1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
|
//===- VectorToSCF.cpp - Convert vector to SCF dialect ----------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements lowering of vector transfer operations to SCF.
//
//===----------------------------------------------------------------------===//
#include <optional>
#include <type_traits>
#include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Vector/Transforms/LoweringPatterns.h"
#include "mlir/Dialect/Vector/Transforms/VectorTransforms.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/ImplicitLocOpBuilder.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "mlir/Transforms/Passes.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTVECTORTOSCF
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
using vector::TransferReadOp;
using vector::TransferWriteOp;
namespace {
/// Attribute name used for labeling transfer ops during progressive lowering.
static const char kPassLabel[] = "__vector_to_scf_lowering__";
/// Patterns that inherit from this struct have access to
/// VectorTransferToSCFOptions.
template <typename OpTy>
struct VectorToSCFPattern : public OpRewritePattern<OpTy> {
explicit VectorToSCFPattern(MLIRContext *context,
VectorTransferToSCFOptions opt)
: OpRewritePattern<OpTy>(context), options(opt) {}
VectorTransferToSCFOptions options;
};
/// Given a vector transfer op, calculate which dimension of the `source`
/// memref should be unpacked in the next application of TransferOpConversion.
/// A return value of std::nullopt indicates a broadcast.
template <typename OpTy>
static std::optional<int64_t> unpackedDim(OpTy xferOp) {
// TODO: support 0-d corner case.
assert(xferOp.getTransferRank() > 0 && "unexpected 0-d transfer");
auto map = xferOp.getPermutationMap();
if (auto expr = map.getResult(0).template dyn_cast<AffineDimExpr>()) {
return expr.getPosition();
}
assert(xferOp.isBroadcastDim(0) &&
"Expected AffineDimExpr or AffineConstantExpr");
return std::nullopt;
}
/// Compute the permutation map for the new (N-1)-D vector transfer op. This
/// map is identical to the current permutation map, but the first result is
/// omitted.
template <typename OpTy>
static AffineMap unpackedPermutationMap(OpBuilder &b, OpTy xferOp) {
// TODO: support 0-d corner case.
assert(xferOp.getTransferRank() > 0 && "unexpected 0-d transfer");
auto map = xferOp.getPermutationMap();
return AffineMap::get(map.getNumDims(), 0, map.getResults().drop_front(),
b.getContext());
}
/// Calculate the indices for the new vector transfer op.
///
/// E.g.: transfer_read %A[%a, %b, %c, %d] ... : vector<5x4x3xf32> ...
/// --> transfer_read %A[%a, %b + iv, %c, %d] ... vector<4x3f32>
/// ^^^^^^
/// `iv` is the iteration variable of the (new) surrounding loop.
template <typename OpTy>
static void getXferIndices(OpBuilder &b, OpTy xferOp, Value iv,
SmallVector<Value, 8> &indices) {
typename OpTy::Adaptor adaptor(xferOp);
// Corresponding memref dim of the vector dim that is unpacked.
auto dim = unpackedDim(xferOp);
auto prevIndices = adaptor.getIndices();
indices.append(prevIndices.begin(), prevIndices.end());
Location loc = xferOp.getLoc();
bool isBroadcast = !dim.has_value();
if (!isBroadcast) {
AffineExpr d0, d1;
bindDims(xferOp.getContext(), d0, d1);
Value offset = adaptor.getIndices()[*dim];
indices[*dim] =
affine::makeComposedAffineApply(b, loc, d0 + d1, {offset, iv});
}
}
static void maybeYieldValue(OpBuilder &b, Location loc, bool hasRetVal,
Value value) {
if (hasRetVal) {
assert(value && "Expected non-empty value");
b.create<scf::YieldOp>(loc, value);
} else {
b.create<scf::YieldOp>(loc);
}
}
/// Generates a boolean Value that is true if the iv-th bit in xferOp's mask
/// is set to true. No such check is generated under following circumstances:
/// * xferOp does not have a mask.
/// * xferOp's mask is not 1D. (In case of (N>1)-D, a subvector of the mask is
/// computed and attached to the new transfer op in the pattern.)
/// * The to-be-unpacked dim of xferOp is a broadcast.
template <typename OpTy>
static Value generateMaskCheck(OpBuilder &b, OpTy xferOp, Value iv) {
if (!xferOp.getMask())
return Value();
if (xferOp.getMaskType().getRank() != 1)
return Value();
if (xferOp.isBroadcastDim(0))
return Value();
Location loc = xferOp.getLoc();
return b.create<vector::ExtractElementOp>(loc, xferOp.getMask(), iv);
}
/// Helper function TransferOpConversion and TransferOp1dConversion.
/// Generate an in-bounds check if the transfer op may go out-of-bounds on the
/// specified dimension `dim` with the loop iteration variable `iv`.
/// E.g., when unpacking dimension 0 from:
/// ```
/// %vec = vector.transfer_read %A[%a, %b] %cst
/// : vector<5x4xf32>, memref<?x?xf32>
/// ```
/// An if check similar to this will be generated inside the loop:
/// ```
/// %d = memref.dim %A, %c0 : memref<?x?xf32>
/// if (%a + iv < %d) {
/// (in-bounds case)
/// } else {
/// (out-of-bounds case)
/// }
/// ```
///
/// If the transfer is 1D and has a mask, this function generates a more complex
/// check also accounts for potentially masked out elements.
///
/// This function variant returns the value returned by `inBoundsCase` or
/// `outOfBoundsCase`. The MLIR type of the return value must be specified in
/// `resultTypes`.
template <typename OpTy>
static Value generateInBoundsCheck(
OpBuilder &b, OpTy xferOp, Value iv, std::optional<int64_t> dim,
TypeRange resultTypes,
function_ref<Value(OpBuilder &, Location)> inBoundsCase,
function_ref<Value(OpBuilder &, Location)> outOfBoundsCase = nullptr) {
bool hasRetVal = !resultTypes.empty();
Value cond; // Condition to be built...
// Condition check 1: Access in-bounds?
bool isBroadcast = !dim; // No in-bounds check for broadcasts.
Location loc = xferOp.getLoc();
ImplicitLocOpBuilder lb(xferOp.getLoc(), b);
if (!xferOp.isDimInBounds(0) && !isBroadcast) {
Value memrefDim =
vector::createOrFoldDimOp(b, loc, xferOp.getSource(), *dim);
AffineExpr d0, d1;
bindDims(xferOp.getContext(), d0, d1);
Value base = xferOp.getIndices()[*dim];
Value memrefIdx =
affine::makeComposedAffineApply(b, loc, d0 + d1, {base, iv});
cond = lb.create<arith::CmpIOp>(arith::CmpIPredicate::sgt, memrefDim,
memrefIdx);
}
// Condition check 2: Masked in?
if (auto maskCond = generateMaskCheck(b, xferOp, iv)) {
if (cond)
cond = lb.create<arith::AndIOp>(cond, maskCond);
else
cond = maskCond;
}
// If the condition is non-empty, generate an SCF::IfOp.
if (cond) {
auto check = lb.create<scf::IfOp>(
cond,
/*thenBuilder=*/
[&](OpBuilder &b, Location loc) {
maybeYieldValue(b, loc, hasRetVal, inBoundsCase(b, loc));
},
/*elseBuilder=*/
[&](OpBuilder &b, Location loc) {
if (outOfBoundsCase) {
maybeYieldValue(b, loc, hasRetVal, outOfBoundsCase(b, loc));
} else {
b.create<scf::YieldOp>(loc);
}
});
return hasRetVal ? check.getResult(0) : Value();
}
// Condition is empty, no need for an SCF::IfOp.
return inBoundsCase(b, loc);
}
/// In this function variant, `inBoundsCase` and `outOfBoundsCase` do not have
/// a return value. Consequently, this function does not have a return value.
template <typename OpTy>
static void generateInBoundsCheck(
OpBuilder &b, OpTy xferOp, Value iv, std::optional<int64_t> dim,
function_ref<void(OpBuilder &, Location)> inBoundsCase,
function_ref<void(OpBuilder &, Location)> outOfBoundsCase = nullptr) {
generateInBoundsCheck(
b, xferOp, iv, dim, /*resultTypes=*/TypeRange(),
/*inBoundsCase=*/
[&](OpBuilder &b, Location loc) {
inBoundsCase(b, loc);
return Value();
},
/*outOfBoundsCase=*/
[&](OpBuilder &b, Location loc) {
if (outOfBoundsCase)
outOfBoundsCase(b, loc);
return Value();
});
}
/// Given an ArrayAttr, return a copy where the first element is dropped.
static ArrayAttr dropFirstElem(OpBuilder &b, ArrayAttr attr) {
if (!attr)
return attr;
return ArrayAttr::get(b.getContext(), attr.getValue().drop_front());
}
/// Add the pass label to a vector transfer op if its rank is not the target
/// rank.
template <typename OpTy>
static void maybeApplyPassLabel(OpBuilder &b, OpTy newXferOp,
unsigned targetRank) {
if (newXferOp.getVectorType().getRank() > targetRank)
newXferOp->setAttr(kPassLabel, b.getUnitAttr());
}
/// Return true if this transfer op operates on a source tensor.
template <typename OpTy>
static bool isTensorOp(OpTy xferOp) {
if (isa<RankedTensorType>(xferOp.getShapedType())) {
if (xferOp.getOperationName().equals(TransferWriteOp::getOperationName())) {
// TransferWriteOps on tensors have a result.
assert(xferOp->getNumResults() > 0);
}
return true;
}
return false;
}
namespace lowering_n_d {
/// Helper data structure for data and mask buffers.
struct BufferAllocs {
Value dataBuffer;
Value maskBuffer;
};
// TODO: Parallelism and threadlocal considerations with a ParallelScope trait.
static Operation *getAutomaticAllocationScope(Operation *op) {
Operation *scope =
op->getParentWithTrait<OpTrait::AutomaticAllocationScope>();
assert(scope && "Expected op to be inside automatic allocation scope");
return scope;
}
/// Allocate temporary buffers for data (vector) and mask (if present).
template <typename OpTy>
static BufferAllocs allocBuffers(OpBuilder &b, OpTy xferOp) {
Location loc = xferOp.getLoc();
OpBuilder::InsertionGuard guard(b);
Operation *scope = getAutomaticAllocationScope(xferOp);
assert(scope->getNumRegions() == 1 &&
"AutomaticAllocationScope with >1 regions");
b.setInsertionPointToStart(&scope->getRegion(0).front());
BufferAllocs result;
auto bufferType = MemRefType::get({}, xferOp.getVectorType());
result.dataBuffer = b.create<memref::AllocaOp>(loc, bufferType);
if (xferOp.getMask()) {
auto maskType = MemRefType::get({}, xferOp.getMask().getType());
auto maskBuffer = b.create<memref::AllocaOp>(loc, maskType);
b.setInsertionPoint(xferOp);
b.create<memref::StoreOp>(loc, xferOp.getMask(), maskBuffer);
result.maskBuffer = b.create<memref::LoadOp>(loc, maskBuffer, ValueRange());
}
return result;
}
/// Given a MemRefType with VectorType element type, unpack one dimension from
/// the VectorType into the MemRefType.
///
/// E.g.: memref<9xvector<5x6xf32>> --> memref<9x5xvector<6xf32>>
static MemRefType unpackOneDim(MemRefType type) {
auto vectorType = dyn_cast<VectorType>(type.getElementType());
auto memrefShape = type.getShape();
SmallVector<int64_t, 8> newMemrefShape;
newMemrefShape.append(memrefShape.begin(), memrefShape.end());
newMemrefShape.push_back(vectorType.getDimSize(0));
return MemRefType::get(newMemrefShape,
VectorType::get(vectorType.getShape().drop_front(),
vectorType.getElementType()));
}
/// Given a transfer op, find the memref from which the mask is loaded. This
/// is similar to Strategy<TransferWriteOp>::getBuffer.
template <typename OpTy>
static Value getMaskBuffer(OpTy xferOp) {
assert(xferOp.getMask() && "Expected that transfer op has mask");
auto loadOp = xferOp.getMask().template getDefiningOp<memref::LoadOp>();
assert(loadOp && "Expected transfer op mask produced by LoadOp");
return loadOp.getMemRef();
}
/// Codegen strategy, depending on the operation.
template <typename OpTy>
struct Strategy;
/// Code strategy for vector TransferReadOp.
template <>
struct Strategy<TransferReadOp> {
/// Find the StoreOp that is used for writing the current TransferReadOp's
/// result to the temporary buffer allocation.
static memref::StoreOp getStoreOp(TransferReadOp xferOp) {
assert(xferOp->hasOneUse() && "Expected exactly one use of TransferReadOp");
auto storeOp = dyn_cast<memref::StoreOp>((*xferOp->use_begin()).getOwner());
assert(storeOp && "Expected TransferReadOp result used by StoreOp");
return storeOp;
}
/// Find the temporary buffer allocation. All labeled TransferReadOps are
/// used like this, where %buf is either the buffer allocation or a type cast
/// of the buffer allocation:
/// ```
/// %vec = vector.transfer_read ... { __vector_to_scf_lowering__ } ...
/// memref.store %vec, %buf[...] ...
/// ```
static Value getBuffer(TransferReadOp xferOp) {
return getStoreOp(xferOp).getMemRef();
}
/// Retrieve the indices of the current StoreOp that stores into the buffer.
static void getBufferIndices(TransferReadOp xferOp,
SmallVector<Value, 8> &indices) {
auto storeOp = getStoreOp(xferOp);
auto prevIndices = memref::StoreOpAdaptor(storeOp).getIndices();
indices.append(prevIndices.begin(), prevIndices.end());
}
/// Rewrite the TransferReadOp, assuming that there are no out-of-bounds
/// accesses on the to-be-unpacked dimension.
///
/// 1. Generate a new (N-1)-d TransferReadOp using the loop iteration
/// variable `iv`.
/// 2. Store the result into the (already `vector.type_cast`ed) buffer.
///
/// E.g.:
/// ```
/// %vec = vector.transfer_read %A[%a+%i, %b, %c], %cst
/// : memref<?x?x?xf32>, vector<4x3xf32>
/// memref.store %vec, %buf[%i] : memref<5xvector<4x3xf32>>
/// ```
/// Is rewritten to:
/// ```
/// %casted = vector.type_cast %buf
/// : memref<5xvector<4x3xf32>> to memref<5x4xvector<3xf32>>
/// for %j = 0 to 4 {
/// %vec = vector.transfer_read %A[%a+%i, %b+%j, %c], %cst
/// : memref<?x?x?xf32>, vector<3xf32>
/// memref.store %vec, %casted[%i, %j] : memref<5x4xvector<3xf32>>
/// }
/// ```
///
/// Note: The loop and type cast are generated in TransferOpConversion.
/// The original TransferReadOp and store op are deleted in `cleanup`.
/// Note: The `mask` operand is set in TransferOpConversion.
static TransferReadOp rewriteOp(OpBuilder &b,
VectorTransferToSCFOptions options,
TransferReadOp xferOp, Value buffer, Value iv,
ValueRange /*loopState*/) {
SmallVector<Value, 8> storeIndices;
getBufferIndices(xferOp, storeIndices);
storeIndices.push_back(iv);
SmallVector<Value, 8> xferIndices;
getXferIndices(b, xferOp, iv, xferIndices);
Location loc = xferOp.getLoc();
auto bufferType = dyn_cast<ShapedType>(buffer.getType());
auto vecType = dyn_cast<VectorType>(bufferType.getElementType());
auto inBoundsAttr = dropFirstElem(b, xferOp.getInBoundsAttr());
auto newXferOp = b.create<vector::TransferReadOp>(
loc, vecType, xferOp.getSource(), xferIndices,
AffineMapAttr::get(unpackedPermutationMap(b, xferOp)),
xferOp.getPadding(), Value(), inBoundsAttr);
maybeApplyPassLabel(b, newXferOp, options.targetRank);
b.create<memref::StoreOp>(loc, newXferOp.getVector(), buffer, storeIndices);
return newXferOp;
}
/// Handle out-of-bounds accesses on the to-be-unpacked dimension: Write
/// padding value to the temporary buffer.
static Value handleOutOfBoundsDim(OpBuilder &b, TransferReadOp xferOp,
Value buffer, Value iv,
ValueRange /*loopState*/) {
SmallVector<Value, 8> storeIndices;
getBufferIndices(xferOp, storeIndices);
storeIndices.push_back(iv);
Location loc = xferOp.getLoc();
auto bufferType = dyn_cast<ShapedType>(buffer.getType());
auto vecType = dyn_cast<VectorType>(bufferType.getElementType());
auto vec = b.create<vector::SplatOp>(loc, vecType, xferOp.getPadding());
b.create<memref::StoreOp>(loc, vec, buffer, storeIndices);
return Value();
}
/// Cleanup after rewriting the op.
static void cleanup(PatternRewriter &rewriter, TransferReadOp xferOp,
scf::ForOp /*forOp*/) {
rewriter.eraseOp(getStoreOp(xferOp));
rewriter.eraseOp(xferOp);
}
/// Return the initial loop state for the generated scf.for loop.
static Value initialLoopState(TransferReadOp xferOp) { return Value(); }
};
/// Codegen strategy for vector TransferWriteOp.
template <>
struct Strategy<TransferWriteOp> {
/// Find the temporary buffer allocation. All labeled TransferWriteOps are
/// used like this, where %buf is either the buffer allocation or a type cast
/// of the buffer allocation:
/// ```
/// %vec = memref.load %buf[...] ...
/// vector.transfer_write %vec ... { __vector_to_scf_lowering__ } ...
/// ```
static Value getBuffer(TransferWriteOp xferOp) {
auto loadOp = xferOp.getVector().getDefiningOp<memref::LoadOp>();
assert(loadOp && "Expected transfer op vector produced by LoadOp");
return loadOp.getMemRef();
}
/// Retrieve the indices of the current LoadOp that loads from the buffer.
static void getBufferIndices(TransferWriteOp xferOp,
SmallVector<Value, 8> &indices) {
auto loadOp = xferOp.getVector().getDefiningOp<memref::LoadOp>();
auto prevIndices = memref::LoadOpAdaptor(loadOp).getIndices();
indices.append(prevIndices.begin(), prevIndices.end());
}
/// Rewrite the TransferWriteOp, assuming that there are no out-of-bounds
/// accesses on the to-be-unpacked dimension.
///
/// 1. Load an (N-1)-d vector from the (already `vector.type_cast`ed) buffer,
/// using the loop iteration variable `iv`.
/// 2. Generate a new (N-1)-d TransferWriteOp, writing the loaded vector back
/// to memory.
///
/// Note: For more details, see comments on Strategy<TransferReadOp>.
static TransferWriteOp rewriteOp(OpBuilder &b,
VectorTransferToSCFOptions options,
TransferWriteOp xferOp, Value buffer,
Value iv, ValueRange loopState) {
SmallVector<Value, 8> loadIndices;
getBufferIndices(xferOp, loadIndices);
loadIndices.push_back(iv);
SmallVector<Value, 8> xferIndices;
getXferIndices(b, xferOp, iv, xferIndices);
Location loc = xferOp.getLoc();
auto vec = b.create<memref::LoadOp>(loc, buffer, loadIndices);
auto inBoundsAttr = dropFirstElem(b, xferOp.getInBoundsAttr());
auto source = loopState.empty() ? xferOp.getSource() : loopState[0];
Type type = isTensorOp(xferOp) ? xferOp.getShapedType() : Type();
auto newXferOp = b.create<vector::TransferWriteOp>(
loc, type, vec, source, xferIndices,
AffineMapAttr::get(unpackedPermutationMap(b, xferOp)), Value(),
inBoundsAttr);
maybeApplyPassLabel(b, newXferOp, options.targetRank);
return newXferOp;
}
/// Handle out-of-bounds accesses on the to-be-unpacked dimension.
static Value handleOutOfBoundsDim(OpBuilder &b, TransferWriteOp xferOp,
Value buffer, Value iv,
ValueRange loopState) {
return isTensorOp(xferOp) ? loopState[0] : Value();
}
/// Cleanup after rewriting the op.
static void cleanup(PatternRewriter &rewriter, TransferWriteOp xferOp,
scf::ForOp forOp) {
if (isTensorOp(xferOp)) {
assert(forOp->getNumResults() == 1 && "Expected one for loop result");
rewriter.replaceOp(xferOp, forOp->getResult(0));
} else {
rewriter.eraseOp(xferOp);
}
}
/// Return the initial loop state for the generated scf.for loop.
static Value initialLoopState(TransferWriteOp xferOp) {
return isTensorOp(xferOp) ? xferOp.getSource() : Value();
}
};
template <typename OpTy>
LogicalResult checkPrepareXferOp(OpTy xferOp,
VectorTransferToSCFOptions options) {
if (xferOp->hasAttr(kPassLabel))
return failure();
if (xferOp.getVectorType().getRank() <= options.targetRank)
return failure();
if (isTensorOp(xferOp) && !options.lowerTensors)
return failure();
// Transfer ops that modify the element type are not supported atm.
if (xferOp.getVectorType().getElementType() !=
xferOp.getShapedType().getElementType())
return failure();
return success();
}
/// Prepare a TransferReadOp for progressive lowering.
///
/// 1. Allocate a temporary buffer.
/// 2. Label the TransferReadOp, marking it eligible for progressive lowering.
/// 3. Store the result of the TransferReadOp into the temporary buffer.
/// 4. Load the result from the temporary buffer and replace all uses of the
/// original TransferReadOp with this load.
///
/// E.g.:
/// ```
/// %vec = vector.transfer_read %A[%a, %b, %c], %cst
/// : vector<5x4xf32>, memref<?x?x?xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = memref.alloca() : memref<vector<5x4xf32>>
/// %1 = vector.transfer_read %A[%a, %b, %c], %cst
/// { __vector_to_scf_lowering__ } : vector<5x4xf32>, memref<?x?x?xf32>
/// memref.store %1, %0[] : memref<vector<5x4xf32>>
/// %vec = memref.load %0[] : memref<vector<5x4xf32>>
/// ```
///
/// Note: A second temporary buffer may be allocated for the `mask` operand.
struct PrepareTransferReadConversion
: public VectorToSCFPattern<TransferReadOp> {
using VectorToSCFPattern<TransferReadOp>::VectorToSCFPattern;
LogicalResult matchAndRewrite(TransferReadOp xferOp,
PatternRewriter &rewriter) const override {
if (checkPrepareXferOp(xferOp, options).failed())
return failure();
auto buffers = allocBuffers(rewriter, xferOp);
auto *newXfer = rewriter.clone(*xferOp.getOperation());
newXfer->setAttr(kPassLabel, rewriter.getUnitAttr());
if (xferOp.getMask()) {
dyn_cast<TransferReadOp>(newXfer).getMaskMutable().assign(
buffers.maskBuffer);
}
Location loc = xferOp.getLoc();
rewriter.create<memref::StoreOp>(loc, newXfer->getResult(0),
buffers.dataBuffer);
rewriter.replaceOpWithNewOp<memref::LoadOp>(xferOp, buffers.dataBuffer);
return success();
}
};
/// Prepare a TransferWriteOp for progressive lowering.
///
/// 1. Allocate a temporary buffer.
/// 2. Store the vector into the buffer.
/// 3. Load the vector from the buffer again.
/// 4. Use the loaded vector as a TransferWriteOp operand and label the op,
/// marking it eligible for progressive lowering via TransferOpConversion.
///
/// E.g.:
/// ```
/// vector.transfer_write %vec, %A[%a, %b, %c]
/// : vector<5x4xf32>, memref<?x?x?xf32>
/// ```
/// is rewritten to:
/// ```
/// %0 = memref.alloca() : memref<vector<5x4xf32>>
/// memref.store %vec, %0[] : memref<vector<5x4xf32>>
/// %1 = memref.load %0[] : memref<vector<5x4xf32>>
/// vector.transfer_write %1, %A[%a, %b, %c] { __vector_to_scf_lowering__ }
/// : vector<5x4xf32>, memref<?x?x?xf32>
/// ```
///
/// Note: A second temporary buffer may be allocated for the `mask` operand.
struct PrepareTransferWriteConversion
: public VectorToSCFPattern<TransferWriteOp> {
using VectorToSCFPattern<TransferWriteOp>::VectorToSCFPattern;
LogicalResult matchAndRewrite(TransferWriteOp xferOp,
PatternRewriter &rewriter) const override {
if (checkPrepareXferOp(xferOp, options).failed())
return failure();
Location loc = xferOp.getLoc();
auto buffers = allocBuffers(rewriter, xferOp);
rewriter.create<memref::StoreOp>(loc, xferOp.getVector(),
buffers.dataBuffer);
auto loadedVec = rewriter.create<memref::LoadOp>(loc, buffers.dataBuffer);
rewriter.updateRootInPlace(xferOp, [&]() {
xferOp.getVectorMutable().assign(loadedVec);
xferOp->setAttr(kPassLabel, rewriter.getUnitAttr());
});
if (xferOp.getMask()) {
rewriter.updateRootInPlace(xferOp, [&]() {
xferOp.getMaskMutable().assign(buffers.maskBuffer);
});
}
return success();
}
};
/// Progressive lowering of vector transfer ops: Unpack one dimension.
///
/// 1. Unpack one dimension from the current buffer type and cast the buffer
/// to that new type. E.g.:
/// ```
/// %vec = memref.load %0[%1] : memref<5xvector<4x3xf32>>
/// vector.transfer_write %vec ...
/// ```
/// The following cast is generated:
/// ```
/// %casted = vector.type_cast %0
/// : memref<5xvector<4x3xf32>> to memref<5x4xvector<3xf32>>
/// ```
/// 2. Generate a for loop and rewrite the transfer op according to the
/// corresponding Strategy<OpTy>. If the to-be-unpacked dimension can be
/// out-of-bounds, generate an if-check and handle both cases separately.
/// 3. Clean up according to the corresponding Strategy<OpTy>.
///
/// Note: If the transfer op is a TransferWriteOp and operates on a tensor
/// source (as opposed to a memref source), then each iteration of the generated
/// scf.for loop yields the new tensor value. E.g.:
/// ```
/// %result = scf.for i = 0 to 5 {
/// %0 = memref.load %buffer[i] : memref<5xvector<4x3xf32>>
/// %1 = vector.transfer_write %0, %source[...]
/// : vector<4x3xf32>, tensor<5x4x3xf32>
/// scf.yield %1 : tensor<5x4x3xf32>
/// }
/// ```
template <typename OpTy>
struct TransferOpConversion : public VectorToSCFPattern<OpTy> {
using VectorToSCFPattern<OpTy>::VectorToSCFPattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
this->setHasBoundedRewriteRecursion();
}
LogicalResult matchAndRewrite(OpTy xferOp,
PatternRewriter &rewriter) const override {
if (!xferOp->hasAttr(kPassLabel))
return failure();
// Find and cast data buffer. How the buffer can be found depends on OpTy.
ImplicitLocOpBuilder locB(xferOp.getLoc(), rewriter);
auto dataBuffer = Strategy<OpTy>::getBuffer(xferOp);
auto dataBufferType = dyn_cast<MemRefType>(dataBuffer.getType());
auto castedDataType = unpackOneDim(dataBufferType);
auto castedDataBuffer =
locB.create<vector::TypeCastOp>(castedDataType, dataBuffer);
// If the xferOp has a mask: Find and cast mask buffer.
Value castedMaskBuffer;
if (xferOp.getMask()) {
auto maskBuffer = getMaskBuffer(xferOp);
auto maskBufferType = dyn_cast<MemRefType>(maskBuffer.getType());
if (xferOp.isBroadcastDim(0) || xferOp.getMaskType().getRank() == 1) {
// Do not unpack a dimension of the mask, if:
// * To-be-unpacked transfer op dimension is a broadcast.
// * Mask is 1D, i.e., the mask cannot be further unpacked.
// (That means that all remaining dimensions of the transfer op must
// be broadcasted.)
castedMaskBuffer = maskBuffer;
} else {
auto castedMaskType = unpackOneDim(maskBufferType);
castedMaskBuffer =
locB.create<vector::TypeCastOp>(castedMaskType, maskBuffer);
}
}
// Loop bounds and step.
auto lb = locB.create<arith::ConstantIndexOp>(0);
auto ub = locB.create<arith::ConstantIndexOp>(
castedDataType.getDimSize(castedDataType.getRank() - 1));
auto step = locB.create<arith::ConstantIndexOp>(1);
// TransferWriteOps that operate on tensors return the modified tensor and
// require a loop state.
auto loopState = Strategy<OpTy>::initialLoopState(xferOp);
// Generate for loop.
auto result = locB.create<scf::ForOp>(
lb, ub, step, loopState ? ValueRange(loopState) : ValueRange(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange loopState) {
Type stateType = loopState.empty() ? Type() : loopState[0].getType();
auto result = generateInBoundsCheck(
b, xferOp, iv, unpackedDim(xferOp),
stateType ? TypeRange(stateType) : TypeRange(),
/*inBoundsCase=*/
[&](OpBuilder &b, Location loc) {
// Create new transfer op.
OpTy newXfer = Strategy<OpTy>::rewriteOp(
b, this->options, xferOp, castedDataBuffer, iv, loopState);
// If old transfer op has a mask: Set mask on new transfer op.
// Special case: If the mask of the old transfer op is 1D and
// the
// unpacked dim is not a broadcast, no mask is
// needed on the new transfer op.
if (xferOp.getMask() && (xferOp.isBroadcastDim(0) ||
xferOp.getMaskType().getRank() > 1)) {
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(newXfer); // Insert load before newXfer.
SmallVector<Value, 8> loadIndices;
Strategy<OpTy>::getBufferIndices(xferOp, loadIndices);
// In case of broadcast: Use same indices to load from memref
// as before.
if (!xferOp.isBroadcastDim(0))
loadIndices.push_back(iv);
auto mask = b.create<memref::LoadOp>(loc, castedMaskBuffer,
loadIndices);
rewriter.updateRootInPlace(newXfer, [&]() {
newXfer.getMaskMutable().assign(mask);
});
}
return loopState.empty() ? Value() : newXfer->getResult(0);
},
/*outOfBoundsCase=*/
[&](OpBuilder &b, Location /*loc*/) {
return Strategy<OpTy>::handleOutOfBoundsDim(
b, xferOp, castedDataBuffer, iv, loopState);
});
maybeYieldValue(b, loc, !loopState.empty(), result);
});
Strategy<OpTy>::cleanup(rewriter, xferOp, result);
return success();
}
};
} // namespace lowering_n_d
namespace lowering_n_d_unrolled {
/// If the original transfer op has a mask, compute the mask of the new transfer
/// op (for the current iteration `i`) and assign it.
template <typename OpTy>
static void maybeAssignMask(OpBuilder &b, OpTy xferOp, OpTy newXferOp,
int64_t i) {
if (!xferOp.getMask())
return;
if (xferOp.isBroadcastDim(0)) {
// To-be-unpacked dimension is a broadcast, which does not have a
// corresponding mask dimension. Mask attribute remains unchanged.
newXferOp.getMaskMutable().assign(xferOp.getMask());
return;
}
if (xferOp.getMaskType().getRank() > 1) {
// Unpack one dimension of the mask.
OpBuilder::InsertionGuard guard(b);
b.setInsertionPoint(newXferOp); // Insert load before newXfer.
llvm::SmallVector<int64_t, 1> indices({i});
Location loc = xferOp.getLoc();
auto newMask = b.create<vector::ExtractOp>(loc, xferOp.getMask(), indices);
newXferOp.getMaskMutable().assign(newMask);
}
// If we end up here: The mask of the old transfer op is 1D and the unpacked
// dim is not a broadcast, so no mask is needed on the new transfer op.
// `generateInBoundsCheck` will have evaluated the mask already.
}
/// Progressive lowering of vector TransferReadOp with unrolling: Unpack one
/// dimension. This is similar to TransferOpConversion<TransferReadOp>, but no
/// memref buffer is allocated and the SCF loop is fully unrolled.
///
/// ```
/// E.g.:
/// ```
/// %vec = vector.transfer_read %A[%a, %b, %c], %padding
/// : memref<?x?x?xf32>, vector<5x4xf32>
/// ```
/// is rewritten to IR such as (simplified):
/// ```
/// %v_init = splat %padding : vector<5x4xf32>
/// %tmp0 = vector.transfer_read %A[%a, %b, %c], %padding
/// : memref<?x?x?xf32>, vector<4xf32>
/// %v0 = vector.insert %tmp0, %v_init[0] : vector<4xf32> into vector<5x4xf32>
/// %tmp1 = vector.transfer_read %A[%a, %b + 1, %c], %padding
/// : memref<?x?x?xf32>, vector<4xf32>
/// %v1 = vector.insert %tmp1, %v0[1] : vector<4xf32> into vector<5x4xf32>
/// ...
/// %tmp4 = vector.transfer_read %A[%a, %b + 4, %c], %padding
/// : memref<?x?x?xf32>, vector<4xf32>
/// %vec = vector.insert %tmp1, %v3[4] : vector<4xf32> into vector<5x4xf32>
/// ```
///
/// Note: As an optimization, if the result of the original TransferReadOp
/// was directly inserted into another vector, no new %v_init vector is created.
/// Instead, the new TransferReadOp results are inserted into that vector.
struct UnrollTransferReadConversion
: public VectorToSCFPattern<TransferReadOp> {
using VectorToSCFPattern<TransferReadOp>::VectorToSCFPattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
/// Return the vector into which the newly created TransferReadOp results
/// are inserted.
Value getResultVector(TransferReadOp xferOp,
PatternRewriter &rewriter) const {
if (auto insertOp = getInsertOp(xferOp))
return insertOp.getDest();
Location loc = xferOp.getLoc();
return rewriter.create<vector::SplatOp>(loc, xferOp.getVectorType(),
xferOp.getPadding());
}
/// If the result of the TransferReadOp has exactly one user, which is a
/// vector::InsertOp, return that operation.
vector::InsertOp getInsertOp(TransferReadOp xferOp) const {
if (xferOp->hasOneUse()) {
Operation *xferOpUser = *xferOp->getUsers().begin();
if (auto insertOp = dyn_cast<vector::InsertOp>(xferOpUser))
return insertOp;
}
return vector::InsertOp();
}
/// If the result of the TransferReadOp has exactly one user, which is a
/// vector::InsertOp, return that operation's indices.
void getInsertionIndices(TransferReadOp xferOp,
SmallVector<int64_t, 8> &indices) const {
if (auto insertOp = getInsertOp(xferOp)) {
for (Attribute attr : insertOp.getPosition())
indices.push_back(dyn_cast<IntegerAttr>(attr).getInt());
}
}
/// Rewrite the op: Unpack one dimension. Can handle masks, out-of-bounds
/// accesses, and broadcasts and transposes in permutation maps.
LogicalResult matchAndRewrite(TransferReadOp xferOp,
PatternRewriter &rewriter) const override {
if (xferOp.getVectorType().getRank() <= options.targetRank)
return failure();
if (isTensorOp(xferOp) && !options.lowerTensors)
return failure();
// Transfer ops that modify the element type are not supported atm.
if (xferOp.getVectorType().getElementType() !=
xferOp.getShapedType().getElementType())
return failure();
auto insertOp = getInsertOp(xferOp);
auto vec = getResultVector(xferOp, rewriter);
auto vecType = dyn_cast<VectorType>(vec.getType());
auto xferVecType = xferOp.getVectorType();
auto newXferVecType = VectorType::get(xferVecType.getShape().drop_front(),
xferVecType.getElementType());
int64_t dimSize = xferVecType.getShape()[0];
// Generate fully unrolled loop of transfer ops.
Location loc = xferOp.getLoc();
for (int64_t i = 0; i < dimSize; ++i) {
Value iv = rewriter.create<arith::ConstantIndexOp>(loc, i);
vec = generateInBoundsCheck(
rewriter, xferOp, iv, unpackedDim(xferOp), TypeRange(vecType),
/*inBoundsCase=*/
[&](OpBuilder &b, Location loc) {
// Indices for the new transfer op.
SmallVector<Value, 8> xferIndices;
getXferIndices(b, xferOp, iv, xferIndices);
// Indices for the new vector.insert op.
SmallVector<int64_t, 8> insertionIndices;
getInsertionIndices(xferOp, insertionIndices);
insertionIndices.push_back(i);
auto inBoundsAttr = dropFirstElem(b, xferOp.getInBoundsAttr());
auto newXferOp = b.create<vector::TransferReadOp>(
loc, newXferVecType, xferOp.getSource(), xferIndices,
AffineMapAttr::get(unpackedPermutationMap(b, xferOp)),
xferOp.getPadding(), Value(), inBoundsAttr);
maybeAssignMask(b, xferOp, newXferOp, i);
return b.create<vector::InsertOp>(loc, newXferOp, vec,
insertionIndices);
},
/*outOfBoundsCase=*/
[&](OpBuilder &b, Location loc) {
// Loop through original (unmodified) vector.
return vec;
});
}
if (insertOp) {
// Rewrite single user of the old TransferReadOp, which was an InsertOp.
rewriter.replaceOp(insertOp, vec);
rewriter.eraseOp(xferOp);
} else {
rewriter.replaceOp(xferOp, vec);
}
return success();
}
};
/// Progressive lowering of vector TransferWriteOp with unrolling: Unpack one
/// dimension. This is similar to TransferOpConversion<TransferWriteOp>, but no
/// memref buffer is allocated and the SCF loop is fully unrolled.
///
/// ```
/// E.g.:
/// ```
/// vector.transfer_write %vec, %A[%a, %b, %c]
/// : vector<5x4xf32>, memref<?x?x?xf32>
/// ```
/// is rewritten to IR such as (simplified):
/// ```
/// %v0 = vector.extract %vec[0] : vector<5x4xf32>
/// vector.transfer_write %v0, %A[%a, %b, %c] : vector<4xf32>, memref<...>
/// %v1 = vector.extract %vec[1] : vector<5x4xf32>
/// vector.transfer_write %v1, %A[%a, %b + 1, %c] : vector<4xf32>, memref<...>
/// ...
/// %v4 = vector.extract %vec[4] : vector<5x4xf32>
/// vector.transfer_write %v4, %A[%a, %b + 4, %c] : vector<4xf32>, memref<...>
/// ```
///
/// Note: As an optimization, if the vector of the original TransferWriteOp
/// was directly extracted from another vector via an ExtractOp `a`, extract
/// the vectors for the newly generated TransferWriteOps from `a`'s input. By
/// doing so, `a` may become dead, and the number of ExtractOps generated during
/// recursive application of this pattern will be minimal.
struct UnrollTransferWriteConversion
: public VectorToSCFPattern<TransferWriteOp> {
using VectorToSCFPattern<TransferWriteOp>::VectorToSCFPattern;
void initialize() {
// This pattern recursively unpacks one dimension at a time. The recursion
// bounded as the rank is strictly decreasing.
setHasBoundedRewriteRecursion();
}
/// Return the vector from which newly generated ExtracOps will extract.
Value getDataVector(TransferWriteOp xferOp) const {
if (auto extractOp = getExtractOp(xferOp))
return extractOp.getVector();
return xferOp.getVector();
}
/// If the input of the given TransferWriteOp is an ExtractOp, return it.
vector::ExtractOp getExtractOp(TransferWriteOp xferOp) const {
if (auto *op = xferOp.getVector().getDefiningOp())
return dyn_cast<vector::ExtractOp>(op);
return vector::ExtractOp();
}
/// If the input of the given TransferWriteOp is an ExtractOp, return its
/// indices.
void getExtractionIndices(TransferWriteOp xferOp,
SmallVector<int64_t, 8> &indices) const {
if (auto extractOp = getExtractOp(xferOp)) {
for (Attribute attr : extractOp.getPosition())
indices.push_back(dyn_cast<IntegerAttr>(attr).getInt());
}
}
/// Rewrite the op: Unpack one dimension. Can handle masks, out-of-bounds
/// accesses, and broadcasts and transposes in permutation maps.
LogicalResult matchAndRewrite(TransferWriteOp xferOp,
PatternRewriter &rewriter) const override {
if (xferOp.getVectorType().getRank() <= options.targetRank)
return failure();
if (isTensorOp(xferOp) && !options.lowerTensors)
return failure();
// Transfer ops that modify the element type are not supported atm.
if (xferOp.getVectorType().getElementType() !=
xferOp.getShapedType().getElementType())
return failure();
auto vec = getDataVector(xferOp);
auto xferVecType = xferOp.getVectorType();
int64_t dimSize = xferVecType.getShape()[0];
Value source = xferOp.getSource(); // memref or tensor to be written to.
auto sourceType = isTensorOp(xferOp) ? xferOp.getShapedType() : Type();
// Generate fully unrolled loop of transfer ops.
Location loc = xferOp.getLoc();
for (int64_t i = 0; i < dimSize; ++i) {
Value iv = rewriter.create<arith::ConstantIndexOp>(loc, i);
auto updatedSource = generateInBoundsCheck(
rewriter, xferOp, iv, unpackedDim(xferOp),
isTensorOp(xferOp) ? TypeRange(sourceType) : TypeRange(),
/*inBoundsCase=*/
[&](OpBuilder &b, Location loc) {
// Indices for the new transfer op.
SmallVector<Value, 8> xferIndices;
getXferIndices(b, xferOp, iv, xferIndices);
// Indices for the new vector.extract op.
SmallVector<int64_t, 8> extractionIndices;
getExtractionIndices(xferOp, extractionIndices);
extractionIndices.push_back(i);
auto extracted =
b.create<vector::ExtractOp>(loc, vec, extractionIndices);
auto inBoundsAttr = dropFirstElem(b, xferOp.getInBoundsAttr());
auto newXferOp = b.create<vector::TransferWriteOp>(
loc, sourceType, extracted, source, xferIndices,
AffineMapAttr::get(unpackedPermutationMap(b, xferOp)), Value(),
inBoundsAttr);
maybeAssignMask(b, xferOp, newXferOp, i);
return isTensorOp(xferOp) ? newXferOp->getResult(0) : Value();
},
/*outOfBoundsCase=*/
[&](OpBuilder &b, Location loc) {
return isTensorOp(xferOp) ? source : Value();
});
if (isTensorOp(xferOp))
source = updatedSource;
}
if (isTensorOp(xferOp))
rewriter.replaceOp(xferOp, source);
else
rewriter.eraseOp(xferOp);
return success();
}
};
} // namespace lowering_n_d_unrolled
namespace lowering_1_d {
/// Compute the indices into the memref for the LoadOp/StoreOp generated as
/// part of TransferOp1dConversion. Return the memref dimension on which
/// the transfer is operating. A return value of std::nullopt indicates a
/// broadcast.
template <typename OpTy>
static std::optional<int64_t>
get1dMemrefIndices(OpBuilder &b, OpTy xferOp, Value iv,
SmallVector<Value, 8> &memrefIndices) {
auto indices = xferOp.getIndices();
auto map = xferOp.getPermutationMap();
assert(xferOp.getTransferRank() > 0 && "unexpected 0-d transfer");
memrefIndices.append(indices.begin(), indices.end());
assert(map.getNumResults() == 1 &&
"Expected 1 permutation map result for 1D transfer");
if (auto expr = map.getResult(0).template dyn_cast<AffineDimExpr>()) {
Location loc = xferOp.getLoc();
auto dim = expr.getPosition();
AffineExpr d0, d1;
bindDims(xferOp.getContext(), d0, d1);
Value offset = memrefIndices[dim];
memrefIndices[dim] =
affine::makeComposedAffineApply(b, loc, d0 + d1, {offset, iv});
return dim;
}
assert(xferOp.isBroadcastDim(0) &&
"Expected AffineDimExpr or AffineConstantExpr");
return std::nullopt;
}
/// Codegen strategy for TransferOp1dConversion, depending on the
/// operation.
template <typename OpTy>
struct Strategy1d;
/// Codegen strategy for TransferReadOp.
template <>
struct Strategy1d<TransferReadOp> {
static void generateForLoopBody(OpBuilder &b, Location loc,
TransferReadOp xferOp, Value iv,
ValueRange loopState) {
SmallVector<Value, 8> indices;
auto dim = get1dMemrefIndices(b, xferOp, iv, indices);
auto vec = loopState[0];
// In case of out-of-bounds access, leave `vec` as is (was initialized with
// padding value).
auto nextVec = generateInBoundsCheck(
b, xferOp, iv, dim, TypeRange(xferOp.getVectorType()),
/*inBoundsCase=*/
[&](OpBuilder &b, Location loc) {
Value val =
b.create<memref::LoadOp>(loc, xferOp.getSource(), indices);
return b.create<vector::InsertElementOp>(loc, val, vec, iv);
},
/*outOfBoundsCase=*/
[&](OpBuilder & /*b*/, Location loc) { return vec; });
b.create<scf::YieldOp>(loc, nextVec);
}
static Value initialLoopState(OpBuilder &b, TransferReadOp xferOp) {
// Inititalize vector with padding value.
Location loc = xferOp.getLoc();
return b.create<vector::SplatOp>(loc, xferOp.getVectorType(),
xferOp.getPadding());
}
};
/// Codegen strategy for TransferWriteOp.
template <>
struct Strategy1d<TransferWriteOp> {
static void generateForLoopBody(OpBuilder &b, Location loc,
TransferWriteOp xferOp, Value iv,
ValueRange /*loopState*/) {
SmallVector<Value, 8> indices;
auto dim = get1dMemrefIndices(b, xferOp, iv, indices);
// Nothing to do in case of out-of-bounds access.
generateInBoundsCheck(
b, xferOp, iv, dim,
/*inBoundsCase=*/[&](OpBuilder &b, Location loc) {
auto val =
b.create<vector::ExtractElementOp>(loc, xferOp.getVector(), iv);
b.create<memref::StoreOp>(loc, val, xferOp.getSource(), indices);
});
b.create<scf::YieldOp>(loc);
}
static Value initialLoopState(OpBuilder &b, TransferWriteOp xferOp) {
return Value();
}
};
/// Lower a 1D vector transfer op to SCF using scalar loads/stores. This is
/// necessary in cases where a 1D vector transfer op cannot be lowered into
/// vector load/stores due to non-unit strides or broadcasts:
///
/// * Transfer dimension is not the last memref dimension
/// * Transfer dimension is a broadcast (i.e., scalar load + broadcast)
/// * Memref has a layout map with non-unit stride on the last dimension
///
/// This pattern generates IR as follows:
///
/// 1. Generate a for loop iterating over each vector element.
/// 2. Inside the loop, generate a InsertElementOp or ExtractElementOp,
/// depending on OpTy.
///
/// TODO: In some cases (no masking, etc.), LLVM::MatrixColumnMajorLoadOp
/// can be generated instead of TransferOp1dConversion. Add such a pattern
/// to ConvertVectorToLLVM.
///
/// E.g.:
/// ```
/// vector.transfer_write %vec, %A[%a, %b]
/// {permutation_map = affine_map<(d0, d1) -> (d0)>, in_bounds = [true]}
/// : vector<9xf32>, memref<?x?xf32>
/// ```
/// Is rewritten to approximately the following pseudo-IR:
/// ```
/// for i = 0 to 9 {
/// %t = vector.extractelement %vec[i] : vector<9xf32>
/// memref.store %t, %arg0[%a + i, %b] : memref<?x?xf32>
/// }
/// ```
template <typename OpTy>
struct TransferOp1dConversion : public VectorToSCFPattern<OpTy> {
using VectorToSCFPattern<OpTy>::VectorToSCFPattern;
LogicalResult matchAndRewrite(OpTy xferOp,
PatternRewriter &rewriter) const override {
// TODO: support 0-d corner case.
if (xferOp.getTransferRank() == 0)
return failure();
auto map = xferOp.getPermutationMap();
auto memRefType = dyn_cast<MemRefType>(xferOp.getShapedType());
if (!memRefType)
return failure();
if (xferOp.getVectorType().getRank() != 1)
return failure();
if (map.isMinorIdentity() && isLastMemrefDimUnitStride(memRefType))
return failure(); // Handled by ConvertVectorToLLVM
// Loop bounds, step, state...
Location loc = xferOp.getLoc();
auto vecType = xferOp.getVectorType();
auto lb = rewriter.create<arith::ConstantIndexOp>(loc, 0);
Value ub =
rewriter.create<arith::ConstantIndexOp>(loc, vecType.getDimSize(0));
if (vecType.isScalable()) {
Value vscale =
rewriter.create<vector::VectorScaleOp>(loc, rewriter.getIndexType());
ub = rewriter.create<arith::MulIOp>(loc, ub, vscale);
}
auto step = rewriter.create<arith::ConstantIndexOp>(loc, 1);
auto loopState = Strategy1d<OpTy>::initialLoopState(rewriter, xferOp);
// Generate for loop.
rewriter.replaceOpWithNewOp<scf::ForOp>(
xferOp, lb, ub, step, loopState ? ValueRange(loopState) : ValueRange(),
[&](OpBuilder &b, Location loc, Value iv, ValueRange loopState) {
Strategy1d<OpTy>::generateForLoopBody(b, loc, xferOp, iv, loopState);
});
return success();
}
};
} // namespace lowering_1_d
} // namespace
void mlir::populateVectorToSCFConversionPatterns(
RewritePatternSet &patterns, const VectorTransferToSCFOptions &options) {
if (options.unroll) {
patterns.add<lowering_n_d_unrolled::UnrollTransferReadConversion,
lowering_n_d_unrolled::UnrollTransferWriteConversion>(
patterns.getContext(), options);
} else {
patterns.add<lowering_n_d::PrepareTransferReadConversion,
lowering_n_d::PrepareTransferWriteConversion,
lowering_n_d::TransferOpConversion<TransferReadOp>,
lowering_n_d::TransferOpConversion<TransferWriteOp>>(
patterns.getContext(), options);
}
if (options.targetRank == 1) {
patterns.add<lowering_1_d::TransferOp1dConversion<TransferReadOp>,
lowering_1_d::TransferOp1dConversion<TransferWriteOp>>(
patterns.getContext(), options);
}
}
namespace {
struct ConvertVectorToSCFPass
: public impl::ConvertVectorToSCFBase<ConvertVectorToSCFPass> {
ConvertVectorToSCFPass() = default;
ConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
this->fullUnroll = options.unroll;
this->targetRank = options.targetRank;
this->lowerTensors = options.lowerTensors;
}
void runOnOperation() override {
VectorTransferToSCFOptions options;
options.unroll = fullUnroll;
options.targetRank = targetRank;
options.lowerTensors = lowerTensors;
// Lower permutation maps first.
RewritePatternSet lowerTransferPatterns(&getContext());
mlir::vector::populateVectorTransferPermutationMapLoweringPatterns(
lowerTransferPatterns);
(void)applyPatternsAndFoldGreedily(getOperation(),
std::move(lowerTransferPatterns));
RewritePatternSet patterns(&getContext());
populateVectorToSCFConversionPatterns(patterns, options);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
} // namespace
std::unique_ptr<Pass>
mlir::createConvertVectorToSCFPass(const VectorTransferToSCFOptions &options) {
return std::make_unique<ConvertVectorToSCFPass>(options);
}
|