
return rewriter.notifyMatchFailure(op, "no mapping");
}
Value matrix = it->second;
auto store = rewriter.create<gpu::SubgroupMmaStoreMatrixOp>(
op.getLoc(), matrix, op.getSource(), op.getIndices(),
rewriter.getIndexAttr(*stride), /*transpose=*/UnitAttr());
(void)store;
LLVM_DEBUG(DBGS() << "transfer write to: " << store << "\n");
LLVM_DEBUG(DBGS() << "erase: " << op << "\n");
rewriter.eraseOp(op);
return success();
}
/// Returns the vector type which represents a matrix fragment.
static VectorType
getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info) {
SmallVector<int64_t> shape{regInfo.numRegistersPerFragment,
regInfo.elementsPerRegister};
Type elType = regInfo.registerLLVMType;
if (auto vecType = dyn_cast<VectorType>(elType))
elType = vecType.getElementType();
return VectorType::get(shape, elType);
}
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult
convertConstantOpMmaSync(RewriterBase &rewriter, arith::ConstantOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo)) {
LLVM_DEBUG(DBGS() << "no warpMatrixInfo\n");
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
}
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo)) {
LLVM_DEBUG(DBGS() << "not mma sync reg info\n");
return rewriter.notifyMatchFailure(op, "not mma sync reg info");
}
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
auto dense = dyn_cast<SplatElementsAttr>(op.getValue());
if (!dense) {
LLVM_DEBUG(DBGS() << "not a splat\n");
return rewriter.notifyMatchFailure(op, "not a splat");
}
Value result = rewriter.create<arith::ConstantOp>(
op.getLoc(), vectorType,
DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>()));
valueMapping[op.getResult()] = result;
return success();
}
/// Check if the loaded matrix operand requires transposed.
/// Transposed Map Example:
/// Example 1 : (..., d0, d1) -> (d1 * 1, d0 * 2)
/// Example 2 : (d0, d1, d2, d3) -> (d3, d2)
/// The code below checks if the output 2D is transposed using a generalized
/// version : (d0, d1, dn, ..., dm, ...) -> (dm, dn)
/// Returns : true; if m > n, false o.w.
static FailureOr<bool> isTransposed(vector::TransferReadOp op) {
mlir::AffineMap map = op.getPermutationMap();
if (map.getNumResults() != 2) {
LLVM_DEBUG(DBGS() << "Failed because the result of `vector.transfer_read` "
"is not a 2d operand\n");
return failure();
}
// Output 2D matrix dimensions in the order of d0, d1.
mlir::AffineExpr dM = map.getResult(0);
mlir::AffineExpr dN = map.getResult(1);
// Find the position of these expressions in the input.
auto exprM = dM.dyn_cast<AffineDimExpr>();
auto exprN = dN.dyn_cast<AffineDimExpr>();
if (!exprM || !exprN) {
LLVM_DEBUG(DBGS() << "Failed because expressions are not affine dim "
"expressions, then transpose cannot be determined.\n");
return failure();
}
return exprM.getPosition() > exprN.getPosition();
}
static LogicalResult
creatLdMatrixCompatibleLoads(RewriterBase &rewriter, vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
Location loc = op->getLoc();
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo)) {
LLVM_DEBUG(DBGS() << "no warpMatrixInfo\n");
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
}
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo)) {
LLVM_DEBUG(DBGS() << "not mma sync reg info\n");
return rewriter.notifyMatchFailure(op, "not mma sync reg info");
}
FailureOr<bool> transpose = isTransposed(op);
if (failed(transpose)) {
LLVM_DEBUG(DBGS() << "failed to determine the transpose\n");
return rewriter.notifyMatchFailure(
op, "Op should likely not be converted to a nvgpu.ldmatrix call.");
}
FailureOr<nvgpu::LdMatrixParams> params =
nvgpu::getLdMatrixParams(*warpMatrixInfo, *transpose);
if (failed(params)) {
LLVM_DEBUG(
DBGS()
<< "failed to convert vector.transfer_read to ldmatrix. "
<< "Op should likely not be converted to a nvgpu.ldmatrix call.\n");
return rewriter.notifyMatchFailure(
op, "failed to convert vector.transfer_read to ldmatrix; this op "
"likely should not be converted to a nvgpu.ldmatrix call.");
}
// Adjust the load offset.
auto laneId = rewriter.create<gpu::LaneIdOp>(loc);
FailureOr<AffineMap> offsets =
nvgpu::getLaneIdToLdMatrixMatrixCoord(rewriter, loc, *params);
if (failed(offsets)) {
LLVM_DEBUG(DBGS() << "no offsets\n");
return rewriter.notifyMatchFailure(op, "no offsets");
}
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
SmallVector<Value, 4> indices;
getXferIndices<vector::TransferReadOp>(rewriter, op, *offsets, {laneId},
indices);
nvgpu::LdMatrixOp newOp = rewriter.create<nvgpu::LdMatrixOp>(
loc, vectorType, op.getSource(), indices, *transpose, params->numTiles);
valueMapping[op] = newOp->getResult(0);
return success();
}
static LogicalResult
createNonLdMatrixLoads(RewriterBase &rewriter, vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
Location loc = op.getLoc();
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo)) {
return rewriter.notifyMatchFailure(
op, "Failed to deduce register fragment type during "
"conversion to distributed non-ldmatrix compatible load");
}
Value laneId = rewriter.create<gpu::LaneIdOp>(loc);
SmallVector<Value, 4> elements;
// This is the individual element type.
Type loadedElType = regInfo->registerLLVMType;
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
Value fill = rewriter.create<arith::ConstantOp>(
op.getLoc(), vectorType.getElementType(),
rewriter.getZeroAttr(vectorType.getElementType()));
Value result =
rewriter.create<vector::SplatOp>(op.getLoc(), fill, vectorType);
bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity();
// If we are not transposing, then we can use vectorized loads. Otherwise, we
// must load each element individually.
if (!isTransposeLoad) {
if (!isa<VectorType>(loadedElType)) {
loadedElType = VectorType::get({1}, loadedElType);
}
for (int i = 0; i < vectorType.getShape()[0]; i++) {
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
rewriter, op.getLoc(), *warpMatrixInfo);
if (failed(coords))
return rewriter.notifyMatchFailure(op, "no coords");
Value logicalValueId = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexType(),
rewriter.getIndexAttr(i * regInfo->elementsPerRegister));
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferReadOp>(
rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
Value el = rewriter.create<vector::LoadOp>(loc, loadedElType,
op.getSource(), newIndices);
result = rewriter.create<vector::InsertOp>(loc, el, result,
rewriter.getI64ArrayAttr(i));
}
} else {
if (auto vecType = dyn_cast<VectorType>(loadedElType)) {
loadedElType = vecType.getElementType();
}
for (int i = 0; i < vectorType.getShape()[0]; i++) {
for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1];
innerIdx++) {
Value logicalValueId = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexType(),
rewriter.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx));
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
rewriter, op.getLoc(), *warpMatrixInfo);
if (failed(coords))
return rewriter.notifyMatchFailure(op, "no coords");
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferReadOp>(
rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
Value el = rewriter.create<memref::LoadOp>(op.getLoc(), loadedElType,
op.getSource(), newIndices);
result = rewriter.create<vector::InsertOp>(
op.getLoc(), el, result, rewriter.getI64ArrayAttr({i, innerIdx}));
}
}
}
valueMapping[op.getResult()] = result;
return success();
}
/// Return true if this is a shared memory memref type.
static bool isSharedMemory(MemRefType type) {
auto addressSpace =
dyn_cast_or_null<gpu::AddressSpaceAttr>(type.getMemorySpace());
if (addressSpace &&
addressSpace.getValue() == gpu::GPUDialect::getWorkgroupAddressSpace())
return true;
return false;
}
/// Converts a `vector.transfer_read` operation directly to either a
/// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be
/// used when converting to `nvgpu.mma.sync` operations.
static LogicalResult
convertTransferReadToLoads(RewriterBase &rewriter, vector::TransferReadOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
bool isLdMatrixCompatible =
isSharedMemory(cast<MemRefType>(op.getSource().getType())) &&
nvgpu::inferTileWidthInBits(*warpMatrixInfo) == 128;
VectorType vecTy = op.getVectorType();
int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth();
// When we are transposing the B operand, ldmatrix will only work if we have
// at least 8 rows to read and the width to read for the transpose is 128
// bits.
if (!op.getPermutationMap().isMinorIdentity() &&
(bitWidth != 16 || vecTy.getDimSize(1) < 8 ||
vecTy.getDimSize(0) * bitWidth < 128))
isLdMatrixCompatible = false;
if (!isLdMatrixCompatible)
return createNonLdMatrixLoads(rewriter, op, valueMapping);
return creatLdMatrixCompatibleLoads(rewriter, op, valueMapping);
}
static LogicalResult
convertTransferWriteToStores(RewriterBase &rewriter, vector::TransferWriteOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
Location loc = op->getLoc();
auto it = valueMapping.find(op.getVector());
if (it == valueMapping.end())
return rewriter.notifyMatchFailure(op, "no mapping");
Value matrix = it->second;
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
FailureOr<nvgpu::FragmentElementInfo> regInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(regInfo))
return rewriter.notifyMatchFailure(op, "not mma sync reg info");
VectorType vectorType = getMmaSyncVectorOperandType(*regInfo);
Value laneId = rewriter.create<gpu::LaneIdOp>(loc);
for (unsigned i = 0; i < vectorType.getShape()[0]; i++) {
Value logicalValueId = rewriter.create<arith::ConstantOp>(
loc, rewriter.getIndexType(),
rewriter.getIndexAttr(i * regInfo->elementsPerRegister));
FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord(
rewriter, op.getLoc(), *warpMatrixInfo);
if (failed(coords))
return rewriter.notifyMatchFailure(op, "no coords");
Value el =
rewriter.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i});
SmallVector<Value, 4> newIndices;
getXferIndices<vector::TransferWriteOp>(
rewriter, op, *coords, {laneId, logicalValueId}, newIndices);
rewriter.create<vector::StoreOp>(loc, el, op.getSource(), newIndices);
}
LLVM_DEBUG(DBGS() << "erase: " << op << "\n");
rewriter.eraseOp(op);
return success();
}
static void populateFromInt64AttrArray(ArrayAttr arrayAttr,
SmallVectorImpl<int64_t> &results) {
for (auto attr : arrayAttr)
results.push_back(cast<IntegerAttr>(attr).getInt());
}
static LogicalResult
convertExtractStridedSlice(RewriterBase &rewriter,
vector::ExtractStridedSliceOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
Location loc = op->getLoc();
FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo =
nvgpu::getWarpMatrixInfo(op);
if (failed(warpMatrixInfo))
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
FailureOr<nvgpu::FragmentElementInfo> mmaSyncFragmentInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(mmaSyncFragmentInfo))
return rewriter.notifyMatchFailure(op, "no mmaSyncFragmentInfo");
// Find the vector.transer_read whose result vector is being sliced.
auto transferReadOp = op.getVector().getDefiningOp<vector::TransferReadOp>();
if (!transferReadOp)
return rewriter.notifyMatchFailure(op, "no transfer read");
warpMatrixInfo = nvgpu::getWarpMatrixInfo(transferReadOp);
if (failed(warpMatrixInfo))
return rewriter.notifyMatchFailure(op, "no warpMatrixInfo");
FailureOr<nvgpu::FragmentElementInfo> ldFragmentInfo =
nvgpu::getMmaSyncRegisterType(*warpMatrixInfo);
if (failed(ldFragmentInfo))
return rewriter.notifyMatchFailure(op, "no ldFragmentInfo");
assert(
(mmaSyncFragmentInfo->elementsPerRegister ==
ldFragmentInfo->elementsPerRegister) &&
"Number of elements per register should be same for load and mma.sync");
// Create vector.extract_strided_slice op for thread-owned fragments.
std::array<int64_t, 2> strides = {1,
1}; // stride for extract slice is always 1.
std::array<int64_t, 2> sliceShape = {
mmaSyncFragmentInfo->numRegistersPerFragment,
mmaSyncFragmentInfo->elementsPerRegister};
auto it = valueMapping.find(transferReadOp);
if (it == valueMapping.end())
return rewriter.notifyMatchFailure(op, "no mapping");
auto sourceVector = it->second;
// offset and sizes at warp-level of onwership.
SmallVector<int64_t> offsets;
populateFromInt64AttrArray(op.getOffsets(), offsets);
SmallVector<int64_t> sizes;
populateFromInt64AttrArray(op.getSizes(), sizes);
ArrayRef<int64_t> warpVectorShape = op.getSourceVectorType().getShape();
// Compute offset in vector registers. Note that the mma.sync vector registers
// are shaped as numberOfFragments x numberOfRegistersPerfFragment. The vector
// registers can only be sliced along numberOfFragments, i.e., sliceOffset[0].
std::array<int64_t, 2> sliceOffset = {0, 0};
if (offsets[0] && offsets[1])
return op->emitError() << "Slicing fragments in 2D is not supported. ";
if (offsets[0])
sliceOffset[0] = (warpVectorShape[0] / offsets[0]);
else if (offsets[1])
sliceOffset[0] = (warpVectorShape[1] / offsets[1]);
Value newOp = rewriter.create<vector::ExtractStridedSliceOp>(
loc, sourceVector, sliceOffset, sliceShape, strides);
valueMapping[op] = newOp;
return success();
}
static LogicalResult
convertContractOp(RewriterBase &rewriter, vector::ContractionOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
auto itA = valueMapping.find(op.getLhs());
auto itB = valueMapping.find(op.getRhs());
auto itC = valueMapping.find(op.getAcc());
if (itA == valueMapping.end() || itB == valueMapping.end() ||
itC == valueMapping.end())
return rewriter.notifyMatchFailure(op, "no mapping");
Value opA = itA->second, opB = itB->second, opC = itC->second;
Value matmul = rewriter.create<gpu::SubgroupMmaComputeOp>(
op.getLoc(), opC.getType(), opA, opB, opC, /*a_transpose=*/UnitAttr(),
/*b_transpose=*/UnitAttr());
valueMapping[op.getResult()] = matmul;
return success();
}
static LogicalResult
convertContractOpToMmaSync(RewriterBase &rewriter, vector::ContractionOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
auto itA = valueMapping.find(op.getLhs());
auto itB = valueMapping.find(op.getRhs());
auto itC = valueMapping.find(op.getAcc());
if (itA == valueMapping.end() || itB == valueMapping.end() ||
itC == valueMapping.end())
return rewriter.notifyMatchFailure(op, "no mapping");
Value opA = itA->second, opB = itB->second, opC = itC->second;
int64_t m = cast<VectorType>(op.getLhs().getType()).getShape()[0];
int64_t n = cast<VectorType>(op.getRhs().getType()).getShape()[0];
int64_t k = cast<VectorType>(op.getLhs().getType()).getShape()[1];
Value matmul = rewriter.create<nvgpu::MmaSyncOp>(
op.getLoc(), opA, opB, opC, rewriter.getI64ArrayAttr({m, n, k}));
valueMapping[op.getResult()] = matmul;
return success();
}
/// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
static LogicalResult
convertConstantOp(RewriterBase &rewriter, arith::ConstantOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
assert(constantSupportsMMAMatrixType(op));
auto splat =
cast<SplatElementsAttr>(op.getValue()).getSplatValue<TypedAttr>();
auto scalarConstant =
rewriter.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
const char *fragType = inferFragType(op);
auto vecType = cast<VectorType>(op.getType());
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
auto matrix = rewriter.create<gpu::SubgroupMmaConstantMatrixOp>(
op.getLoc(), type, scalarConstant);
valueMapping[op.getResult()] = matrix;
return success();
}
/// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
static LogicalResult
convertBroadcastOp(RewriterBase &rewriter, vector::BroadcastOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
assert(broadcastSupportsMMAMatrixType(op));
const char *fragType = inferFragType(op);
auto vecType = op.getResultVectorType();
gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
auto matrix = rewriter.create<gpu::SubgroupMmaConstantMatrixOp>(
op.getLoc(), type, op.getSource());
valueMapping[op.getResult()] = matrix;
return success();
}
// Replace ForOp with a new ForOp with extra operands. The YieldOp is not
// updated and needs to be updated separatly for the loop to be correct.
static scf::ForOp replaceForOpWithNewSignature(RewriterBase &rewriter,
scf::ForOp loop,
ValueRange newIterOperands) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(loop);
// Create a new loop before the existing one, with the extra operands.
rewriter.setInsertionPoint(loop);
auto operands = llvm::to_vector<4>(loop.getIterOperands());
operands.append(newIterOperands.begin(), newIterOperands.end());
scf::ForOp newLoop = rewriter.create<scf::ForOp>(
loop.getLoc(), loop.getLowerBound(), loop.getUpperBound(), loop.getStep(),
operands);
newLoop.getBody()->erase();
newLoop.getLoopBody().getBlocks().splice(
newLoop.getLoopBody().getBlocks().begin(),
loop.getLoopBody().getBlocks());
for (Value operand : newIterOperands)
newLoop.getBody()->addArgument(operand.getType(), operand.getLoc());
for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
loop.getNumResults())))
rewriter.replaceAllUsesWith(std::get<0>(it), std::get<1>(it));
LLVM_DEBUG(DBGS() << "newLoop now: " << newLoop << "\n");
LLVM_DEBUG(DBGS() << "stripped scf.for: " << loop << "\n");
LLVM_DEBUG(DBGS() << "erase: " << loop);
rewriter.eraseOp(loop);
return newLoop;
}
static LogicalResult convertForOp(RewriterBase &rewriter, scf::ForOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
SmallVector<Value> newOperands;
SmallVector<std::pair<size_t, size_t>> argMapping;
for (const auto &operand : llvm::enumerate(op.getIterOperands())) {
auto it = valueMapping.find(operand.value());
if (it == valueMapping.end()) {
LLVM_DEBUG(DBGS() << "no value mapping for: " << operand.value() << "\n");
continue;
}
argMapping.push_back(std::make_pair(
operand.index(), op.getNumIterOperands() + newOperands.size()));
newOperands.push_back(it->second);
}
scf::ForOp newForOp = replaceForOpWithNewSignature(rewriter, op, newOperands);
Block &loopBody = *newForOp.getBody();
for (auto mapping : argMapping) {
valueMapping[newForOp.getResult(mapping.first)] =
newForOp.getResult(mapping.second);
valueMapping[loopBody.getArgument(mapping.first +
newForOp.getNumInductionVars())] =
loopBody.getArgument(mapping.second + newForOp.getNumInductionVars());
}
LLVM_DEBUG(DBGS() << "scf.for to: " << newForOp << "\n");
return success();
}
static LogicalResult
convertYieldOp(RewriterBase &rewriter, scf::YieldOp op,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
auto loop = cast<scf::ForOp>(op->getParentOp());
auto yieldOperands = llvm::to_vector<4>(op.getOperands());
for (const auto &operand : llvm::enumerate(op.getOperands())) {
auto it = valueMapping.find(operand.value());
if (it == valueMapping.end())
continue;
// Replace the yield of old value with the for op argument to make it easier
// to remove the dead code.
yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()];
yieldOperands.push_back(it->second);
}
rewriter.create<scf::YieldOp>(op.getLoc(), yieldOperands);
LLVM_DEBUG(DBGS() << "erase: " << op << "\n");
rewriter.eraseOp(op);
return success();
}
/// Convert an elementwise op to the equivalent elementwise op on MMA matrix.
static LogicalResult
convertElementwiseOp(RewriterBase &rewriter, Operation *op,
gpu::MMAElementwiseOp opType,
llvm::DenseMap<Value, Value> &valueMapping) {
OpBuilder::InsertionGuard g(rewriter);
rewriter.setInsertionPoint(op);
SmallVector<Value> matrixOperands;
for (Value operand : op->getOperands()) {
auto it = valueMapping.find(operand);
if (it == valueMapping.end())
return rewriter.notifyMatchFailure(op, "no mapping");
matrixOperands.push_back(it->second);
}
Value newOp = rewriter.create<gpu::SubgroupMmaElementwiseOp>(
op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType);
valueMapping[op->getResult(0)] = newOp;
return success();
}
void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns,
bool useNvGpu) {
if (!useNvGpu) {
patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
patterns.getContext());
return;
}
vector::populateVectorContractCanonicalizeMatmulToMMT(patterns);
patterns.add<CombineTransferReadOpTranspose>(patterns.getContext());
}
LogicalResult mlir::convertVectorToMMAOps(RewriterBase &rewriter,
Operation *rootOp) {
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/false);
llvm::DenseMap<Value, Value> valueMapping;
auto globalRes = LogicalResult::success();
for (Operation *op : ops) {
LLVM_DEBUG(DBGS() << "Process op: " << *op << "\n");
// Apparently callers do not want to early exit on failure here.
auto res = LogicalResult::success();
if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
res = convertTransferReadOp(rewriter, transferRead, valueMapping);
} else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
res = convertTransferWriteOp(rewriter, transferWrite, valueMapping);
} else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
res = convertContractOp(rewriter, contractOp, valueMapping);
} else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
res = convertConstantOp(rewriter, constantOp, valueMapping);
} else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
res = convertBroadcastOp(rewriter, broadcastOp, valueMapping);
} else if (auto forOp = dyn_cast<scf::ForOp>(op)) {
res = convertForOp(rewriter, forOp, valueMapping);
} else if (auto yieldOp = dyn_cast<scf::YieldOp>(op)) {
res = convertYieldOp(rewriter, yieldOp, valueMapping);
} else if (auto elementwiseType = convertElementwiseOpToMMA(op)) {
res = convertElementwiseOp(rewriter, op, *elementwiseType, valueMapping);
}
if (failed(res))
globalRes = failure();
}
return globalRes;
}
LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(RewriterBase &rewriter,
Operation *rootOp) {
SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/true);
llvm::DenseMap<Value, Value> valueMapping;
for (Operation *op : ops) {
if (llvm::TypeSwitch<Operation *, LogicalResult>(op)
.Case([&](vector::TransferReadOp transferReadOp) {
return convertTransferReadToLoads(rewriter, transferReadOp,
valueMapping);
})
.Case([&](vector::TransferWriteOp transferWriteOp) {
return convertTransferWriteToStores(rewriter, transferWriteOp,
valueMapping);
})
.Case([&](vector::ExtractStridedSliceOp extractStridedSliceOp) {
return convertExtractStridedSlice(rewriter, extractStridedSliceOp,
valueMapping);
})
.Case([&](vector::ContractionOp contractionOp) {
return convertContractOpToMmaSync(rewriter, contractionOp,
valueMapping);
})
.Case([&](scf::ForOp forOp) {
return convertForOp(rewriter, forOp, valueMapping);
})
.Case([&](scf::YieldOp yieldOp) {
return convertYieldOp(rewriter, yieldOp, valueMapping);
})
.Case([&](arith::ConstantOp constOp) {
return convertConstantOpMmaSync(rewriter, constOp, valueMapping);
})
.Default([&](Operation *op) {
return op->emitError() << "unhandled vector to mma type: " << *op;
})
.failed()) {
return op->emitError() << "Failed to convert op " << *op;
}
}
return success();
}
namespace {
struct ConvertVectorToGPUPass
: public impl::ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
explicit ConvertVectorToGPUPass(bool useNvGpu_) {
useNvGpu.setValue(useNvGpu_);
}
void runOnOperation() override {
RewritePatternSet patterns(&getContext());
populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue());
if (failed(
applyPatternsAndFoldGreedily(getOperation(), std::move(patterns))))
return signalPassFailure();
IRRewriter rewriter(&getContext());
if (useNvGpu.getValue()) {
if (failed(
convertVectorToNVVMCompatibleMMASync(rewriter, getOperation())))
return signalPassFailure();
}
(void)convertVectorToMMAOps(rewriter, getOperation());
}
};
} // namespace
std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) {
return std::make_unique<ConvertVectorToGPUPass>(useNvGpu);
}
|