File: LegalizeForLLVMExport.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (226 lines) | stat: -rw-r--r-- 9,897 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
//===- LegalizeForLLVMExport.cpp - Prepare AMX for LLVM translation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/AMX/Transforms.h"

#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/AMX/AMXDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"

using namespace mlir;
using namespace mlir::amx;

namespace {

/// Maps the 2-dim vector shape to the two 16-bit tile sizes. The first
/// dimension directly translates into the number of rows of the tiles.
/// The second dimensions needs to be scaled by the number of bytes.
std::pair<Value, Value> getTileSizes(ConversionPatternRewriter &rewriter,
                                     LLVMTypeConverter &typeConverter,
                                     VectorType vType, Location loc) {
  Type llvmInt16Type = IntegerType::get(&typeConverter.getContext(), 16);
  unsigned width = vType.getElementType().getIntOrFloatBitWidth();
  assert(llvm::isPowerOf2_64(width) && width >= 8);
  unsigned bytes = width >> 3;
  auto mattr = rewriter.getI16IntegerAttr(vType.getDimSize(0));
  auto nattr = rewriter.getI16IntegerAttr(vType.getDimSize(1) * bytes);
  return std::make_pair(
      rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, mattr),
      rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, nattr));
}

/// Verifies if the stride matches proper tile access.
LogicalResult verifyStride(MemRefType mType) {
  if (mType.getRank() < 2)
    return failure();
  int64_t last = mType.getRank() - 1;
  int64_t offset;
  SmallVector<int64_t, 4> strides;
  if (failed(getStridesAndOffset(mType, strides, offset)) || strides[last] != 1)
    return failure();
  return success();
}

/// Maps the 2-dim memref shape to the 64-bit stride. Note that the buffer
/// shape may "envelop" the actual tile shape, and may be dynamically sized.
Value getStride(ConversionPatternRewriter &rewriter,
                LLVMTypeConverter &typeConverter, MemRefType mType, Value base,
                Location loc) {
  assert(mType.getRank() >= 2);
  int64_t last = mType.getRank() - 1;
  Type llvmInt64Type = IntegerType::get(&typeConverter.getContext(), 64);
  unsigned width = mType.getElementType().getIntOrFloatBitWidth();
  assert(llvm::isPowerOf2_64(width) && width >= 8);
  unsigned bytes = width >> 3;
  if (mType.isDynamicDim(last)) {
    // Dynamic size needs code to compute the stride at runtime.
    MemRefDescriptor memrefDescriptor(base);
    auto attr = rewriter.getI64IntegerAttr(bytes);
    Value scale = rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
    return rewriter.create<LLVM::MulOp>(
        loc, llvmInt64Type, scale, memrefDescriptor.size(rewriter, loc, last));
  }
  // Use direct constant for static size.
  auto attr = rewriter.getI64IntegerAttr(mType.getDimSize(last) * bytes);
  return rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
}

/// Cast any pointer to the !llvm.ptr<i8> pointer type.
Value castPtr(ConversionPatternRewriter &rewriter, Location loc, Value ptr) {
  auto i8Ptr =
      LLVM::LLVMPointerType::get(IntegerType::get(ptr.getContext(), 8));
  return rewriter.create<LLVM::BitcastOp>(loc, i8Ptr, ptr);
}

struct TileZeroConversion : public ConvertOpToLLVMPattern<TileZeroOp> {
  using ConvertOpToLLVMPattern<TileZeroOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(TileZeroOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    VectorType vType = op.getVectorType();
    // Determine m x n tile sizes.
    std::pair<Value, Value> tsz =
        getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
    // Replace operation with intrinsic.
    Type resType = typeConverter->convertType(vType);
    rewriter.replaceOpWithNewOp<amx::x86_amx_tilezero>(op, resType, tsz.first,
                                                       tsz.second);
    return success();
  }
};

struct TileLoadConversion : public ConvertOpToLLVMPattern<TileLoadOp> {
  using ConvertOpToLLVMPattern<TileLoadOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(TileLoadOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefType mType = op.getMemRefType();
    VectorType vType = op.getVectorType();
    // Determine m x n tile sizes.
    std::pair<Value, Value> tsz =
        getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
    // Determine stride.
    if (failed(verifyStride(mType)))
      return failure();
    Value stride = getStride(rewriter, *getTypeConverter(), mType,
                             adaptor.getBase(), op.getLoc());
    // Replace operation with intrinsic.
    Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.getBase(),
                                     adaptor.getIndices(), rewriter);
    ptr = castPtr(rewriter, op.getLoc(), ptr);
    Type resType = typeConverter->convertType(vType);
    rewriter.replaceOpWithNewOp<amx::x86_amx_tileloadd64>(
        op, resType, tsz.first, tsz.second, ptr, stride);
    return success();
  }
};

struct TileStoreConversion : public ConvertOpToLLVMPattern<TileStoreOp> {
  using ConvertOpToLLVMPattern<TileStoreOp>::ConvertOpToLLVMPattern;

  LogicalResult
  matchAndRewrite(TileStoreOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    MemRefType mType = op.getMemRefType();
    VectorType vType = op.getVectorType();
    // Determine m x n tile sizes.
    std::pair<Value, Value> tsz =
        getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
    // Determine stride.
    if (failed(verifyStride(mType)))
      return failure();
    Value stride = getStride(rewriter, *getTypeConverter(), mType,
                             adaptor.getBase(), op.getLoc());
    // Replace operation with intrinsic.
    Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.getBase(),
                                     adaptor.getIndices(), rewriter);
    ptr = castPtr(rewriter, op.getLoc(), ptr);
    rewriter.replaceOpWithNewOp<amx::x86_amx_tilestored64>(
        op, tsz.first, tsz.second, ptr, stride, adaptor.getVal());
    return success();
  }
};

struct TileMulFConversion : public ConvertOpToLLVMPattern<TileMulFOp> {
  using ConvertOpToLLVMPattern<TileMulFOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(TileMulFOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    VectorType aType = op.getLhsVectorType();
    VectorType bType = op.getRhsVectorType();
    VectorType cType = op.getVectorType();
    // Determine m x n x k tile sizes.
    std::pair<Value, Value> tsza =
        getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
    std::pair<Value, Value> tszb =
        getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
    // Replace operation with intrinsic.
    Type resType = typeConverter->convertType(cType);
    rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbf16ps>(
        op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
        adaptor.getLhs(), adaptor.getRhs());
    return success();
  }
};

struct TileMulIConversion : public ConvertOpToLLVMPattern<TileMulIOp> {
  using ConvertOpToLLVMPattern<TileMulIOp>::ConvertOpToLLVMPattern;
  LogicalResult
  matchAndRewrite(TileMulIOp op, OpAdaptor adaptor,
                  ConversionPatternRewriter &rewriter) const override {
    VectorType aType = op.getLhsVectorType();
    VectorType bType = op.getRhsVectorType();
    VectorType cType = op.getVectorType();
    // Determine m x n x k tile sizes.
    std::pair<Value, Value> tsza =
        getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
    std::pair<Value, Value> tszb =
        getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
    // Replace operation with intrinsic.
    Type resType = typeConverter->convertType(cType);
    bool zexta = op.getIsZextLhs();
    bool zextb = op.getIsZextRhs();
    if (zexta && zextb)
      rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbuud>(
          op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
          adaptor.getLhs(), adaptor.getRhs());
    else if (zexta && !zextb)
      rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbusd>(
          op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
          adaptor.getLhs(), adaptor.getRhs());
    else if (!zexta && zextb)
      rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbsud>(
          op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
          adaptor.getLhs(), adaptor.getRhs());
    else
      rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbssd>(
          op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
          adaptor.getLhs(), adaptor.getRhs());
    return success();
  }
};

} // namespace

void mlir::populateAMXLegalizeForLLVMExportPatterns(
    LLVMTypeConverter &converter, RewritePatternSet &patterns) {
  patterns.add<TileZeroConversion, TileLoadConversion, TileStoreConversion,
               TileMulFConversion, TileMulIConversion>(converter);
}

void mlir::configureAMXLegalizeForExportTarget(LLVMConversionTarget &target) {
  target.addLegalOp<x86_amx_tilezero, x86_amx_tileloadd64, x86_amx_tilestored64,
                    x86_amx_tdpbf16ps, x86_amx_tdpbssd, x86_amx_tdpbsud,
                    x86_amx_tdpbusd, x86_amx_tdpbuud>();
  target.addIllegalOp<TileZeroOp, TileLoadOp, TileStoreOp, TileMulIOp,
                      TileMulFOp>();
}