1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
//===- LegalizeForLLVMExport.cpp - Prepare AMX for LLVM translation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMX/Transforms.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/AMX/AMXDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::amx;
namespace {
/// Maps the 2-dim vector shape to the two 16-bit tile sizes. The first
/// dimension directly translates into the number of rows of the tiles.
/// The second dimensions needs to be scaled by the number of bytes.
std::pair<Value, Value> getTileSizes(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter,
VectorType vType, Location loc) {
Type llvmInt16Type = IntegerType::get(&typeConverter.getContext(), 16);
unsigned width = vType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
auto mattr = rewriter.getI16IntegerAttr(vType.getDimSize(0));
auto nattr = rewriter.getI16IntegerAttr(vType.getDimSize(1) * bytes);
return std::make_pair(
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, mattr),
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, nattr));
}
/// Verifies if the stride matches proper tile access.
LogicalResult verifyStride(MemRefType mType) {
if (mType.getRank() < 2)
return failure();
int64_t last = mType.getRank() - 1;
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(mType, strides, offset)) || strides[last] != 1)
return failure();
return success();
}
/// Maps the 2-dim memref shape to the 64-bit stride. Note that the buffer
/// shape may "envelop" the actual tile shape, and may be dynamically sized.
Value getStride(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, MemRefType mType, Value base,
Location loc) {
assert(mType.getRank() >= 2);
int64_t last = mType.getRank() - 1;
Type llvmInt64Type = IntegerType::get(&typeConverter.getContext(), 64);
unsigned width = mType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
if (mType.isDynamicDim(last)) {
// Dynamic size needs code to compute the stride at runtime.
MemRefDescriptor memrefDescriptor(base);
auto attr = rewriter.getI64IntegerAttr(bytes);
Value scale = rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
return rewriter.create<LLVM::MulOp>(
loc, llvmInt64Type, scale, memrefDescriptor.size(rewriter, loc, last));
}
// Use direct constant for static size.
auto attr = rewriter.getI64IntegerAttr(mType.getDimSize(last) * bytes);
return rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
}
/// Cast any pointer to the !llvm.ptr<i8> pointer type.
Value castPtr(ConversionPatternRewriter &rewriter, Location loc, Value ptr) {
auto i8Ptr =
LLVM::LLVMPointerType::get(IntegerType::get(ptr.getContext(), 8));
return rewriter.create<LLVM::BitcastOp>(loc, i8Ptr, ptr);
}
struct TileZeroConversion : public ConvertOpToLLVMPattern<TileZeroOp> {
using ConvertOpToLLVMPattern<TileZeroOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileZeroOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilezero>(op, resType, tsz.first,
tsz.second);
return success();
}
};
struct TileLoadConversion : public ConvertOpToLLVMPattern<TileLoadOp> {
using ConvertOpToLLVMPattern<TileLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.getBase(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tileloadd64>(
op, resType, tsz.first, tsz.second, ptr, stride);
return success();
}
};
struct TileStoreConversion : public ConvertOpToLLVMPattern<TileStoreOp> {
using ConvertOpToLLVMPattern<TileStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.getBase(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.getBase(),
adaptor.getIndices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilestored64>(
op, tsz.first, tsz.second, ptr, stride, adaptor.getVal());
return success();
}
};
struct TileMulFConversion : public ConvertOpToLLVMPattern<TileMulFOp> {
using ConvertOpToLLVMPattern<TileMulFOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbf16ps>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
adaptor.getLhs(), adaptor.getRhs());
return success();
}
};
struct TileMulIConversion : public ConvertOpToLLVMPattern<TileMulIOp> {
using ConvertOpToLLVMPattern<TileMulIOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
bool zexta = op.getIsZextLhs();
bool zextb = op.getIsZextRhs();
if (zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbuud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
adaptor.getLhs(), adaptor.getRhs());
else if (zexta && !zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbusd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
adaptor.getLhs(), adaptor.getRhs());
else if (!zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbsud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
adaptor.getLhs(), adaptor.getRhs());
else
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbssd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.getAcc(),
adaptor.getLhs(), adaptor.getRhs());
return success();
}
};
} // namespace
void mlir::populateAMXLegalizeForLLVMExportPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<TileZeroConversion, TileLoadConversion, TileStoreConversion,
TileMulFConversion, TileMulIConversion>(converter);
}
void mlir::configureAMXLegalizeForExportTarget(LLVMConversionTarget &target) {
target.addLegalOp<x86_amx_tilezero, x86_amx_tileloadd64, x86_amx_tilestored64,
x86_amx_tdpbf16ps, x86_amx_tdpbssd, x86_amx_tdpbsud,
x86_amx_tdpbusd, x86_amx_tdpbuud>();
target.addIllegalOp<TileZeroOp, TileLoadOp, TileStoreOp, TileMulIOp,
TileMulFOp>();
}
|