1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
|
//===- AffineStructures.cpp - MLIR Affine Structures Class-----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Structures for affine/polyhedral analysis of affine dialect ops.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Analysis/Presburger/LinearTransform.h"
#include "mlir/Analysis/Presburger/Simplex.h"
#include "mlir/Analysis/Presburger/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/LLVM.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "affine-structures"
using namespace mlir;
using namespace affine;
using namespace presburger;
void FlatAffineValueConstraints::addInductionVarOrTerminalSymbol(Value val) {
if (containsVar(val))
return;
// Caller is expected to fully compose map/operands if necessary.
assert((isTopLevelValue(val) || isAffineInductionVar(val)) &&
"non-terminal symbol / loop IV expected");
// Outer loop IVs could be used in forOp's bounds.
if (auto loop = getForInductionVarOwner(val)) {
appendDimVar(val);
if (failed(this->addAffineForOpDomain(loop)))
LLVM_DEBUG(
loop.emitWarning("failed to add domain info to constraint system"));
return;
}
if (auto parallel = getAffineParallelInductionVarOwner(val)) {
appendDimVar(parallel.getIVs());
if (failed(this->addAffineParallelOpDomain(parallel)))
LLVM_DEBUG(parallel.emitWarning(
"failed to add domain info to constraint system"));
return;
}
// Add top level symbol.
appendSymbolVar(val);
// Check if the symbol is a constant.
if (std::optional<int64_t> constOp = getConstantIntValue(val))
addBound(BoundType::EQ, val, constOp.value());
}
LogicalResult
FlatAffineValueConstraints::addAffineForOpDomain(AffineForOp forOp) {
unsigned pos;
// Pre-condition for this method.
if (!findVar(forOp.getInductionVar(), &pos)) {
assert(false && "Value not found");
return failure();
}
int64_t step = forOp.getStep();
if (step != 1) {
if (!forOp.hasConstantLowerBound())
LLVM_DEBUG(forOp.emitWarning("domain conservatively approximated"));
else {
// Add constraints for the stride.
// (iv - lb) % step = 0 can be written as:
// (iv - lb) - step * q = 0 where q = (iv - lb) / step.
// Add local variable 'q' and add the above equality.
// The first constraint is q = (iv - lb) floordiv step
SmallVector<int64_t, 8> dividend(getNumCols(), 0);
int64_t lb = forOp.getConstantLowerBound();
dividend[pos] = 1;
dividend.back() -= lb;
addLocalFloorDiv(dividend, step);
// Second constraint: (iv - lb) - step * q = 0.
SmallVector<int64_t, 8> eq(getNumCols(), 0);
eq[pos] = 1;
eq.back() -= lb;
// For the local var just added above.
eq[getNumCols() - 2] = -step;
addEquality(eq);
}
}
if (forOp.hasConstantLowerBound()) {
addBound(BoundType::LB, pos, forOp.getConstantLowerBound());
} else {
// Non-constant lower bound case.
if (failed(addBound(BoundType::LB, pos, forOp.getLowerBoundMap(),
forOp.getLowerBoundOperands())))
return failure();
}
if (forOp.hasConstantUpperBound()) {
addBound(BoundType::UB, pos, forOp.getConstantUpperBound() - 1);
return success();
}
// Non-constant upper bound case.
return addBound(BoundType::UB, pos, forOp.getUpperBoundMap(),
forOp.getUpperBoundOperands());
}
LogicalResult FlatAffineValueConstraints::addAffineParallelOpDomain(
AffineParallelOp parallelOp) {
size_t ivPos = 0;
for (Value iv : parallelOp.getIVs()) {
unsigned pos;
if (!findVar(iv, &pos)) {
assert(false && "variable expected for the IV value");
return failure();
}
AffineMap lowerBound = parallelOp.getLowerBoundMap(ivPos);
if (lowerBound.isConstant())
addBound(BoundType::LB, pos, lowerBound.getSingleConstantResult());
else if (failed(addBound(BoundType::LB, pos, lowerBound,
parallelOp.getLowerBoundsOperands())))
return failure();
auto upperBound = parallelOp.getUpperBoundMap(ivPos);
if (upperBound.isConstant())
addBound(BoundType::UB, pos, upperBound.getSingleConstantResult() - 1);
else if (failed(addBound(BoundType::UB, pos, upperBound,
parallelOp.getUpperBoundsOperands())))
return failure();
++ivPos;
}
return success();
}
LogicalResult
FlatAffineValueConstraints::addDomainFromSliceMaps(ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps,
ArrayRef<Value> operands) {
assert(lbMaps.size() == ubMaps.size());
assert(lbMaps.size() <= getNumDimVars());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension. If so,
// retrieve the existing loop it equates to and add it to the system.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0) &&
// The condition above will be true for maps describing a single
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
// Make sure we skip those cases by checking that the lb result is not
// just a constant.
!lbMap.getResult(0).isa<AffineConstantExpr>()) {
// Limited support: we expect the lb result to be just a loop dimension.
// Not supported otherwise for now.
AffineDimExpr result = lbMap.getResult(0).dyn_cast<AffineDimExpr>();
if (!result)
return failure();
AffineForOp loop =
getForInductionVarOwner(operands[result.getPosition()]);
if (!loop)
return failure();
if (failed(addAffineForOpDomain(loop)))
return failure();
continue;
}
// This slice refers to a loop that doesn't exist in the IR yet. Add its
// bounds to the system assuming its dimension variable position is the
// same as the position of the loop in the loop nest.
if (lbMap && failed(addBound(BoundType::LB, i, lbMap, operands)))
return failure();
if (ubMap && failed(addBound(BoundType::UB, i, ubMap, operands)))
return failure();
}
return success();
}
void FlatAffineValueConstraints::addAffineIfOpDomain(AffineIfOp ifOp) {
IntegerSet set = ifOp.getIntegerSet();
// Canonicalize set and operands to ensure unique values for
// FlatAffineValueConstraints below and for early simplification.
SmallVector<Value> operands(ifOp.getOperands());
canonicalizeSetAndOperands(&set, &operands);
// Create the base constraints from the integer set attached to ifOp.
FlatAffineValueConstraints cst(set, operands);
// Merge the constraints from ifOp to the current domain. We need first merge
// and align the IDs from both constraints, and then append the constraints
// from the ifOp into the current one.
mergeAndAlignVarsWithOther(0, &cst);
append(cst);
}
LogicalResult FlatAffineValueConstraints::addBound(BoundType type, unsigned pos,
AffineMap boundMap,
ValueRange boundOperands) {
// Fully compose map and operands; canonicalize and simplify so that we
// transitively get to terminal symbols or loop IVs.
auto map = boundMap;
SmallVector<Value, 4> operands(boundOperands.begin(), boundOperands.end());
fullyComposeAffineMapAndOperands(&map, &operands);
map = simplifyAffineMap(map);
canonicalizeMapAndOperands(&map, &operands);
for (auto operand : operands)
addInductionVarOrTerminalSymbol(operand);
return addBound(type, pos, computeAlignedMap(map, operands));
}
// Adds slice lower bounds represented by lower bounds in 'lbMaps' and upper
// bounds in 'ubMaps' to each value in `values' that appears in the constraint
// system. Note that both lower/upper bounds share the same operand list
// 'operands'.
// This function assumes 'values.size' == 'lbMaps.size' == 'ubMaps.size', and
// skips any null AffineMaps in 'lbMaps' or 'ubMaps'.
// Note that both lower/upper bounds use operands from 'operands'.
// Returns failure for unimplemented cases such as semi-affine expressions or
// expressions with mod/floordiv.
LogicalResult FlatAffineValueConstraints::addSliceBounds(
ArrayRef<Value> values, ArrayRef<AffineMap> lbMaps,
ArrayRef<AffineMap> ubMaps, ArrayRef<Value> operands) {
assert(values.size() == lbMaps.size());
assert(lbMaps.size() == ubMaps.size());
for (unsigned i = 0, e = lbMaps.size(); i < e; ++i) {
unsigned pos;
if (!findVar(values[i], &pos))
continue;
AffineMap lbMap = lbMaps[i];
AffineMap ubMap = ubMaps[i];
assert(!lbMap || lbMap.getNumInputs() == operands.size());
assert(!ubMap || ubMap.getNumInputs() == operands.size());
// Check if this slice is just an equality along this dimension.
if (lbMap && ubMap && lbMap.getNumResults() == 1 &&
ubMap.getNumResults() == 1 &&
lbMap.getResult(0) + 1 == ubMap.getResult(0)) {
if (failed(addBound(BoundType::EQ, pos, lbMap, operands)))
return failure();
continue;
}
// If lower or upper bound maps are null or provide no results, it implies
// that the source loop was not at all sliced, and the entire loop will be a
// part of the slice.
if (lbMap && lbMap.getNumResults() != 0 && ubMap &&
ubMap.getNumResults() != 0) {
if (failed(addBound(BoundType::LB, pos, lbMap, operands)))
return failure();
if (failed(addBound(BoundType::UB, pos, ubMap, operands)))
return failure();
} else {
auto loop = getForInductionVarOwner(values[i]);
if (failed(this->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
LogicalResult
FlatAffineValueConstraints::composeMap(const AffineValueMap *vMap) {
return composeMatchingMap(
computeAlignedMap(vMap->getAffineMap(), vMap->getOperands()));
}
// Turn a symbol into a dimension.
static void turnSymbolIntoDim(FlatAffineValueConstraints *cst, Value value) {
unsigned pos;
if (cst->findVar(value, &pos) && pos >= cst->getNumDimVars() &&
pos < cst->getNumDimAndSymbolVars()) {
cst->swapVar(pos, cst->getNumDimVars());
cst->setDimSymbolSeparation(cst->getNumSymbolVars() - 1);
}
}
// Changes all symbol variables which are loop IVs to dim variables.
void FlatAffineValueConstraints::convertLoopIVSymbolsToDims() {
// Gather all symbols which are loop IVs.
SmallVector<Value, 4> loopIVs;
for (unsigned i = getNumDimVars(), e = getNumDimAndSymbolVars(); i < e; i++) {
if (hasValue(i) && getForInductionVarOwner(getValue(i)))
loopIVs.push_back(getValue(i));
}
// Turn each symbol in 'loopIVs' into a dim variable.
for (auto iv : loopIVs) {
turnSymbolIntoDim(this, iv);
}
}
void FlatAffineValueConstraints::getIneqAsAffineValueMap(
unsigned pos, unsigned ineqPos, AffineValueMap &vmap,
MLIRContext *context) const {
unsigned numDims = getNumDimVars();
unsigned numSyms = getNumSymbolVars();
assert(pos < numDims && "invalid position");
assert(ineqPos < getNumInequalities() && "invalid inequality position");
// Get expressions for local vars.
SmallVector<AffineExpr, 8> memo(getNumVars(), AffineExpr());
if (failed(computeLocalVars(memo, context)))
assert(false &&
"one or more local exprs do not have an explicit representation");
auto localExprs = ArrayRef<AffineExpr>(memo).take_back(getNumLocalVars());
// Compute the AffineExpr lower/upper bound for this inequality.
SmallVector<int64_t, 8> inequality = getInequality64(ineqPos);
SmallVector<int64_t, 8> bound;
bound.reserve(getNumCols() - 1);
// Everything other than the coefficient at `pos`.
bound.append(inequality.begin(), inequality.begin() + pos);
bound.append(inequality.begin() + pos + 1, inequality.end());
if (inequality[pos] > 0)
// Lower bound.
std::transform(bound.begin(), bound.end(), bound.begin(),
std::negate<int64_t>());
else
// Upper bound (which is exclusive).
bound.back() += 1;
// Convert to AffineExpr (tree) form.
auto boundExpr = getAffineExprFromFlatForm(bound, numDims - 1, numSyms,
localExprs, context);
// Get the values to bind to this affine expr (all dims and symbols).
SmallVector<Value, 4> operands;
getValues(0, pos, &operands);
SmallVector<Value, 4> trailingOperands;
getValues(pos + 1, getNumDimAndSymbolVars(), &trailingOperands);
operands.append(trailingOperands.begin(), trailingOperands.end());
vmap.reset(AffineMap::get(numDims - 1, numSyms, boundExpr), operands);
}
FlatAffineValueConstraints FlatAffineRelation::getDomainSet() const {
FlatAffineValueConstraints domain = *this;
// Convert all range variables to local variables.
domain.convertToLocal(VarKind::SetDim, getNumDomainDims(),
getNumDomainDims() + getNumRangeDims());
return domain;
}
FlatAffineValueConstraints FlatAffineRelation::getRangeSet() const {
FlatAffineValueConstraints range = *this;
// Convert all domain variables to local variables.
range.convertToLocal(VarKind::SetDim, 0, getNumDomainDims());
return range;
}
void FlatAffineRelation::compose(const FlatAffineRelation &other) {
assert(getNumDomainDims() == other.getNumRangeDims() &&
"Domain of this and range of other do not match");
assert(std::equal(values.begin(), values.begin() + getNumDomainDims(),
other.values.begin() + other.getNumDomainDims()) &&
"Domain of this and range of other do not match");
FlatAffineRelation rel = other;
// Convert `rel` from
// [otherDomain] -> [otherRange]
// to
// [otherDomain] -> [otherRange thisRange]
// and `this` from
// [thisDomain] -> [thisRange]
// to
// [otherDomain thisDomain] -> [thisRange].
unsigned removeDims = rel.getNumRangeDims();
insertDomainVar(0, rel.getNumDomainDims());
rel.appendRangeVar(getNumRangeDims());
// Merge symbol and local variables.
mergeSymbolVars(rel);
mergeLocalVars(rel);
// Convert `rel` from [otherDomain] -> [otherRange thisRange] to
// [otherDomain] -> [thisRange] by converting first otherRange range vars
// to local vars.
rel.convertToLocal(VarKind::SetDim, rel.getNumDomainDims(),
rel.getNumDomainDims() + removeDims);
// Convert `this` from [otherDomain thisDomain] -> [thisRange] to
// [otherDomain] -> [thisRange] by converting last thisDomain domain vars
// to local vars.
convertToLocal(VarKind::SetDim, getNumDomainDims() - removeDims,
getNumDomainDims());
auto thisMaybeValues = getMaybeValues(VarKind::SetDim);
auto relMaybeValues = rel.getMaybeValues(VarKind::SetDim);
// Add and match domain of `rel` to domain of `this`.
for (unsigned i = 0, e = rel.getNumDomainDims(); i < e; ++i)
if (relMaybeValues[i].has_value())
setValue(i, *relMaybeValues[i]);
// Add and match range of `this` to range of `rel`.
for (unsigned i = 0, e = getNumRangeDims(); i < e; ++i) {
unsigned rangeIdx = rel.getNumDomainDims() + i;
if (thisMaybeValues[rangeIdx].has_value())
rel.setValue(rangeIdx, *thisMaybeValues[rangeIdx]);
}
// Append `this` to `rel` and simplify constraints.
rel.append(*this);
rel.removeRedundantLocalVars();
*this = rel;
}
void FlatAffineRelation::inverse() {
unsigned oldDomain = getNumDomainDims();
unsigned oldRange = getNumRangeDims();
// Add new range vars.
appendRangeVar(oldDomain);
// Swap new vars with domain.
for (unsigned i = 0; i < oldDomain; ++i)
swapVar(i, oldDomain + oldRange + i);
// Remove the swapped domain.
removeVarRange(0, oldDomain);
// Set domain and range as inverse.
numDomainDims = oldRange;
numRangeDims = oldDomain;
}
void FlatAffineRelation::insertDomainVar(unsigned pos, unsigned num) {
assert(pos <= getNumDomainDims() &&
"Var cannot be inserted at invalid position");
insertDimVar(pos, num);
numDomainDims += num;
}
void FlatAffineRelation::insertRangeVar(unsigned pos, unsigned num) {
assert(pos <= getNumRangeDims() &&
"Var cannot be inserted at invalid position");
insertDimVar(getNumDomainDims() + pos, num);
numRangeDims += num;
}
void FlatAffineRelation::appendDomainVar(unsigned num) {
insertDimVar(getNumDomainDims(), num);
numDomainDims += num;
}
void FlatAffineRelation::appendRangeVar(unsigned num) {
insertDimVar(getNumDimVars(), num);
numRangeDims += num;
}
void FlatAffineRelation::removeVarRange(VarKind kind, unsigned varStart,
unsigned varLimit) {
assert(varLimit <= getNumVarKind(kind));
if (varStart >= varLimit)
return;
FlatAffineValueConstraints::removeVarRange(kind, varStart, varLimit);
// If kind is not SetDim, domain and range don't need to be updated.
if (kind != VarKind::SetDim)
return;
// Compute number of domain and range variables to remove. This is done by
// intersecting the range of domain/range vars with range of vars to remove.
unsigned intersectDomainLHS = std::min(varLimit, getNumDomainDims());
unsigned intersectDomainRHS = varStart;
unsigned intersectRangeLHS = std::min(varLimit, getNumDimVars());
unsigned intersectRangeRHS = std::max(varStart, getNumDomainDims());
if (intersectDomainLHS > intersectDomainRHS)
numDomainDims -= intersectDomainLHS - intersectDomainRHS;
if (intersectRangeLHS > intersectRangeRHS)
numRangeDims -= intersectRangeLHS - intersectRangeRHS;
}
LogicalResult mlir::affine::getRelationFromMap(AffineMap &map,
FlatAffineRelation &rel) {
// Get flattened affine expressions.
std::vector<SmallVector<int64_t, 8>> flatExprs;
FlatAffineValueConstraints localVarCst;
if (failed(getFlattenedAffineExprs(map, &flatExprs, &localVarCst)))
return failure();
unsigned oldDimNum = localVarCst.getNumDimVars();
unsigned oldCols = localVarCst.getNumCols();
unsigned numRangeVars = map.getNumResults();
unsigned numDomainVars = map.getNumDims();
// Add range as the new expressions.
localVarCst.appendDimVar(numRangeVars);
// Add equalities between source and range.
SmallVector<int64_t, 8> eq(localVarCst.getNumCols());
for (unsigned i = 0, e = map.getNumResults(); i < e; ++i) {
// Zero fill.
std::fill(eq.begin(), eq.end(), 0);
// Fill equality.
for (unsigned j = 0, f = oldDimNum; j < f; ++j)
eq[j] = flatExprs[i][j];
for (unsigned j = oldDimNum, f = oldCols; j < f; ++j)
eq[j + numRangeVars] = flatExprs[i][j];
// Set this dimension to -1 to equate lhs and rhs and add equality.
eq[numDomainVars + i] = -1;
localVarCst.addEquality(eq);
}
// Create relation and return success.
rel = FlatAffineRelation(numDomainVars, numRangeVars, localVarCst);
return success();
}
LogicalResult mlir::affine::getRelationFromMap(const AffineValueMap &map,
FlatAffineRelation &rel) {
AffineMap affineMap = map.getAffineMap();
if (failed(getRelationFromMap(affineMap, rel)))
return failure();
// Set symbol values for domain dimensions and symbols.
for (unsigned i = 0, e = rel.getNumDomainDims(); i < e; ++i)
rel.setValue(i, map.getOperand(i));
for (unsigned i = rel.getNumDimVars(), e = rel.getNumDimAndSymbolVars();
i < e; ++i)
rel.setValue(i, map.getOperand(i - rel.getNumRangeDims()));
return success();
}
|