1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723
|
//===- VectorToLLVM.cpp - Conversion from Vector to the LLVM dialect ------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Conversion/LLVMCommon/TypeConverter.h"
#include "mlir/Conversion/LLVMCommon/VectorPattern.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/Vector/Interfaces/MaskableOpInterface.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Target/LLVMIR/TypeToLLVM.h"
#include "mlir/Transforms/DialectConversion.h"
#include "llvm/Support/Casting.h"
#include <optional>
using namespace mlir;
using namespace mlir::vector;
// Helper to reduce vector type by one rank at front.
static VectorType reducedVectorTypeFront(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().drop_front(), tp.getElementType(),
tp.getScalableDims().drop_front());
}
// Helper to reduce vector type by *all* but one rank at back.
static VectorType reducedVectorTypeBack(VectorType tp) {
assert((tp.getRank() > 1) && "unlowerable vector type");
return VectorType::get(tp.getShape().take_back(), tp.getElementType(),
tp.getScalableDims().take_back());
}
// Helper that picks the proper sequence for inserting.
static Value insertOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val1, Value val2, Type llvmType, int64_t rank,
int64_t pos) {
assert(rank > 0 && "0-D vector corner case should have been handled already");
if (rank == 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::InsertElementOp>(loc, llvmType, val1, val2,
constant);
}
return rewriter.create<LLVM::InsertValueOp>(loc, val1, val2, pos);
}
// Helper that picks the proper sequence for extracting.
static Value extractOne(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, Location loc,
Value val, Type llvmType, int64_t rank, int64_t pos) {
if (rank <= 1) {
auto idxType = rewriter.getIndexType();
auto constant = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter.convertType(idxType),
rewriter.getIntegerAttr(idxType, pos));
return rewriter.create<LLVM::ExtractElementOp>(loc, llvmType, val,
constant);
}
return rewriter.create<LLVM::ExtractValueOp>(loc, val, pos);
}
// Helper that returns data layout alignment of a memref.
LogicalResult getMemRefAlignment(LLVMTypeConverter &typeConverter,
MemRefType memrefType, unsigned &align) {
Type elementTy = typeConverter.convertType(memrefType.getElementType());
if (!elementTy)
return failure();
// TODO: this should use the MLIR data layout when it becomes available and
// stop depending on translation.
llvm::LLVMContext llvmContext;
align = LLVM::TypeToLLVMIRTranslator(llvmContext)
.getPreferredAlignment(elementTy, typeConverter.getDataLayout());
return success();
}
// Check if the last stride is non-unit or the memory space is not zero.
static LogicalResult isMemRefTypeSupported(MemRefType memRefType,
LLVMTypeConverter &converter) {
if (!isLastMemrefDimUnitStride(memRefType))
return failure();
FailureOr<unsigned> addressSpace =
converter.getMemRefAddressSpace(memRefType);
if (failed(addressSpace) || *addressSpace != 0)
return failure();
return success();
}
// Add an index vector component to a base pointer.
static Value getIndexedPtrs(ConversionPatternRewriter &rewriter, Location loc,
LLVMTypeConverter &typeConverter,
MemRefType memRefType, Value llvmMemref, Value base,
Value index, uint64_t vLen) {
assert(succeeded(isMemRefTypeSupported(memRefType, typeConverter)) &&
"unsupported memref type");
auto pType = MemRefDescriptor(llvmMemref).getElementPtrType();
auto ptrsType = LLVM::getFixedVectorType(pType, vLen);
return rewriter.create<LLVM::GEPOp>(
loc, ptrsType, typeConverter.convertType(memRefType.getElementType()),
base, index);
}
// Casts a strided element pointer to a vector pointer. The vector pointer
// will be in the same address space as the incoming memref type.
static Value castDataPtr(ConversionPatternRewriter &rewriter, Location loc,
Value ptr, MemRefType memRefType, Type vt,
LLVMTypeConverter &converter) {
if (converter.useOpaquePointers())
return ptr;
unsigned addressSpace = *converter.getMemRefAddressSpace(memRefType);
auto pType = LLVM::LLVMPointerType::get(vt, addressSpace);
return rewriter.create<LLVM::BitcastOp>(loc, pType, ptr);
}
namespace {
/// Trivial Vector to LLVM conversions
using VectorScaleOpConversion =
OneToOneConvertToLLVMPattern<vector::VectorScaleOp, LLVM::vscale>;
/// Conversion pattern for a vector.bitcast.
class VectorBitCastOpConversion
: public ConvertOpToLLVMPattern<vector::BitCastOp> {
public:
using ConvertOpToLLVMPattern<vector::BitCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::BitCastOp bitCastOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 0-D and 1-D vectors can be lowered to LLVM.
VectorType resultTy = bitCastOp.getResultVectorType();
if (resultTy.getRank() > 1)
return failure();
Type newResultTy = typeConverter->convertType(resultTy);
rewriter.replaceOpWithNewOp<LLVM::BitcastOp>(bitCastOp, newResultTy,
adaptor.getOperands()[0]);
return success();
}
};
/// Conversion pattern for a vector.matrix_multiply.
/// This is lowered directly to the proper llvm.intr.matrix.multiply.
class VectorMatmulOpConversion
: public ConvertOpToLLVMPattern<vector::MatmulOp> {
public:
using ConvertOpToLLVMPattern<vector::MatmulOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MatmulOp matmulOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixMultiplyOp>(
matmulOp, typeConverter->convertType(matmulOp.getRes().getType()),
adaptor.getLhs(), adaptor.getRhs(), matmulOp.getLhsRows(),
matmulOp.getLhsColumns(), matmulOp.getRhsColumns());
return success();
}
};
/// Conversion pattern for a vector.flat_transpose.
/// This is lowered directly to the proper llvm.intr.matrix.transpose.
class VectorFlatTransposeOpConversion
: public ConvertOpToLLVMPattern<vector::FlatTransposeOp> {
public:
using ConvertOpToLLVMPattern<vector::FlatTransposeOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FlatTransposeOp transOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::MatrixTransposeOp>(
transOp, typeConverter->convertType(transOp.getRes().getType()),
adaptor.getMatrix(), transOp.getRows(), transOp.getColumns());
return success();
}
};
/// Overloaded utility that replaces a vector.load, vector.store,
/// vector.maskedload and vector.maskedstore with their respective LLVM
/// couterparts.
static void replaceLoadOrStoreOp(vector::LoadOp loadOp,
vector::LoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, vectorTy, ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedLoadOp loadOp,
vector::MaskedLoadOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedLoadOp>(
loadOp, vectorTy, ptr, adaptor.getMask(), adaptor.getPassThru(), align);
}
static void replaceLoadOrStoreOp(vector::StoreOp storeOp,
vector::StoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.getValueToStore(),
ptr, align);
}
static void replaceLoadOrStoreOp(vector::MaskedStoreOp storeOp,
vector::MaskedStoreOpAdaptor adaptor,
VectorType vectorTy, Value ptr, unsigned align,
ConversionPatternRewriter &rewriter) {
rewriter.replaceOpWithNewOp<LLVM::MaskedStoreOp>(
storeOp, adaptor.getValueToStore(), ptr, adaptor.getMask(), align);
}
/// Conversion pattern for a vector.load, vector.store, vector.maskedload, and
/// vector.maskedstore.
template <class LoadOrStoreOp, class LoadOrStoreOpAdaptor>
class VectorLoadStoreConversion : public ConvertOpToLLVMPattern<LoadOrStoreOp> {
public:
using ConvertOpToLLVMPattern<LoadOrStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(LoadOrStoreOp loadOrStoreOp,
typename LoadOrStoreOp::Adaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
// Only 1-D vectors can be lowered to LLVM.
VectorType vectorTy = loadOrStoreOp.getVectorType();
if (vectorTy.getRank() > 1)
return failure();
auto loc = loadOrStoreOp->getLoc();
MemRefType memRefTy = loadOrStoreOp.getMemRefType();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*this->getTypeConverter(), memRefTy, align)))
return failure();
// Resolve address.
auto vtype = cast<VectorType>(
this->typeConverter->convertType(loadOrStoreOp.getVectorType()));
Value dataPtr = this->getStridedElementPtr(loc, memRefTy, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value ptr = castDataPtr(rewriter, loc, dataPtr, memRefTy, vtype,
*this->getTypeConverter());
replaceLoadOrStoreOp(loadOrStoreOp, adaptor, vtype, ptr, align, rewriter);
return success();
}
};
/// Conversion pattern for a vector.gather.
class VectorGatherOpConversion
: public ConvertOpToLLVMPattern<vector::GatherOp> {
public:
using ConvertOpToLLVMPattern<vector::GatherOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::GatherOp gather, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType memRefType = dyn_cast<MemRefType>(gather.getBaseType());
assert(memRefType && "The base should be bufferized");
if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter())))
return failure();
auto loc = gather->getLoc();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value base = adaptor.getBase();
auto llvmNDVectorTy = adaptor.getIndexVec().getType();
// Handle the simple case of 1-D vector.
if (!isa<LLVM::LLVMArrayType>(llvmNDVectorTy)) {
auto vType = gather.getVectorType();
// Resolve address.
Value ptrs = getIndexedPtrs(rewriter, loc, *this->getTypeConverter(),
memRefType, base, ptr, adaptor.getIndexVec(),
/*vLen=*/vType.getDimSize(0));
// Replace with the gather intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_gather>(
gather, typeConverter->convertType(vType), ptrs, adaptor.getMask(),
adaptor.getPassThru(), rewriter.getI32IntegerAttr(align));
return success();
}
LLVMTypeConverter &typeConverter = *this->getTypeConverter();
auto callback = [align, memRefType, base, ptr, loc, &rewriter,
&typeConverter](Type llvm1DVectorTy,
ValueRange vectorOperands) {
// Resolve address.
Value ptrs = getIndexedPtrs(
rewriter, loc, typeConverter, memRefType, base, ptr,
/*index=*/vectorOperands[0],
LLVM::getVectorNumElements(llvm1DVectorTy).getFixedValue());
// Create the gather intrinsic.
return rewriter.create<LLVM::masked_gather>(
loc, llvm1DVectorTy, ptrs, /*mask=*/vectorOperands[1],
/*passThru=*/vectorOperands[2], rewriter.getI32IntegerAttr(align));
};
SmallVector<Value> vectorOperands = {
adaptor.getIndexVec(), adaptor.getMask(), adaptor.getPassThru()};
return LLVM::detail::handleMultidimensionalVectors(
gather, vectorOperands, *getTypeConverter(), callback, rewriter);
}
};
/// Conversion pattern for a vector.scatter.
class VectorScatterOpConversion
: public ConvertOpToLLVMPattern<vector::ScatterOp> {
public:
using ConvertOpToLLVMPattern<vector::ScatterOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScatterOp scatter, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = scatter->getLoc();
MemRefType memRefType = scatter.getMemRefType();
if (failed(isMemRefTypeSupported(memRefType, *this->getTypeConverter())))
return failure();
// Resolve alignment.
unsigned align;
if (failed(getMemRefAlignment(*getTypeConverter(), memRefType, align)))
return failure();
// Resolve address.
VectorType vType = scatter.getVectorType();
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
Value ptrs = getIndexedPtrs(
rewriter, loc, *this->getTypeConverter(), memRefType, adaptor.getBase(),
ptr, adaptor.getIndexVec(), /*vLen=*/vType.getDimSize(0));
// Replace with the scatter intrinsic.
rewriter.replaceOpWithNewOp<LLVM::masked_scatter>(
scatter, adaptor.getValueToStore(), ptrs, adaptor.getMask(),
rewriter.getI32IntegerAttr(align));
return success();
}
};
/// Conversion pattern for a vector.expandload.
class VectorExpandLoadOpConversion
: public ConvertOpToLLVMPattern<vector::ExpandLoadOp> {
public:
using ConvertOpToLLVMPattern<vector::ExpandLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExpandLoadOp expand, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = expand->getLoc();
MemRefType memRefType = expand.getMemRefType();
// Resolve address.
auto vtype = typeConverter->convertType(expand.getVectorType());
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_expandload>(
expand, vtype, ptr, adaptor.getMask(), adaptor.getPassThru());
return success();
}
};
/// Conversion pattern for a vector.compressstore.
class VectorCompressStoreOpConversion
: public ConvertOpToLLVMPattern<vector::CompressStoreOp> {
public:
using ConvertOpToLLVMPattern<vector::CompressStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::CompressStoreOp compress, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = compress->getLoc();
MemRefType memRefType = compress.getMemRefType();
// Resolve address.
Value ptr = getStridedElementPtr(loc, memRefType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
rewriter.replaceOpWithNewOp<LLVM::masked_compressstore>(
compress, adaptor.getValueToStore(), ptr, adaptor.getMask());
return success();
}
};
/// Reduction neutral classes for overloading.
class ReductionNeutralZero {};
class ReductionNeutralIntOne {};
class ReductionNeutralFPOne {};
class ReductionNeutralAllOnes {};
class ReductionNeutralSIntMin {};
class ReductionNeutralUIntMin {};
class ReductionNeutralSIntMax {};
class ReductionNeutralUIntMax {};
class ReductionNeutralFPMin {};
class ReductionNeutralFPMax {};
/// Create the reduction neutral zero value.
static Value createReductionNeutralValue(ReductionNeutralZero neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(loc, llvmType,
rewriter.getZeroAttr(llvmType));
}
/// Create the reduction neutral integer one value.
static Value createReductionNeutralValue(ReductionNeutralIntOne neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType, rewriter.getIntegerAttr(llvmType, 1));
}
/// Create the reduction neutral fp one value.
static Value createReductionNeutralValue(ReductionNeutralFPOne neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType, rewriter.getFloatAttr(llvmType, 1.0));
}
/// Create the reduction neutral all-ones value.
static Value createReductionNeutralValue(ReductionNeutralAllOnes neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getIntegerAttr(
llvmType, llvm::APInt::getAllOnes(llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral signed int minimum value.
static Value createReductionNeutralValue(ReductionNeutralSIntMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMinValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral unsigned int minimum value.
static Value createReductionNeutralValue(ReductionNeutralUIntMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getMinValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral signed int maximum value.
static Value createReductionNeutralValue(ReductionNeutralSIntMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getSignedMaxValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral unsigned int maximum value.
static Value createReductionNeutralValue(ReductionNeutralUIntMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getIntegerAttr(llvmType, llvm::APInt::getMaxValue(
llvmType.getIntOrFloatBitWidth())));
}
/// Create the reduction neutral fp minimum value.
static Value createReductionNeutralValue(ReductionNeutralFPMin neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
auto floatType = cast<FloatType>(llvmType);
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getFloatAttr(
llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(),
/*Negative=*/false)));
}
/// Create the reduction neutral fp maximum value.
static Value createReductionNeutralValue(ReductionNeutralFPMax neutral,
ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
auto floatType = cast<FloatType>(llvmType);
return rewriter.create<LLVM::ConstantOp>(
loc, llvmType,
rewriter.getFloatAttr(
llvmType, llvm::APFloat::getQNaN(floatType.getFloatSemantics(),
/*Negative=*/true)));
}
/// Returns `accumulator` if it has a valid value. Otherwise, creates and
/// returns a new accumulator value using `ReductionNeutral`.
template <class ReductionNeutral>
static Value getOrCreateAccumulator(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value accumulator) {
if (accumulator)
return accumulator;
return createReductionNeutralValue(ReductionNeutral(), rewriter, loc,
llvmType);
}
/// Creates a constant value with the 1-D vector shape provided in `llvmType`.
/// This is used as effective vector length by some intrinsics supporting
/// dynamic vector lengths at runtime.
static Value createVectorLengthValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType) {
VectorType vType = cast<VectorType>(llvmType);
auto vShape = vType.getShape();
assert(vShape.size() == 1 && "Unexpected multi-dim vector type");
return rewriter.create<LLVM::ConstantOp>(
loc, rewriter.getI32Type(),
rewriter.getIntegerAttr(rewriter.getI32Type(), vShape[0]));
}
/// Helper method to lower a `vector.reduction` op that performs an arithmetic
/// operation like add,mul, etc.. `VectorOp` is the LLVM vector intrinsic to use
/// and `ScalarOp` is the scalar operation used to add the accumulation value if
/// non-null.
template <class LLVMRedIntrinOp, class ScalarOp>
static Value createIntegerReductionArithmeticOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator) {
Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand);
if (accumulator)
result = rewriter.create<ScalarOp>(loc, accumulator, result);
return result;
}
/// Helper method to lower a `vector.reduction` operation that performs
/// a comparison operation like `min`/`max`. `VectorOp` is the LLVM vector
/// intrinsic to use and `predicate` is the predicate to use to compare+combine
/// the accumulator value if non-null.
template <class LLVMRedIntrinOp>
static Value createIntegerReductionComparisonOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, LLVM::ICmpPredicate predicate) {
Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand);
if (accumulator) {
Value cmp =
rewriter.create<LLVM::ICmpOp>(loc, predicate, accumulator, result);
result = rewriter.create<LLVM::SelectOp>(loc, cmp, accumulator, result);
}
return result;
}
/// Create lowering of minf/maxf op. We cannot use llvm.maximum/llvm.minimum
/// with vector types.
static Value createMinMaxF(OpBuilder &builder, Location loc, Value lhs,
Value rhs, bool isMin) {
auto floatType = cast<FloatType>(getElementTypeOrSelf(lhs.getType()));
Type i1Type = builder.getI1Type();
if (auto vecType = dyn_cast<VectorType>(lhs.getType()))
i1Type = VectorType::get(vecType.getShape(), i1Type);
Value cmp = builder.create<LLVM::FCmpOp>(
loc, i1Type, isMin ? LLVM::FCmpPredicate::olt : LLVM::FCmpPredicate::ogt,
lhs, rhs);
Value sel = builder.create<LLVM::SelectOp>(loc, cmp, lhs, rhs);
Value isNan = builder.create<LLVM::FCmpOp>(
loc, i1Type, LLVM::FCmpPredicate::uno, lhs, rhs);
Value nan = builder.create<LLVM::ConstantOp>(
loc, lhs.getType(),
builder.getFloatAttr(floatType,
APFloat::getQNaN(floatType.getFloatSemantics())));
return builder.create<LLVM::SelectOp>(loc, isNan, nan, sel);
}
template <class LLVMRedIntrinOp>
static Value createFPReductionComparisonOpLowering(
ConversionPatternRewriter &rewriter, Location loc, Type llvmType,
Value vectorOperand, Value accumulator, bool isMin) {
Value result = rewriter.create<LLVMRedIntrinOp>(loc, llvmType, vectorOperand);
if (accumulator)
result = createMinMaxF(rewriter, loc, result, accumulator, /*isMin=*/isMin);
return result;
}
/// Overloaded methods to lower a reduction to an llvm instrinsic that requires
/// a start value. This start value format spans across fp reductions without
/// mask and all the masked reduction intrinsics.
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand,
Value accumulator) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType,
/*startValue=*/accumulator,
vectorOperand);
}
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value
lowerReductionWithStartValue(ConversionPatternRewriter &rewriter, Location loc,
Type llvmType, Value vectorOperand,
Value accumulator, bool reassociateFPReds) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType,
/*startValue=*/accumulator,
vectorOperand, reassociateFPReds);
}
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand,
Value accumulator, Value mask) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
Value vectorLength =
createVectorLengthValue(rewriter, loc, vectorOperand.getType());
return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType,
/*startValue=*/accumulator,
vectorOperand, mask, vectorLength);
}
template <class LLVMVPRedIntrinOp, class ReductionNeutral>
static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand,
Value accumulator, Value mask,
bool reassociateFPReds) {
accumulator = getOrCreateAccumulator<ReductionNeutral>(rewriter, loc,
llvmType, accumulator);
Value vectorLength =
createVectorLengthValue(rewriter, loc, vectorOperand.getType());
return rewriter.create<LLVMVPRedIntrinOp>(loc, llvmType,
/*startValue=*/accumulator,
vectorOperand, mask, vectorLength,
reassociateFPReds);
}
template <class LLVMIntVPRedIntrinOp, class IntReductionNeutral,
class LLVMFPVPRedIntrinOp, class FPReductionNeutral>
static Value lowerReductionWithStartValue(ConversionPatternRewriter &rewriter,
Location loc, Type llvmType,
Value vectorOperand,
Value accumulator, Value mask) {
if (llvmType.isIntOrIndex())
return lowerReductionWithStartValue<LLVMIntVPRedIntrinOp,
IntReductionNeutral>(
rewriter, loc, llvmType, vectorOperand, accumulator, mask);
// FP dispatch.
return lowerReductionWithStartValue<LLVMFPVPRedIntrinOp, FPReductionNeutral>(
rewriter, loc, llvmType, vectorOperand, accumulator, mask);
}
/// Conversion pattern for all vector reductions.
class VectorReductionOpConversion
: public ConvertOpToLLVMPattern<vector::ReductionOp> {
public:
explicit VectorReductionOpConversion(LLVMTypeConverter &typeConv,
bool reassociateFPRed)
: ConvertOpToLLVMPattern<vector::ReductionOp>(typeConv),
reassociateFPReductions(reassociateFPRed) {}
LogicalResult
matchAndRewrite(vector::ReductionOp reductionOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto kind = reductionOp.getKind();
Type eltType = reductionOp.getDest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = adaptor.getVector();
Value acc = adaptor.getAcc();
Location loc = reductionOp.getLoc();
if (eltType.isIntOrIndex()) {
// Integer reductions: add/mul/min/max/and/or/xor.
Value result;
switch (kind) {
case vector::CombiningKind::ADD:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_add,
LLVM::AddOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MUL:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_mul,
LLVM::MulOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::MINUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::ule);
break;
case vector::CombiningKind::MINSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smin>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sle);
break;
case vector::CombiningKind::MAXUI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_umax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::uge);
break;
case vector::CombiningKind::MAXSI:
result = createIntegerReductionComparisonOpLowering<
LLVM::vector_reduce_smax>(rewriter, loc, llvmType, operand, acc,
LLVM::ICmpPredicate::sge);
break;
case vector::CombiningKind::AND:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_and,
LLVM::AndOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::OR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_or,
LLVM::OrOp>(
rewriter, loc, llvmType, operand, acc);
break;
case vector::CombiningKind::XOR:
result =
createIntegerReductionArithmeticOpLowering<LLVM::vector_reduce_xor,
LLVM::XOrOp>(
rewriter, loc, llvmType, operand, acc);
break;
default:
return failure();
}
rewriter.replaceOp(reductionOp, result);
return success();
}
if (!isa<FloatType>(eltType))
return failure();
// Floating-point reductions: add/mul/min/max
Value result;
if (kind == vector::CombiningKind::ADD) {
result = lowerReductionWithStartValue<LLVM::vector_reduce_fadd,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, reassociateFPReductions);
} else if (kind == vector::CombiningKind::MUL) {
result = lowerReductionWithStartValue<LLVM::vector_reduce_fmul,
ReductionNeutralFPOne>(
rewriter, loc, llvmType, operand, acc, reassociateFPReductions);
} else if (kind == vector::CombiningKind::MINF) {
// FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
// NaNs/-0.0/+0.0 in the same way.
result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmin>(
rewriter, loc, llvmType, operand, acc,
/*isMin=*/true);
} else if (kind == vector::CombiningKind::MAXF) {
// FIXME: MLIR's 'maxf' and LLVM's 'vector_reduce_fmax' do not handle
// NaNs/-0.0/+0.0 in the same way.
result = createFPReductionComparisonOpLowering<LLVM::vector_reduce_fmax>(
rewriter, loc, llvmType, operand, acc,
/*isMin=*/false);
} else
return failure();
rewriter.replaceOp(reductionOp, result);
return success();
}
private:
const bool reassociateFPReductions;
};
/// Base class to convert a `vector.mask` operation while matching traits
/// of the maskable operation nested inside. A `VectorMaskOpConversionBase`
/// instance matches against a `vector.mask` operation. The `matchAndRewrite`
/// method performs a second match against the maskable operation `MaskedOp`.
/// Finally, it invokes the virtual method `matchAndRewriteMaskableOp` to be
/// implemented by the concrete conversion classes. This method can match
/// against specific traits of the `vector.mask` and the maskable operation. It
/// must replace the `vector.mask` operation.
template <class MaskedOp>
class VectorMaskOpConversionBase
: public ConvertOpToLLVMPattern<vector::MaskOp> {
public:
using ConvertOpToLLVMPattern<vector::MaskOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::MaskOp maskOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const final {
// Match against the maskable operation kind.
auto maskedOp = llvm::dyn_cast_or_null<MaskedOp>(maskOp.getMaskableOp());
if (!maskedOp)
return failure();
return matchAndRewriteMaskableOp(maskOp, maskedOp, rewriter);
}
protected:
virtual LogicalResult
matchAndRewriteMaskableOp(vector::MaskOp maskOp,
vector::MaskableOpInterface maskableOp,
ConversionPatternRewriter &rewriter) const = 0;
};
class MaskedReductionOpConversion
: public VectorMaskOpConversionBase<vector::ReductionOp> {
public:
using VectorMaskOpConversionBase<
vector::ReductionOp>::VectorMaskOpConversionBase;
LogicalResult matchAndRewriteMaskableOp(
vector::MaskOp maskOp, MaskableOpInterface maskableOp,
ConversionPatternRewriter &rewriter) const override {
auto reductionOp = cast<ReductionOp>(maskableOp.getOperation());
auto kind = reductionOp.getKind();
Type eltType = reductionOp.getDest().getType();
Type llvmType = typeConverter->convertType(eltType);
Value operand = reductionOp.getVector();
Value acc = reductionOp.getAcc();
Location loc = reductionOp.getLoc();
Value result;
switch (kind) {
case vector::CombiningKind::ADD:
result = lowerReductionWithStartValue<
LLVM::VPReduceAddOp, ReductionNeutralZero, LLVM::VPReduceFAddOp,
ReductionNeutralZero>(rewriter, loc, llvmType, operand, acc,
maskOp.getMask());
break;
case vector::CombiningKind::MUL:
result = lowerReductionWithStartValue<
LLVM::VPReduceMulOp, ReductionNeutralIntOne, LLVM::VPReduceFMulOp,
ReductionNeutralFPOne>(rewriter, loc, llvmType, operand, acc,
maskOp.getMask());
break;
case vector::CombiningKind::MINUI:
result = lowerReductionWithStartValue<LLVM::VPReduceUMinOp,
ReductionNeutralUIntMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MINSI:
result = lowerReductionWithStartValue<LLVM::VPReduceSMinOp,
ReductionNeutralSIntMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXUI:
result = lowerReductionWithStartValue<LLVM::VPReduceUMaxOp,
ReductionNeutralUIntMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXSI:
result = lowerReductionWithStartValue<LLVM::VPReduceSMaxOp,
ReductionNeutralSIntMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::AND:
result = lowerReductionWithStartValue<LLVM::VPReduceAndOp,
ReductionNeutralAllOnes>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::OR:
result = lowerReductionWithStartValue<LLVM::VPReduceOrOp,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::XOR:
result = lowerReductionWithStartValue<LLVM::VPReduceXorOp,
ReductionNeutralZero>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MINF:
// FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
// NaNs/-0.0/+0.0 in the same way.
result = lowerReductionWithStartValue<LLVM::VPReduceFMinOp,
ReductionNeutralFPMax>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
case vector::CombiningKind::MAXF:
// FIXME: MLIR's 'minf' and LLVM's 'vector_reduce_fmin' do not handle
// NaNs/-0.0/+0.0 in the same way.
result = lowerReductionWithStartValue<LLVM::VPReduceFMaxOp,
ReductionNeutralFPMin>(
rewriter, loc, llvmType, operand, acc, maskOp.getMask());
break;
}
// Replace `vector.mask` operation altogether.
rewriter.replaceOp(maskOp, result);
return success();
}
};
class VectorShuffleOpConversion
: public ConvertOpToLLVMPattern<vector::ShuffleOp> {
public:
using ConvertOpToLLVMPattern<vector::ShuffleOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ShuffleOp shuffleOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = shuffleOp->getLoc();
auto v1Type = shuffleOp.getV1VectorType();
auto v2Type = shuffleOp.getV2VectorType();
auto vectorType = shuffleOp.getResultVectorType();
Type llvmType = typeConverter->convertType(vectorType);
auto maskArrayAttr = shuffleOp.getMask();
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
// Get rank and dimension sizes.
int64_t rank = vectorType.getRank();
#ifndef NDEBUG
bool wellFormed0DCase =
v1Type.getRank() == 0 && v2Type.getRank() == 0 && rank == 1;
bool wellFormedNDCase =
v1Type.getRank() == rank && v2Type.getRank() == rank;
assert((wellFormed0DCase || wellFormedNDCase) && "op is not well-formed");
#endif
// For rank 0 and 1, where both operands have *exactly* the same vector
// type, there is direct shuffle support in LLVM. Use it!
if (rank <= 1 && v1Type == v2Type) {
Value llvmShuffleOp = rewriter.create<LLVM::ShuffleVectorOp>(
loc, adaptor.getV1(), adaptor.getV2(),
LLVM::convertArrayToIndices<int32_t>(maskArrayAttr));
rewriter.replaceOp(shuffleOp, llvmShuffleOp);
return success();
}
// For all other cases, insert the individual values individually.
int64_t v1Dim = v1Type.getDimSize(0);
Type eltType;
if (auto arrayType = dyn_cast<LLVM::LLVMArrayType>(llvmType))
eltType = arrayType.getElementType();
else
eltType = cast<VectorType>(llvmType).getElementType();
Value insert = rewriter.create<LLVM::UndefOp>(loc, llvmType);
int64_t insPos = 0;
for (const auto &en : llvm::enumerate(maskArrayAttr)) {
int64_t extPos = cast<IntegerAttr>(en.value()).getInt();
Value value = adaptor.getV1();
if (extPos >= v1Dim) {
extPos -= v1Dim;
value = adaptor.getV2();
}
Value extract = extractOne(rewriter, *getTypeConverter(), loc, value,
eltType, rank, extPos);
insert = insertOne(rewriter, *getTypeConverter(), loc, insert, extract,
llvmType, rank, insPos++);
}
rewriter.replaceOp(shuffleOp, insert);
return success();
}
};
class VectorExtractElementOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractElementOp> {
public:
using ConvertOpToLLVMPattern<
vector::ExtractElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractElementOp extractEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = extractEltOp.getSourceVectorType();
auto llvmType = typeConverter->convertType(vectorType.getElementType());
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = extractEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.getVector(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>(
extractEltOp, llvmType, adaptor.getVector(), adaptor.getPosition());
return success();
}
};
class VectorExtractOpConversion
: public ConvertOpToLLVMPattern<vector::ExtractOp> {
public:
using ConvertOpToLLVMPattern<vector::ExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ExtractOp extractOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = extractOp->getLoc();
auto resultType = extractOp.getResult().getType();
auto llvmResultType = typeConverter->convertType(resultType);
auto positionArrayAttr = extractOp.getPosition();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Extract entire vector. Should be handled by folder, but just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(extractOp, adaptor.getVector());
return success();
}
// One-shot extraction of vector from array (only requires extractvalue).
if (isa<VectorType>(resultType)) {
SmallVector<int64_t> indices;
for (auto idx : positionArrayAttr.getAsRange<IntegerAttr>())
indices.push_back(idx.getInt());
Value extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, adaptor.getVector(), indices);
rewriter.replaceOp(extractOp, extracted);
return success();
}
// Potential extraction of 1-D vector from array.
Value extracted = adaptor.getVector();
auto positionAttrs = positionArrayAttr.getValue();
if (positionAttrs.size() > 1) {
SmallVector<int64_t> nMinusOnePosition;
for (auto idx : positionAttrs.drop_back())
nMinusOnePosition.push_back(cast<IntegerAttr>(idx).getInt());
extracted = rewriter.create<LLVM::ExtractValueOp>(loc, extracted,
nMinusOnePosition);
}
// Remaining extraction of element from 1-D LLVM vector
auto position = cast<IntegerAttr>(positionAttrs.back());
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
extracted =
rewriter.create<LLVM::ExtractElementOp>(loc, extracted, constant);
rewriter.replaceOp(extractOp, extracted);
return success();
}
};
/// Conversion pattern that turns a vector.fma on a 1-D vector
/// into an llvm.intr.fmuladd. This is a trivial 1-1 conversion.
/// This does not match vectors of n >= 2 rank.
///
/// Example:
/// ```
/// vector.fma %a, %a, %a : vector<8xf32>
/// ```
/// is converted to:
/// ```
/// llvm.intr.fmuladd %va, %va, %va:
/// (!llvm."<8 x f32>">, !llvm<"<8 x f32>">, !llvm<"<8 x f32>">)
/// -> !llvm."<8 x f32>">
/// ```
class VectorFMAOp1DConversion : public ConvertOpToLLVMPattern<vector::FMAOp> {
public:
using ConvertOpToLLVMPattern<vector::FMAOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::FMAOp fmaOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = fmaOp.getVectorType();
if (vType.getRank() > 1)
return failure();
rewriter.replaceOpWithNewOp<LLVM::FMulAddOp>(
fmaOp, adaptor.getLhs(), adaptor.getRhs(), adaptor.getAcc());
return success();
}
};
class VectorInsertElementOpConversion
: public ConvertOpToLLVMPattern<vector::InsertElementOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertElementOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertElementOp insertEltOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto vectorType = insertEltOp.getDestVectorType();
auto llvmType = typeConverter->convertType(vectorType);
// Bail if result type cannot be lowered.
if (!llvmType)
return failure();
if (vectorType.getRank() == 0) {
Location loc = insertEltOp.getLoc();
auto idxType = rewriter.getIndexType();
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(idxType),
rewriter.getIntegerAttr(idxType, 0));
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(), zero);
return success();
}
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
insertEltOp, llvmType, adaptor.getDest(), adaptor.getSource(),
adaptor.getPosition());
return success();
}
};
class VectorInsertOpConversion
: public ConvertOpToLLVMPattern<vector::InsertOp> {
public:
using ConvertOpToLLVMPattern<vector::InsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::InsertOp insertOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = insertOp->getLoc();
auto sourceType = insertOp.getSourceType();
auto destVectorType = insertOp.getDestVectorType();
auto llvmResultType = typeConverter->convertType(destVectorType);
auto positionArrayAttr = insertOp.getPosition();
// Bail if result type cannot be lowered.
if (!llvmResultType)
return failure();
// Overwrite entire vector with value. Should be handled by folder, but
// just to be safe.
if (positionArrayAttr.empty()) {
rewriter.replaceOp(insertOp, adaptor.getSource());
return success();
}
// One-shot insertion of a vector into an array (only requires insertvalue).
if (isa<VectorType>(sourceType)) {
Value inserted = rewriter.create<LLVM::InsertValueOp>(
loc, adaptor.getDest(), adaptor.getSource(),
LLVM::convertArrayToIndices(positionArrayAttr));
rewriter.replaceOp(insertOp, inserted);
return success();
}
// Potential extraction of 1-D vector from array.
Value extracted = adaptor.getDest();
auto positionAttrs = positionArrayAttr.getValue();
auto position = cast<IntegerAttr>(positionAttrs.back());
auto oneDVectorType = destVectorType;
if (positionAttrs.size() > 1) {
oneDVectorType = reducedVectorTypeBack(destVectorType);
extracted = rewriter.create<LLVM::ExtractValueOp>(
loc, extracted,
LLVM::convertArrayToIndices(positionAttrs.drop_back()));
}
// Insertion of an element into a 1-D LLVM vector.
auto i64Type = IntegerType::get(rewriter.getContext(), 64);
auto constant = rewriter.create<LLVM::ConstantOp>(loc, i64Type, position);
Value inserted = rewriter.create<LLVM::InsertElementOp>(
loc, typeConverter->convertType(oneDVectorType), extracted,
adaptor.getSource(), constant);
// Potential insertion of resulting 1-D vector into array.
if (positionAttrs.size() > 1) {
inserted = rewriter.create<LLVM::InsertValueOp>(
loc, adaptor.getDest(), inserted,
LLVM::convertArrayToIndices(positionAttrs.drop_back()));
}
rewriter.replaceOp(insertOp, inserted);
return success();
}
};
/// Lower vector.scalable.insert ops to LLVM vector.insert
struct VectorScalableInsertOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableInsertOp> {
using ConvertOpToLLVMPattern<
vector::ScalableInsertOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableInsertOp insOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_insert>(
insOp, adaptor.getSource(), adaptor.getDest(), adaptor.getPos());
return success();
}
};
/// Lower vector.scalable.extract ops to LLVM vector.extract
struct VectorScalableExtractOpLowering
: public ConvertOpToLLVMPattern<vector::ScalableExtractOp> {
using ConvertOpToLLVMPattern<
vector::ScalableExtractOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::ScalableExtractOp extOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
rewriter.replaceOpWithNewOp<LLVM::vector_extract>(
extOp, typeConverter->convertType(extOp.getResultVectorType()),
adaptor.getSource(), adaptor.getPos());
return success();
}
};
/// Rank reducing rewrite for n-D FMA into (n-1)-D FMA where n > 1.
///
/// Example:
/// ```
/// %d = vector.fma %a, %b, %c : vector<2x4xf32>
/// ```
/// is rewritten into:
/// ```
/// %r = splat %f0: vector<2x4xf32>
/// %va = vector.extractvalue %a[0] : vector<2x4xf32>
/// %vb = vector.extractvalue %b[0] : vector<2x4xf32>
/// %vc = vector.extractvalue %c[0] : vector<2x4xf32>
/// %vd = vector.fma %va, %vb, %vc : vector<4xf32>
/// %r2 = vector.insertvalue %vd, %r[0] : vector<4xf32> into vector<2x4xf32>
/// %va2 = vector.extractvalue %a2[1] : vector<2x4xf32>
/// %vb2 = vector.extractvalue %b2[1] : vector<2x4xf32>
/// %vc2 = vector.extractvalue %c2[1] : vector<2x4xf32>
/// %vd2 = vector.fma %va2, %vb2, %vc2 : vector<4xf32>
/// %r3 = vector.insertvalue %vd2, %r2[1] : vector<4xf32> into vector<2x4xf32>
/// // %r3 holds the final value.
/// ```
class VectorFMAOpNDRewritePattern : public OpRewritePattern<FMAOp> {
public:
using OpRewritePattern<FMAOp>::OpRewritePattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(FMAOp op,
PatternRewriter &rewriter) const override {
auto vType = op.getVectorType();
if (vType.getRank() < 2)
return failure();
auto loc = op.getLoc();
auto elemType = vType.getElementType();
Value zero = rewriter.create<arith::ConstantOp>(
loc, elemType, rewriter.getZeroAttr(elemType));
Value desc = rewriter.create<vector::SplatOp>(loc, vType, zero);
for (int64_t i = 0, e = vType.getShape().front(); i != e; ++i) {
Value extrLHS = rewriter.create<ExtractOp>(loc, op.getLhs(), i);
Value extrRHS = rewriter.create<ExtractOp>(loc, op.getRhs(), i);
Value extrACC = rewriter.create<ExtractOp>(loc, op.getAcc(), i);
Value fma = rewriter.create<FMAOp>(loc, extrLHS, extrRHS, extrACC);
desc = rewriter.create<InsertOp>(loc, fma, desc, i);
}
rewriter.replaceOp(op, desc);
return success();
}
};
/// Returns the strides if the memory underlying `memRefType` has a contiguous
/// static layout.
static std::optional<SmallVector<int64_t, 4>>
computeContiguousStrides(MemRefType memRefType) {
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(memRefType, strides, offset)))
return std::nullopt;
if (!strides.empty() && strides.back() != 1)
return std::nullopt;
// If no layout or identity layout, this is contiguous by definition.
if (memRefType.getLayout().isIdentity())
return strides;
// Otherwise, we must determine contiguity form shapes. This can only ever
// work in static cases because MemRefType is underspecified to represent
// contiguous dynamic shapes in other ways than with just empty/identity
// layout.
auto sizes = memRefType.getShape();
for (int index = 0, e = strides.size() - 1; index < e; ++index) {
if (ShapedType::isDynamic(sizes[index + 1]) ||
ShapedType::isDynamic(strides[index]) ||
ShapedType::isDynamic(strides[index + 1]))
return std::nullopt;
if (strides[index] != strides[index + 1] * sizes[index + 1])
return std::nullopt;
}
return strides;
}
class VectorTypeCastOpConversion
: public ConvertOpToLLVMPattern<vector::TypeCastOp> {
public:
using ConvertOpToLLVMPattern<vector::TypeCastOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::TypeCastOp castOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
auto loc = castOp->getLoc();
MemRefType sourceMemRefType =
cast<MemRefType>(castOp.getOperand().getType());
MemRefType targetMemRefType = castOp.getType();
// Only static shape casts supported atm.
if (!sourceMemRefType.hasStaticShape() ||
!targetMemRefType.hasStaticShape())
return failure();
auto llvmSourceDescriptorTy =
dyn_cast<LLVM::LLVMStructType>(adaptor.getOperands()[0].getType());
if (!llvmSourceDescriptorTy)
return failure();
MemRefDescriptor sourceMemRef(adaptor.getOperands()[0]);
auto llvmTargetDescriptorTy = dyn_cast_or_null<LLVM::LLVMStructType>(
typeConverter->convertType(targetMemRefType));
if (!llvmTargetDescriptorTy)
return failure();
// Only contiguous source buffers supported atm.
auto sourceStrides = computeContiguousStrides(sourceMemRefType);
if (!sourceStrides)
return failure();
auto targetStrides = computeContiguousStrides(targetMemRefType);
if (!targetStrides)
return failure();
// Only support static strides for now, regardless of contiguity.
if (llvm::any_of(*targetStrides, ShapedType::isDynamic))
return failure();
auto int64Ty = IntegerType::get(rewriter.getContext(), 64);
// Create descriptor.
auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
Type llvmTargetElementTy = desc.getElementPtrType();
// Set allocated ptr.
Value allocated = sourceMemRef.allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
allocated =
rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, allocated);
desc.setAllocatedPtr(rewriter, loc, allocated);
// Set aligned ptr.
Value ptr = sourceMemRef.alignedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
ptr = rewriter.create<LLVM::BitcastOp>(loc, llvmTargetElementTy, ptr);
desc.setAlignedPtr(rewriter, loc, ptr);
// Fill offset 0.
auto attr = rewriter.getIntegerAttr(rewriter.getIndexType(), 0);
auto zero = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, attr);
desc.setOffset(rewriter, loc, zero);
// Fill size and stride descriptors in memref.
for (const auto &indexedSize :
llvm::enumerate(targetMemRefType.getShape())) {
int64_t index = indexedSize.index();
auto sizeAttr =
rewriter.getIntegerAttr(rewriter.getIndexType(), indexedSize.value());
auto size = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, sizeAttr);
desc.setSize(rewriter, loc, index, size);
auto strideAttr = rewriter.getIntegerAttr(rewriter.getIndexType(),
(*targetStrides)[index]);
auto stride = rewriter.create<LLVM::ConstantOp>(loc, int64Ty, strideAttr);
desc.setStride(rewriter, loc, index, stride);
}
rewriter.replaceOp(castOp, {desc});
return success();
}
};
/// Conversion pattern for a `vector.create_mask` (1-D scalable vectors only).
/// Non-scalable versions of this operation are handled in Vector Transforms.
class VectorCreateMaskOpRewritePattern
: public OpRewritePattern<vector::CreateMaskOp> {
public:
explicit VectorCreateMaskOpRewritePattern(MLIRContext *context,
bool enableIndexOpt)
: OpRewritePattern<vector::CreateMaskOp>(context),
force32BitVectorIndices(enableIndexOpt) {}
LogicalResult matchAndRewrite(vector::CreateMaskOp op,
PatternRewriter &rewriter) const override {
auto dstType = op.getType();
if (dstType.getRank() != 1 || !cast<VectorType>(dstType).isScalable())
return failure();
IntegerType idxType =
force32BitVectorIndices ? rewriter.getI32Type() : rewriter.getI64Type();
auto loc = op->getLoc();
Value indices = rewriter.create<LLVM::StepVectorOp>(
loc, LLVM::getVectorType(idxType, dstType.getShape()[0],
/*isScalable=*/true));
auto bound = getValueOrCreateCastToIndexLike(rewriter, loc, idxType,
op.getOperand(0));
Value bounds = rewriter.create<SplatOp>(loc, indices.getType(), bound);
Value comp = rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt,
indices, bounds);
rewriter.replaceOp(op, comp);
return success();
}
private:
const bool force32BitVectorIndices;
};
class VectorPrintOpConversion : public ConvertOpToLLVMPattern<vector::PrintOp> {
public:
using ConvertOpToLLVMPattern<vector::PrintOp>::ConvertOpToLLVMPattern;
// Proof-of-concept lowering implementation that relies on a small
// runtime support library, which only needs to provide a few
// printing methods (single value for all data types, opening/closing
// bracket, comma, newline). The lowering fully unrolls a vector
// in terms of these elementary printing operations. The advantage
// of this approach is that the library can remain unaware of all
// low-level implementation details of vectors while still supporting
// output of any shaped and dimensioned vector. Due to full unrolling,
// this approach is less suited for very large vectors though.
//
// TODO: rely solely on libc in future? something else?
//
LogicalResult
matchAndRewrite(vector::PrintOp printOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
Type printType = printOp.getPrintType();
if (typeConverter->convertType(printType) == nullptr)
return failure();
// Make sure element type has runtime support.
PrintConversion conversion = PrintConversion::None;
VectorType vectorType = dyn_cast<VectorType>(printType);
Type eltType = vectorType ? vectorType.getElementType() : printType;
auto parent = printOp->getParentOfType<ModuleOp>();
Operation *printer;
if (eltType.isF32()) {
printer = LLVM::lookupOrCreatePrintF32Fn(parent);
} else if (eltType.isF64()) {
printer = LLVM::lookupOrCreatePrintF64Fn(parent);
} else if (eltType.isF16()) {
conversion = PrintConversion::Bitcast16; // bits!
printer = LLVM::lookupOrCreatePrintF16Fn(parent);
} else if (eltType.isBF16()) {
conversion = PrintConversion::Bitcast16; // bits!
printer = LLVM::lookupOrCreatePrintBF16Fn(parent);
} else if (eltType.isIndex()) {
printer = LLVM::lookupOrCreatePrintU64Fn(parent);
} else if (auto intTy = dyn_cast<IntegerType>(eltType)) {
// Integers need a zero or sign extension on the operand
// (depending on the source type) as well as a signed or
// unsigned print method. Up to 64-bit is supported.
unsigned width = intTy.getWidth();
if (intTy.isUnsigned()) {
if (width <= 64) {
if (width < 64)
conversion = PrintConversion::ZeroExt64;
printer = LLVM::lookupOrCreatePrintU64Fn(parent);
} else {
return failure();
}
} else {
assert(intTy.isSignless() || intTy.isSigned());
if (width <= 64) {
// Note that we *always* zero extend booleans (1-bit integers),
// so that true/false is printed as 1/0 rather than -1/0.
if (width == 1)
conversion = PrintConversion::ZeroExt64;
else if (width < 64)
conversion = PrintConversion::SignExt64;
printer = LLVM::lookupOrCreatePrintI64Fn(parent);
} else {
return failure();
}
}
} else {
return failure();
}
// Unroll vector into elementary print calls.
int64_t rank = vectorType ? vectorType.getRank() : 0;
Type type = vectorType ? vectorType : eltType;
emitRanks(rewriter, printOp, adaptor.getSource(), type, printer, rank,
conversion);
emitCall(rewriter, printOp->getLoc(),
LLVM::lookupOrCreatePrintNewlineFn(parent));
rewriter.eraseOp(printOp);
return success();
}
private:
enum class PrintConversion {
// clang-format off
None,
ZeroExt64,
SignExt64,
Bitcast16
// clang-format on
};
void emitRanks(ConversionPatternRewriter &rewriter, Operation *op,
Value value, Type type, Operation *printer, int64_t rank,
PrintConversion conversion) const {
VectorType vectorType = dyn_cast<VectorType>(type);
Location loc = op->getLoc();
if (!vectorType) {
assert(rank == 0 && "The scalar case expects rank == 0");
switch (conversion) {
case PrintConversion::ZeroExt64:
value = rewriter.create<arith::ExtUIOp>(
loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::SignExt64:
value = rewriter.create<arith::ExtSIOp>(
loc, IntegerType::get(rewriter.getContext(), 64), value);
break;
case PrintConversion::Bitcast16:
value = rewriter.create<LLVM::BitcastOp>(
loc, IntegerType::get(rewriter.getContext(), 16), value);
break;
case PrintConversion::None:
break;
}
emitCall(rewriter, loc, printer, value);
return;
}
auto parent = op->getParentOfType<ModuleOp>();
emitCall(rewriter, loc, LLVM::lookupOrCreatePrintOpenFn(parent));
Operation *printComma = LLVM::lookupOrCreatePrintCommaFn(parent);
if (rank <= 1) {
auto reducedType = vectorType.getElementType();
auto llvmType = typeConverter->convertType(reducedType);
int64_t dim = rank == 0 ? 1 : vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, /*rank=*/0, /*pos=*/d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, /*rank=*/0,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, LLVM::lookupOrCreatePrintCloseFn(parent));
return;
}
int64_t dim = vectorType.getDimSize(0);
for (int64_t d = 0; d < dim; ++d) {
auto reducedType = reducedVectorTypeFront(vectorType);
auto llvmType = typeConverter->convertType(reducedType);
Value nestedVal = extractOne(rewriter, *getTypeConverter(), loc, value,
llvmType, rank, d);
emitRanks(rewriter, op, nestedVal, reducedType, printer, rank - 1,
conversion);
if (d != dim - 1)
emitCall(rewriter, loc, printComma);
}
emitCall(rewriter, loc, LLVM::lookupOrCreatePrintCloseFn(parent));
}
// Helper to emit a call.
static void emitCall(ConversionPatternRewriter &rewriter, Location loc,
Operation *ref, ValueRange params = ValueRange()) {
rewriter.create<LLVM::CallOp>(loc, TypeRange(), SymbolRefAttr::get(ref),
params);
}
};
/// The Splat operation is lowered to an insertelement + a shufflevector
/// operation. Splat to only 0-d and 1-d vector result types are lowered.
struct VectorSplatOpLowering : public ConvertOpToLLVMPattern<vector::SplatOp> {
using ConvertOpToLLVMPattern<vector::SplatOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(vector::SplatOp splatOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = cast<VectorType>(splatOp.getType());
if (resultType.getRank() > 1)
return failure();
// First insert it into an undef vector so we can shuffle it.
auto vectorType = typeConverter->convertType(splatOp.getType());
Value undef = rewriter.create<LLVM::UndefOp>(splatOp.getLoc(), vectorType);
auto zero = rewriter.create<LLVM::ConstantOp>(
splatOp.getLoc(),
typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
// For 0-d vector, we simply do `insertelement`.
if (resultType.getRank() == 0) {
rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>(
splatOp, vectorType, undef, adaptor.getInput(), zero);
return success();
}
// For 1-d vector, we additionally do a `vectorshuffle`.
auto v = rewriter.create<LLVM::InsertElementOp>(
splatOp.getLoc(), vectorType, undef, adaptor.getInput(), zero);
int64_t width = cast<VectorType>(splatOp.getType()).getDimSize(0);
SmallVector<int32_t> zeroValues(width, 0);
// Shuffle the value across the desired number of elements.
rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(splatOp, v, undef,
zeroValues);
return success();
}
};
/// The Splat operation is lowered to an insertelement + a shufflevector
/// operation. Splat to only 2+-d vector result types are lowered by the
/// SplatNdOpLowering, the 1-d case is handled by SplatOpLowering.
struct VectorSplatNdOpLowering : public ConvertOpToLLVMPattern<SplatOp> {
using ConvertOpToLLVMPattern<SplatOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(SplatOp splatOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType resultType = splatOp.getType();
if (resultType.getRank() <= 1)
return failure();
// First insert it into an undef vector so we can shuffle it.
auto loc = splatOp.getLoc();
auto vectorTypeInfo =
LLVM::detail::extractNDVectorTypeInfo(resultType, *getTypeConverter());
auto llvmNDVectorTy = vectorTypeInfo.llvmNDVectorTy;
auto llvm1DVectorTy = vectorTypeInfo.llvm1DVectorTy;
if (!llvmNDVectorTy || !llvm1DVectorTy)
return failure();
// Construct returned value.
Value desc = rewriter.create<LLVM::UndefOp>(loc, llvmNDVectorTy);
// Construct a 1-D vector with the splatted value that we insert in all the
// places within the returned descriptor.
Value vdesc = rewriter.create<LLVM::UndefOp>(loc, llvm1DVectorTy);
auto zero = rewriter.create<LLVM::ConstantOp>(
loc, typeConverter->convertType(rewriter.getIntegerType(32)),
rewriter.getZeroAttr(rewriter.getIntegerType(32)));
Value v = rewriter.create<LLVM::InsertElementOp>(loc, llvm1DVectorTy, vdesc,
adaptor.getInput(), zero);
// Shuffle the value across the desired number of elements.
int64_t width = resultType.getDimSize(resultType.getRank() - 1);
SmallVector<int32_t> zeroValues(width, 0);
v = rewriter.create<LLVM::ShuffleVectorOp>(loc, v, v, zeroValues);
// Iterate of linear index, convert to coords space and insert splatted 1-D
// vector in each position.
nDVectorIterate(vectorTypeInfo, rewriter, [&](ArrayRef<int64_t> position) {
desc = rewriter.create<LLVM::InsertValueOp>(loc, desc, v, position);
});
rewriter.replaceOp(splatOp, desc);
return success();
}
};
} // namespace
/// Populate the given list with patterns that convert from Vector to LLVM.
void mlir::populateVectorToLLVMConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns,
bool reassociateFPReductions, bool force32BitVectorIndices) {
MLIRContext *ctx = converter.getDialect()->getContext();
patterns.add<VectorFMAOpNDRewritePattern>(ctx);
populateVectorInsertExtractStridedSliceTransforms(patterns);
patterns.add<VectorReductionOpConversion>(converter, reassociateFPReductions);
patterns.add<VectorCreateMaskOpRewritePattern>(ctx, force32BitVectorIndices);
patterns
.add<VectorBitCastOpConversion, VectorShuffleOpConversion,
VectorExtractElementOpConversion, VectorExtractOpConversion,
VectorFMAOp1DConversion, VectorInsertElementOpConversion,
VectorInsertOpConversion, VectorPrintOpConversion,
VectorTypeCastOpConversion, VectorScaleOpConversion,
VectorLoadStoreConversion<vector::LoadOp, vector::LoadOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedLoadOp,
vector::MaskedLoadOpAdaptor>,
VectorLoadStoreConversion<vector::StoreOp, vector::StoreOpAdaptor>,
VectorLoadStoreConversion<vector::MaskedStoreOp,
vector::MaskedStoreOpAdaptor>,
VectorGatherOpConversion, VectorScatterOpConversion,
VectorExpandLoadOpConversion, VectorCompressStoreOpConversion,
VectorSplatOpLowering, VectorSplatNdOpLowering,
VectorScalableInsertOpLowering, VectorScalableExtractOpLowering,
MaskedReductionOpConversion>(converter);
// Transfer ops with rank > 1 are handled by VectorToSCF.
populateVectorTransferLoweringPatterns(patterns, /*maxTransferRank=*/1);
}
void mlir::populateVectorToLLVMMatrixConversionPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<VectorMatmulOpConversion>(converter);
patterns.add<VectorFlatTransposeOpConversion>(converter);
}
|