1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041
|
//===- Utils.cpp ---- Misc utilities for analysis -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous analysis routines for non-loop IR
// structures.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Analysis/Presburger/PresburgerRelation.h"
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Utils/StaticValueUtils.h"
#include "mlir/IR/IntegerSet.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "analysis-utils"
using namespace mlir;
using namespace affine;
using namespace presburger;
using llvm::SmallDenseMap;
using Node = MemRefDependenceGraph::Node;
// LoopNestStateCollector walks loop nests and collects load and store
// operations, and whether or not a region holding op other than ForOp and IfOp
// was encountered in the loop nest.
void LoopNestStateCollector::collect(Operation *opToWalk) {
opToWalk->walk([&](Operation *op) {
if (isa<AffineForOp>(op))
forOps.push_back(cast<AffineForOp>(op));
else if (op->getNumRegions() != 0 && !isa<AffineIfOp>(op))
hasNonAffineRegionOp = true;
else if (isa<AffineReadOpInterface>(op))
loadOpInsts.push_back(op);
else if (isa<AffineWriteOpInterface>(op))
storeOpInsts.push_back(op);
});
}
// Returns the load op count for 'memref'.
unsigned Node::getLoadOpCount(Value memref) const {
unsigned loadOpCount = 0;
for (Operation *loadOp : loads) {
if (memref == cast<AffineReadOpInterface>(loadOp).getMemRef())
++loadOpCount;
}
return loadOpCount;
}
// Returns the store op count for 'memref'.
unsigned Node::getStoreOpCount(Value memref) const {
unsigned storeOpCount = 0;
for (Operation *storeOp : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOp).getMemRef())
++storeOpCount;
}
return storeOpCount;
}
// Returns all store ops in 'storeOps' which access 'memref'.
void Node::getStoreOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *storeOps) const {
for (Operation *storeOp : stores) {
if (memref == cast<AffineWriteOpInterface>(storeOp).getMemRef())
storeOps->push_back(storeOp);
}
}
// Returns all load ops in 'loadOps' which access 'memref'.
void Node::getLoadOpsForMemref(Value memref,
SmallVectorImpl<Operation *> *loadOps) const {
for (Operation *loadOp : loads) {
if (memref == cast<AffineReadOpInterface>(loadOp).getMemRef())
loadOps->push_back(loadOp);
}
}
// Returns all memrefs in 'loadAndStoreMemrefSet' for which this node
// has at least one load and store operation.
void Node::getLoadAndStoreMemrefSet(
DenseSet<Value> *loadAndStoreMemrefSet) const {
llvm::SmallDenseSet<Value, 2> loadMemrefs;
for (Operation *loadOp : loads) {
loadMemrefs.insert(cast<AffineReadOpInterface>(loadOp).getMemRef());
}
for (Operation *storeOp : stores) {
auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef();
if (loadMemrefs.count(memref) > 0)
loadAndStoreMemrefSet->insert(memref);
}
}
// Returns the graph node for 'id'.
Node *MemRefDependenceGraph::getNode(unsigned id) {
auto it = nodes.find(id);
assert(it != nodes.end());
return &it->second;
}
// Returns the graph node for 'forOp'.
Node *MemRefDependenceGraph::getForOpNode(AffineForOp forOp) {
for (auto &idAndNode : nodes)
if (idAndNode.second.op == forOp)
return &idAndNode.second;
return nullptr;
}
// Adds a node with 'op' to the graph and returns its unique identifier.
unsigned MemRefDependenceGraph::addNode(Operation *op) {
Node node(nextNodeId++, op);
nodes.insert({node.id, node});
return node.id;
}
// Remove node 'id' (and its associated edges) from graph.
void MemRefDependenceGraph::removeNode(unsigned id) {
// Remove each edge in 'inEdges[id]'.
if (inEdges.count(id) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[id];
for (auto &inEdge : oldInEdges) {
removeEdge(inEdge.id, id, inEdge.value);
}
}
// Remove each edge in 'outEdges[id]'.
if (outEdges.count(id) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[id];
for (auto &outEdge : oldOutEdges) {
removeEdge(id, outEdge.id, outEdge.value);
}
}
// Erase remaining node state.
inEdges.erase(id);
outEdges.erase(id);
nodes.erase(id);
}
// Returns true if node 'id' writes to any memref which escapes (or is an
// argument to) the block. Returns false otherwise.
bool MemRefDependenceGraph::writesToLiveInOrEscapingMemrefs(unsigned id) {
Node *node = getNode(id);
for (auto *storeOpInst : node->stores) {
auto memref = cast<AffineWriteOpInterface>(storeOpInst).getMemRef();
auto *op = memref.getDefiningOp();
// Return true if 'memref' is a block argument.
if (!op)
return true;
// Return true if any use of 'memref' does not deference it in an affine
// way.
for (auto *user : memref.getUsers())
if (!isa<AffineMapAccessInterface>(*user))
return true;
}
return false;
}
// Returns true iff there is an edge from node 'srcId' to node 'dstId' which
// is for 'value' if non-null, or for any value otherwise. Returns false
// otherwise.
bool MemRefDependenceGraph::hasEdge(unsigned srcId, unsigned dstId,
Value value) {
if (outEdges.count(srcId) == 0 || inEdges.count(dstId) == 0) {
return false;
}
bool hasOutEdge = llvm::any_of(outEdges[srcId], [=](Edge &edge) {
return edge.id == dstId && (!value || edge.value == value);
});
bool hasInEdge = llvm::any_of(inEdges[dstId], [=](Edge &edge) {
return edge.id == srcId && (!value || edge.value == value);
});
return hasOutEdge && hasInEdge;
}
// Adds an edge from node 'srcId' to node 'dstId' for 'value'.
void MemRefDependenceGraph::addEdge(unsigned srcId, unsigned dstId,
Value value) {
if (!hasEdge(srcId, dstId, value)) {
outEdges[srcId].push_back({dstId, value});
inEdges[dstId].push_back({srcId, value});
if (isa<MemRefType>(value.getType()))
memrefEdgeCount[value]++;
}
}
// Removes an edge from node 'srcId' to node 'dstId' for 'value'.
void MemRefDependenceGraph::removeEdge(unsigned srcId, unsigned dstId,
Value value) {
assert(inEdges.count(dstId) > 0);
assert(outEdges.count(srcId) > 0);
if (isa<MemRefType>(value.getType())) {
assert(memrefEdgeCount.count(value) > 0);
memrefEdgeCount[value]--;
}
// Remove 'srcId' from 'inEdges[dstId]'.
for (auto *it = inEdges[dstId].begin(); it != inEdges[dstId].end(); ++it) {
if ((*it).id == srcId && (*it).value == value) {
inEdges[dstId].erase(it);
break;
}
}
// Remove 'dstId' from 'outEdges[srcId]'.
for (auto *it = outEdges[srcId].begin(); it != outEdges[srcId].end(); ++it) {
if ((*it).id == dstId && (*it).value == value) {
outEdges[srcId].erase(it);
break;
}
}
}
// Returns true if there is a path in the dependence graph from node 'srcId'
// to node 'dstId'. Returns false otherwise. `srcId`, `dstId`, and the
// operations that the edges connected are expected to be from the same block.
bool MemRefDependenceGraph::hasDependencePath(unsigned srcId, unsigned dstId) {
// Worklist state is: <node-id, next-output-edge-index-to-visit>
SmallVector<std::pair<unsigned, unsigned>, 4> worklist;
worklist.push_back({srcId, 0});
Operation *dstOp = getNode(dstId)->op;
// Run DFS traversal to see if 'dstId' is reachable from 'srcId'.
while (!worklist.empty()) {
auto &idAndIndex = worklist.back();
// Return true if we have reached 'dstId'.
if (idAndIndex.first == dstId)
return true;
// Pop and continue if node has no out edges, or if all out edges have
// already been visited.
if (outEdges.count(idAndIndex.first) == 0 ||
idAndIndex.second == outEdges[idAndIndex.first].size()) {
worklist.pop_back();
continue;
}
// Get graph edge to traverse.
Edge edge = outEdges[idAndIndex.first][idAndIndex.second];
// Increment next output edge index for 'idAndIndex'.
++idAndIndex.second;
// Add node at 'edge.id' to the worklist. We don't need to consider
// nodes that are "after" dstId in the containing block; one can't have a
// path to `dstId` from any of those nodes.
bool afterDst = dstOp->isBeforeInBlock(getNode(edge.id)->op);
if (!afterDst && edge.id != idAndIndex.first)
worklist.push_back({edge.id, 0});
}
return false;
}
// Returns the input edge count for node 'id' and 'memref' from src nodes
// which access 'memref' with a store operation.
unsigned MemRefDependenceGraph::getIncomingMemRefAccesses(unsigned id,
Value memref) {
unsigned inEdgeCount = 0;
if (inEdges.count(id) > 0)
for (auto &inEdge : inEdges[id])
if (inEdge.value == memref) {
Node *srcNode = getNode(inEdge.id);
// Only count in edges from 'srcNode' if 'srcNode' accesses 'memref'
if (srcNode->getStoreOpCount(memref) > 0)
++inEdgeCount;
}
return inEdgeCount;
}
// Returns the output edge count for node 'id' and 'memref' (if non-null),
// otherwise returns the total output edge count from node 'id'.
unsigned MemRefDependenceGraph::getOutEdgeCount(unsigned id, Value memref) {
unsigned outEdgeCount = 0;
if (outEdges.count(id) > 0)
for (auto &outEdge : outEdges[id])
if (!memref || outEdge.value == memref)
++outEdgeCount;
return outEdgeCount;
}
/// Return all nodes which define SSA values used in node 'id'.
void MemRefDependenceGraph::gatherDefiningNodes(
unsigned id, DenseSet<unsigned> &definingNodes) {
for (MemRefDependenceGraph::Edge edge : inEdges[id])
// By definition of edge, if the edge value is a non-memref value,
// then the dependence is between a graph node which defines an SSA value
// and another graph node which uses the SSA value.
if (!isa<MemRefType>(edge.value.getType()))
definingNodes.insert(edge.id);
}
// Computes and returns an insertion point operation, before which the
// the fused <srcId, dstId> loop nest can be inserted while preserving
// dependences. Returns nullptr if no such insertion point is found.
Operation *
MemRefDependenceGraph::getFusedLoopNestInsertionPoint(unsigned srcId,
unsigned dstId) {
if (outEdges.count(srcId) == 0)
return getNode(dstId)->op;
// Skip if there is any defining node of 'dstId' that depends on 'srcId'.
DenseSet<unsigned> definingNodes;
gatherDefiningNodes(dstId, definingNodes);
if (llvm::any_of(definingNodes,
[&](unsigned id) { return hasDependencePath(srcId, id); })) {
LLVM_DEBUG(llvm::dbgs()
<< "Can't fuse: a defining op with a user in the dst "
"loop has dependence from the src loop\n");
return nullptr;
}
// Build set of insts in range (srcId, dstId) which depend on 'srcId'.
SmallPtrSet<Operation *, 2> srcDepInsts;
for (auto &outEdge : outEdges[srcId])
if (outEdge.id != dstId)
srcDepInsts.insert(getNode(outEdge.id)->op);
// Build set of insts in range (srcId, dstId) on which 'dstId' depends.
SmallPtrSet<Operation *, 2> dstDepInsts;
for (auto &inEdge : inEdges[dstId])
if (inEdge.id != srcId)
dstDepInsts.insert(getNode(inEdge.id)->op);
Operation *srcNodeInst = getNode(srcId)->op;
Operation *dstNodeInst = getNode(dstId)->op;
// Computing insertion point:
// *) Walk all operation positions in Block operation list in the
// range (src, dst). For each operation 'op' visited in this search:
// *) Store in 'firstSrcDepPos' the first position where 'op' has a
// dependence edge from 'srcNode'.
// *) Store in 'lastDstDepPost' the last position where 'op' has a
// dependence edge to 'dstNode'.
// *) Compare 'firstSrcDepPos' and 'lastDstDepPost' to determine the
// operation insertion point (or return null pointer if no such
// insertion point exists: 'firstSrcDepPos' <= 'lastDstDepPos').
SmallVector<Operation *, 2> depInsts;
std::optional<unsigned> firstSrcDepPos;
std::optional<unsigned> lastDstDepPos;
unsigned pos = 0;
for (Block::iterator it = std::next(Block::iterator(srcNodeInst));
it != Block::iterator(dstNodeInst); ++it) {
Operation *op = &(*it);
if (srcDepInsts.count(op) > 0 && firstSrcDepPos == std::nullopt)
firstSrcDepPos = pos;
if (dstDepInsts.count(op) > 0)
lastDstDepPos = pos;
depInsts.push_back(op);
++pos;
}
if (firstSrcDepPos.has_value()) {
if (lastDstDepPos.has_value()) {
if (*firstSrcDepPos <= *lastDstDepPos) {
// No valid insertion point exists which preserves dependences.
return nullptr;
}
}
// Return the insertion point at 'firstSrcDepPos'.
return depInsts[*firstSrcDepPos];
}
// No dependence targets in range (or only dst deps in range), return
// 'dstNodInst' insertion point.
return dstNodeInst;
}
// Updates edge mappings from node 'srcId' to node 'dstId' after fusing them,
// taking into account that:
// *) if 'removeSrcId' is true, 'srcId' will be removed after fusion,
// *) memrefs in 'privateMemRefs' has been replaced in node at 'dstId' by a
// private memref.
void MemRefDependenceGraph::updateEdges(unsigned srcId, unsigned dstId,
const DenseSet<Value> &privateMemRefs,
bool removeSrcId) {
// For each edge in 'inEdges[srcId]': add new edge remapping to 'dstId'.
if (inEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[srcId];
for (auto &inEdge : oldInEdges) {
// Add edge from 'inEdge.id' to 'dstId' if it's not a private memref.
if (privateMemRefs.count(inEdge.value) == 0)
addEdge(inEdge.id, dstId, inEdge.value);
}
}
// For each edge in 'outEdges[srcId]': remove edge from 'srcId' to 'dstId'.
// If 'srcId' is going to be removed, remap all the out edges to 'dstId'.
if (outEdges.count(srcId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[srcId];
for (auto &outEdge : oldOutEdges) {
// Remove any out edges from 'srcId' to 'dstId' across memrefs.
if (outEdge.id == dstId)
removeEdge(srcId, outEdge.id, outEdge.value);
else if (removeSrcId) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(srcId, outEdge.id, outEdge.value);
}
}
}
// Remove any edges in 'inEdges[dstId]' on 'oldMemRef' (which is being
// replaced by a private memref). These edges could come from nodes
// other than 'srcId' which were removed in the previous step.
if (inEdges.count(dstId) > 0 && !privateMemRefs.empty()) {
SmallVector<Edge, 2> oldInEdges = inEdges[dstId];
for (auto &inEdge : oldInEdges)
if (privateMemRefs.count(inEdge.value) > 0)
removeEdge(inEdge.id, dstId, inEdge.value);
}
}
// Update edge mappings for nodes 'sibId' and 'dstId' to reflect fusion
// of sibling node 'sibId' into node 'dstId'.
void MemRefDependenceGraph::updateEdges(unsigned sibId, unsigned dstId) {
// For each edge in 'inEdges[sibId]':
// *) Add new edge from source node 'inEdge.id' to 'dstNode'.
// *) Remove edge from source node 'inEdge.id' to 'sibNode'.
if (inEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldInEdges = inEdges[sibId];
for (auto &inEdge : oldInEdges) {
addEdge(inEdge.id, dstId, inEdge.value);
removeEdge(inEdge.id, sibId, inEdge.value);
}
}
// For each edge in 'outEdges[sibId]' to node 'id'
// *) Add new edge from 'dstId' to 'outEdge.id'.
// *) Remove edge from 'sibId' to 'outEdge.id'.
if (outEdges.count(sibId) > 0) {
SmallVector<Edge, 2> oldOutEdges = outEdges[sibId];
for (auto &outEdge : oldOutEdges) {
addEdge(dstId, outEdge.id, outEdge.value);
removeEdge(sibId, outEdge.id, outEdge.value);
}
}
}
// Adds ops in 'loads' and 'stores' to node at 'id'.
void MemRefDependenceGraph::addToNode(
unsigned id, const SmallVectorImpl<Operation *> &loads,
const SmallVectorImpl<Operation *> &stores) {
Node *node = getNode(id);
llvm::append_range(node->loads, loads);
llvm::append_range(node->stores, stores);
}
void MemRefDependenceGraph::clearNodeLoadAndStores(unsigned id) {
Node *node = getNode(id);
node->loads.clear();
node->stores.clear();
}
// Calls 'callback' for each input edge incident to node 'id' which carries a
// memref dependence.
void MemRefDependenceGraph::forEachMemRefInputEdge(
unsigned id, const std::function<void(Edge)> &callback) {
if (inEdges.count(id) > 0)
forEachMemRefEdge(inEdges[id], callback);
}
// Calls 'callback' for each output edge from node 'id' which carries a
// memref dependence.
void MemRefDependenceGraph::forEachMemRefOutputEdge(
unsigned id, const std::function<void(Edge)> &callback) {
if (outEdges.count(id) > 0)
forEachMemRefEdge(outEdges[id], callback);
}
// Calls 'callback' for each edge in 'edges' which carries a memref
// dependence.
void MemRefDependenceGraph::forEachMemRefEdge(
ArrayRef<Edge> edges, const std::function<void(Edge)> &callback) {
for (const auto &edge : edges) {
// Skip if 'edge' is not a memref dependence edge.
if (!isa<MemRefType>(edge.value.getType()))
continue;
assert(nodes.count(edge.id) > 0);
// Skip if 'edge.id' is not a loop nest.
if (!isa<AffineForOp>(getNode(edge.id)->op))
continue;
// Visit current input edge 'edge'.
callback(edge);
}
}
void MemRefDependenceGraph::print(raw_ostream &os) const {
os << "\nMemRefDependenceGraph\n";
os << "\nNodes:\n";
for (const auto &idAndNode : nodes) {
os << "Node: " << idAndNode.first << "\n";
auto it = inEdges.find(idAndNode.first);
if (it != inEdges.end()) {
for (const auto &e : it->second)
os << " InEdge: " << e.id << " " << e.value << "\n";
}
it = outEdges.find(idAndNode.first);
if (it != outEdges.end()) {
for (const auto &e : it->second)
os << " OutEdge: " << e.id << " " << e.value << "\n";
}
}
}
void mlir::affine::getAffineForIVs(Operation &op,
SmallVectorImpl<AffineForOp> *loops) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' operation while
// skipping over 'affine.if' operations.
while (currOp) {
if (AffineForOp currAffineForOp = dyn_cast<AffineForOp>(currOp))
loops->push_back(currAffineForOp);
currOp = currOp->getParentOp();
}
std::reverse(loops->begin(), loops->end());
}
void mlir::affine::getEnclosingAffineOps(Operation &op,
SmallVectorImpl<Operation *> *ops) {
ops->clear();
Operation *currOp = op.getParentOp();
// Traverse up the hierarchy collecting all `affine.for`, `affine.if`, and
// affine.parallel operations.
while (currOp) {
if (isa<AffineIfOp, AffineForOp, AffineParallelOp>(currOp))
ops->push_back(currOp);
currOp = currOp->getParentOp();
}
std::reverse(ops->begin(), ops->end());
}
// Populates 'cst' with FlatAffineValueConstraints which represent original
// domain of the loop bounds that define 'ivs'.
LogicalResult ComputationSliceState::getSourceAsConstraints(
FlatAffineValueConstraints &cst) const {
assert(!ivs.empty() && "Cannot have a slice without its IVs");
cst = FlatAffineValueConstraints(/*numDims=*/ivs.size(), /*numSymbols=*/0,
/*numLocals=*/0, ivs);
for (Value iv : ivs) {
AffineForOp loop = getForInductionVarOwner(iv);
assert(loop && "Expected affine for");
if (failed(cst.addAffineForOpDomain(loop)))
return failure();
}
return success();
}
// Populates 'cst' with FlatAffineValueConstraints which represent slice bounds.
LogicalResult
ComputationSliceState::getAsConstraints(FlatAffineValueConstraints *cst) const {
assert(!lbOperands.empty());
// Adds src 'ivs' as dimension variables in 'cst'.
unsigned numDims = ivs.size();
// Adds operands (dst ivs and symbols) as symbols in 'cst'.
unsigned numSymbols = lbOperands[0].size();
SmallVector<Value, 4> values(ivs);
// Append 'ivs' then 'operands' to 'values'.
values.append(lbOperands[0].begin(), lbOperands[0].end());
*cst = FlatAffineValueConstraints(numDims, numSymbols, 0, values);
// Add loop bound constraints for values which are loop IVs of the destination
// of fusion and equality constraints for symbols which are constants.
for (unsigned i = numDims, end = values.size(); i < end; ++i) {
Value value = values[i];
assert(cst->containsVar(value) && "value expected to be present");
if (isValidSymbol(value)) {
// Check if the symbol is a constant.
if (std::optional<int64_t> cOp = getConstantIntValue(value))
cst->addBound(BoundType::EQ, value, cOp.value());
} else if (auto loop = getForInductionVarOwner(value)) {
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
// Add slices bounds on 'ivs' using maps 'lbs'/'ubs' with 'lbOperands[0]'
LogicalResult ret = cst->addSliceBounds(ivs, lbs, ubs, lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
return success();
}
// Clears state bounds and operand state.
void ComputationSliceState::clearBounds() {
lbs.clear();
ubs.clear();
lbOperands.clear();
ubOperands.clear();
}
void ComputationSliceState::dump() const {
llvm::errs() << "\tIVs:\n";
for (Value iv : ivs)
llvm::errs() << "\t\t" << iv << "\n";
llvm::errs() << "\tLBs:\n";
for (auto en : llvm::enumerate(lbs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value lbOp : lbOperands[en.index()])
llvm::errs() << "\t\t\t" << lbOp << "\n";
}
llvm::errs() << "\tUBs:\n";
for (auto en : llvm::enumerate(ubs)) {
llvm::errs() << "\t\t" << en.value() << "\n";
llvm::errs() << "\t\tOperands:\n";
for (Value ubOp : ubOperands[en.index()])
llvm::errs() << "\t\t\t" << ubOp << "\n";
}
}
/// Fast check to determine if the computation slice is maximal. Returns true if
/// each slice dimension maps to an existing dst dimension and both the src
/// and the dst loops for those dimensions have the same bounds. Returns false
/// if both the src and the dst loops don't have the same bounds. Returns
/// std::nullopt if none of the above can be proven.
std::optional<bool> ComputationSliceState::isSliceMaximalFastCheck() const {
assert(lbs.size() == ubs.size() && !lbs.empty() && !ivs.empty() &&
"Unexpected number of lbs, ubs and ivs in slice");
for (unsigned i = 0, end = lbs.size(); i < end; ++i) {
AffineMap lbMap = lbs[i];
AffineMap ubMap = ubs[i];
// Check if this slice is just an equality along this dimension.
if (!lbMap || !ubMap || lbMap.getNumResults() != 1 ||
ubMap.getNumResults() != 1 ||
lbMap.getResult(0) + 1 != ubMap.getResult(0) ||
// The condition above will be true for maps describing a single
// iteration (e.g., lbMap.getResult(0) = 0, ubMap.getResult(0) = 1).
// Make sure we skip those cases by checking that the lb result is not
// just a constant.
lbMap.getResult(0).isa<AffineConstantExpr>())
return std::nullopt;
// Limited support: we expect the lb result to be just a loop dimension for
// now.
AffineDimExpr result = lbMap.getResult(0).dyn_cast<AffineDimExpr>();
if (!result)
return std::nullopt;
// Retrieve dst loop bounds.
AffineForOp dstLoop =
getForInductionVarOwner(lbOperands[i][result.getPosition()]);
if (!dstLoop)
return std::nullopt;
AffineMap dstLbMap = dstLoop.getLowerBoundMap();
AffineMap dstUbMap = dstLoop.getUpperBoundMap();
// Retrieve src loop bounds.
AffineForOp srcLoop = getForInductionVarOwner(ivs[i]);
assert(srcLoop && "Expected affine for");
AffineMap srcLbMap = srcLoop.getLowerBoundMap();
AffineMap srcUbMap = srcLoop.getUpperBoundMap();
// Limited support: we expect simple src and dst loops with a single
// constant component per bound for now.
if (srcLbMap.getNumResults() != 1 || srcUbMap.getNumResults() != 1 ||
dstLbMap.getNumResults() != 1 || dstUbMap.getNumResults() != 1)
return std::nullopt;
AffineExpr srcLbResult = srcLbMap.getResult(0);
AffineExpr dstLbResult = dstLbMap.getResult(0);
AffineExpr srcUbResult = srcUbMap.getResult(0);
AffineExpr dstUbResult = dstUbMap.getResult(0);
if (!srcLbResult.isa<AffineConstantExpr>() ||
!srcUbResult.isa<AffineConstantExpr>() ||
!dstLbResult.isa<AffineConstantExpr>() ||
!dstUbResult.isa<AffineConstantExpr>())
return std::nullopt;
// Check if src and dst loop bounds are the same. If not, we can guarantee
// that the slice is not maximal.
if (srcLbResult != dstLbResult || srcUbResult != dstUbResult ||
srcLoop.getStep() != dstLoop.getStep())
return false;
}
return true;
}
/// Returns true if it is deterministically verified that the original iteration
/// space of the slice is contained within the new iteration space that is
/// created after fusing 'this' slice into its destination.
std::optional<bool> ComputationSliceState::isSliceValid() const {
// Fast check to determine if the slice is valid. If the following conditions
// are verified to be true, slice is declared valid by the fast check:
// 1. Each slice loop is a single iteration loop bound in terms of a single
// destination loop IV.
// 2. Loop bounds of the destination loop IV (from above) and those of the
// source loop IV are exactly the same.
// If the fast check is inconclusive or false, we proceed with a more
// expensive analysis.
// TODO: Store the result of the fast check, as it might be used again in
// `canRemoveSrcNodeAfterFusion`.
std::optional<bool> isValidFastCheck = isSliceMaximalFastCheck();
if (isValidFastCheck && *isValidFastCheck)
return true;
// Create constraints for the source loop nest using which slice is computed.
FlatAffineValueConstraints srcConstraints;
// TODO: Store the source's domain to avoid computation at each depth.
if (failed(getSourceAsConstraints(srcConstraints))) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute source's domain\n");
return std::nullopt;
}
// As the set difference utility currently cannot handle symbols in its
// operands, validity of the slice cannot be determined.
if (srcConstraints.getNumSymbolVars() > 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot handle symbols in source domain\n");
return std::nullopt;
}
// TODO: Handle local vars in the source domains while using the 'projectOut'
// utility below. Currently, aligning is not done assuming that there will be
// no local vars in the source domain.
if (srcConstraints.getNumLocalVars() != 0) {
LLVM_DEBUG(llvm::dbgs() << "Cannot handle locals in source domain\n");
return std::nullopt;
}
// Create constraints for the slice loop nest that would be created if the
// fusion succeeds.
FlatAffineValueConstraints sliceConstraints;
if (failed(getAsConstraints(&sliceConstraints))) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute slice's domain\n");
return std::nullopt;
}
// Projecting out every dimension other than the 'ivs' to express slice's
// domain completely in terms of source's IVs.
sliceConstraints.projectOut(ivs.size(),
sliceConstraints.getNumVars() - ivs.size());
LLVM_DEBUG(llvm::dbgs() << "Domain of the source of the slice:\n");
LLVM_DEBUG(srcConstraints.dump());
LLVM_DEBUG(llvm::dbgs() << "Domain of the slice if this fusion succeeds "
"(expressed in terms of its source's IVs):\n");
LLVM_DEBUG(sliceConstraints.dump());
// TODO: Store 'srcSet' to avoid recalculating for each depth.
PresburgerSet srcSet(srcConstraints);
PresburgerSet sliceSet(sliceConstraints);
PresburgerSet diffSet = sliceSet.subtract(srcSet);
if (!diffSet.isIntegerEmpty()) {
LLVM_DEBUG(llvm::dbgs() << "Incorrect slice\n");
return false;
}
return true;
}
/// Returns true if the computation slice encloses all the iterations of the
/// sliced loop nest. Returns false if it does not. Returns std::nullopt if it
/// cannot determine if the slice is maximal or not.
std::optional<bool> ComputationSliceState::isMaximal() const {
// Fast check to determine if the computation slice is maximal. If the result
// is inconclusive, we proceed with a more expensive analysis.
std::optional<bool> isMaximalFastCheck = isSliceMaximalFastCheck();
if (isMaximalFastCheck)
return isMaximalFastCheck;
// Create constraints for the src loop nest being sliced.
FlatAffineValueConstraints srcConstraints(/*numDims=*/ivs.size(),
/*numSymbols=*/0,
/*numLocals=*/0, ivs);
for (Value iv : ivs) {
AffineForOp loop = getForInductionVarOwner(iv);
assert(loop && "Expected affine for");
if (failed(srcConstraints.addAffineForOpDomain(loop)))
return std::nullopt;
}
// Create constraints for the slice using the dst loop nest information. We
// retrieve existing dst loops from the lbOperands.
SmallVector<Value> consumerIVs;
for (Value lbOp : lbOperands[0])
if (getForInductionVarOwner(lbOp))
consumerIVs.push_back(lbOp);
// Add empty IV Values for those new loops that are not equalities and,
// therefore, are not yet materialized in the IR.
for (int i = consumerIVs.size(), end = ivs.size(); i < end; ++i)
consumerIVs.push_back(Value());
FlatAffineValueConstraints sliceConstraints(/*numDims=*/consumerIVs.size(),
/*numSymbols=*/0,
/*numLocals=*/0, consumerIVs);
if (failed(sliceConstraints.addDomainFromSliceMaps(lbs, ubs, lbOperands[0])))
return std::nullopt;
if (srcConstraints.getNumDimVars() != sliceConstraints.getNumDimVars())
// Constraint dims are different. The integer set difference can't be
// computed so we don't know if the slice is maximal.
return std::nullopt;
// Compute the difference between the src loop nest and the slice integer
// sets.
PresburgerSet srcSet(srcConstraints);
PresburgerSet sliceSet(sliceConstraints);
PresburgerSet diffSet = srcSet.subtract(sliceSet);
return diffSet.isIntegerEmpty();
}
unsigned MemRefRegion::getRank() const {
return cast<MemRefType>(memref.getType()).getRank();
}
std::optional<int64_t> MemRefRegion::getConstantBoundingSizeAndShape(
SmallVectorImpl<int64_t> *shape, std::vector<SmallVector<int64_t, 4>> *lbs,
SmallVectorImpl<int64_t> *lbDivisors) const {
auto memRefType = cast<MemRefType>(memref.getType());
unsigned rank = memRefType.getRank();
if (shape)
shape->reserve(rank);
assert(rank == cst.getNumDimVars() && "inconsistent memref region");
// Use a copy of the region constraints that has upper/lower bounds for each
// memref dimension with static size added to guard against potential
// over-approximation from projection or union bounding box. We may not add
// this on the region itself since they might just be redundant constraints
// that will need non-trivials means to eliminate.
FlatAffineValueConstraints cstWithShapeBounds(cst);
for (unsigned r = 0; r < rank; r++) {
cstWithShapeBounds.addBound(BoundType::LB, r, 0);
int64_t dimSize = memRefType.getDimSize(r);
if (ShapedType::isDynamic(dimSize))
continue;
cstWithShapeBounds.addBound(BoundType::UB, r, dimSize - 1);
}
// Find a constant upper bound on the extent of this memref region along each
// dimension.
int64_t numElements = 1;
int64_t diffConstant;
int64_t lbDivisor;
for (unsigned d = 0; d < rank; d++) {
SmallVector<int64_t, 4> lb;
std::optional<int64_t> diff =
cstWithShapeBounds.getConstantBoundOnDimSize64(d, &lb, &lbDivisor);
if (diff.has_value()) {
diffConstant = *diff;
assert(diffConstant >= 0 && "Dim size bound can't be negative");
assert(lbDivisor > 0);
} else {
// If no constant bound is found, then it can always be bound by the
// memref's dim size if the latter has a constant size along this dim.
auto dimSize = memRefType.getDimSize(d);
if (dimSize == ShapedType::kDynamic)
return std::nullopt;
diffConstant = dimSize;
// Lower bound becomes 0.
lb.resize(cstWithShapeBounds.getNumSymbolVars() + 1, 0);
lbDivisor = 1;
}
numElements *= diffConstant;
if (lbs) {
lbs->push_back(lb);
assert(lbDivisors && "both lbs and lbDivisor or none");
lbDivisors->push_back(lbDivisor);
}
if (shape) {
shape->push_back(diffConstant);
}
}
return numElements;
}
void MemRefRegion::getLowerAndUpperBound(unsigned pos, AffineMap &lbMap,
AffineMap &ubMap) const {
assert(pos < cst.getNumDimVars() && "invalid position");
auto memRefType = cast<MemRefType>(memref.getType());
unsigned rank = memRefType.getRank();
assert(rank == cst.getNumDimVars() && "inconsistent memref region");
auto boundPairs = cst.getLowerAndUpperBound(
pos, /*offset=*/0, /*num=*/rank, cst.getNumDimAndSymbolVars(),
/*localExprs=*/{}, memRefType.getContext());
lbMap = boundPairs.first;
ubMap = boundPairs.second;
assert(lbMap && "lower bound for a region must exist");
assert(ubMap && "upper bound for a region must exist");
assert(lbMap.getNumInputs() == cst.getNumDimAndSymbolVars() - rank);
assert(ubMap.getNumInputs() == cst.getNumDimAndSymbolVars() - rank);
}
LogicalResult MemRefRegion::unionBoundingBox(const MemRefRegion &other) {
assert(memref == other.memref);
return cst.unionBoundingBox(*other.getConstraints());
}
/// Computes the memory region accessed by this memref with the region
/// represented as constraints symbolic/parametric in 'loopDepth' loops
/// surrounding opInst and any additional Function symbols.
// For example, the memref region for this load operation at loopDepth = 1 will
// be as below:
//
// affine.for %i = 0 to 32 {
// affine.for %ii = %i to (d0) -> (d0 + 8) (%i) {
// load %A[%ii]
// }
// }
//
// region: {memref = %A, write = false, {%i <= m0 <= %i + 7} }
// The last field is a 2-d FlatAffineValueConstraints symbolic in %i.
//
// TODO: extend this to any other memref dereferencing ops
// (dma_start, dma_wait).
LogicalResult MemRefRegion::compute(Operation *op, unsigned loopDepth,
const ComputationSliceState *sliceState,
bool addMemRefDimBounds) {
assert((isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) &&
"affine read/write op expected");
MemRefAccess access(op);
memref = access.memref;
write = access.isStore();
unsigned rank = access.getRank();
LLVM_DEBUG(llvm::dbgs() << "MemRefRegion::compute: " << *op
<< "\ndepth: " << loopDepth << "\n";);
// 0-d memrefs.
if (rank == 0) {
SmallVector<Value, 4> ivs;
getAffineIVs(*op, ivs);
assert(loopDepth <= ivs.size() && "invalid 'loopDepth'");
// The first 'loopDepth' IVs are symbols for this region.
ivs.resize(loopDepth);
// A 0-d memref has a 0-d region.
cst = FlatAffineValueConstraints(rank, loopDepth, /*numLocals=*/0, ivs);
return success();
}
// Build the constraints for this region.
AffineValueMap accessValueMap;
access.getAccessMap(&accessValueMap);
AffineMap accessMap = accessValueMap.getAffineMap();
unsigned numDims = accessMap.getNumDims();
unsigned numSymbols = accessMap.getNumSymbols();
unsigned numOperands = accessValueMap.getNumOperands();
// Merge operands with slice operands.
SmallVector<Value, 4> operands;
operands.resize(numOperands);
for (unsigned i = 0; i < numOperands; ++i)
operands[i] = accessValueMap.getOperand(i);
if (sliceState != nullptr) {
operands.reserve(operands.size() + sliceState->lbOperands[0].size());
// Append slice operands to 'operands' as symbols.
for (auto extraOperand : sliceState->lbOperands[0]) {
if (!llvm::is_contained(operands, extraOperand)) {
operands.push_back(extraOperand);
numSymbols++;
}
}
}
// We'll first associate the dims and symbols of the access map to the dims
// and symbols resp. of cst. This will change below once cst is
// fully constructed out.
cst = FlatAffineValueConstraints(numDims, numSymbols, 0, operands);
// Add equality constraints.
// Add inequalities for loop lower/upper bounds.
for (unsigned i = 0; i < numDims + numSymbols; ++i) {
auto operand = operands[i];
if (auto affineFor = getForInductionVarOwner(operand)) {
// Note that cst can now have more dimensions than accessMap if the
// bounds expressions involve outer loops or other symbols.
// TODO: rewrite this to use getInstIndexSet; this way
// conditionals will be handled when the latter supports it.
if (failed(cst.addAffineForOpDomain(affineFor)))
return failure();
} else if (auto parallelOp = getAffineParallelInductionVarOwner(operand)) {
if (failed(cst.addAffineParallelOpDomain(parallelOp)))
return failure();
} else if (isValidSymbol(operand)) {
// Check if the symbol is a constant.
Value symbol = operand;
if (auto constVal = getConstantIntValue(symbol))
cst.addBound(BoundType::EQ, symbol, constVal.value());
} else {
LLVM_DEBUG(llvm::dbgs() << "unknown affine dimensional value");
return failure();
}
}
// Add lower/upper bounds on loop IVs using bounds from 'sliceState'.
if (sliceState != nullptr) {
// Add dim and symbol slice operands.
for (auto operand : sliceState->lbOperands[0]) {
cst.addInductionVarOrTerminalSymbol(operand);
}
// Add upper/lower bounds from 'sliceState' to 'cst'.
LogicalResult ret =
cst.addSliceBounds(sliceState->ivs, sliceState->lbs, sliceState->ubs,
sliceState->lbOperands[0]);
assert(succeeded(ret) &&
"should not fail as we never have semi-affine slice maps");
(void)ret;
}
// Add access function equalities to connect loop IVs to data dimensions.
if (failed(cst.composeMap(&accessValueMap))) {
op->emitError("getMemRefRegion: compose affine map failed");
LLVM_DEBUG(accessValueMap.getAffineMap().dump());
return failure();
}
// Set all variables appearing after the first 'rank' variables as
// symbolic variables - so that the ones corresponding to the memref
// dimensions are the dimensional variables for the memref region.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolVars() - rank);
// Eliminate any loop IVs other than the outermost 'loopDepth' IVs, on which
// this memref region is symbolic.
SmallVector<Value, 4> enclosingIVs;
getAffineIVs(*op, enclosingIVs);
assert(loopDepth <= enclosingIVs.size() && "invalid loop depth");
enclosingIVs.resize(loopDepth);
SmallVector<Value, 4> vars;
cst.getValues(cst.getNumDimVars(), cst.getNumDimAndSymbolVars(), &vars);
for (Value var : vars) {
if ((isAffineInductionVar(var)) && !llvm::is_contained(enclosingIVs, var)) {
cst.projectOut(var);
}
}
// Project out any local variables (these would have been added for any
// mod/divs).
cst.projectOut(cst.getNumDimAndSymbolVars(), cst.getNumLocalVars());
// Constant fold any symbolic variables.
cst.constantFoldVarRange(/*pos=*/cst.getNumDimVars(),
/*num=*/cst.getNumSymbolVars());
assert(cst.getNumDimVars() == rank && "unexpected MemRefRegion format");
// Add upper/lower bounds for each memref dimension with static size
// to guard against potential over-approximation from projection.
// TODO: Support dynamic memref dimensions.
if (addMemRefDimBounds) {
auto memRefType = cast<MemRefType>(memref.getType());
for (unsigned r = 0; r < rank; r++) {
cst.addBound(BoundType::LB, /*pos=*/r, /*value=*/0);
if (memRefType.isDynamicDim(r))
continue;
cst.addBound(BoundType::UB, /*pos=*/r, memRefType.getDimSize(r) - 1);
}
}
cst.removeTrivialRedundancy();
LLVM_DEBUG(llvm::dbgs() << "Memory region:\n");
LLVM_DEBUG(cst.dump());
return success();
}
std::optional<int64_t>
mlir::affine::getMemRefIntOrFloatEltSizeInBytes(MemRefType memRefType) {
auto elementType = memRefType.getElementType();
unsigned sizeInBits;
if (elementType.isIntOrFloat()) {
sizeInBits = elementType.getIntOrFloatBitWidth();
} else if (auto vectorType = dyn_cast<VectorType>(elementType)) {
if (vectorType.getElementType().isIntOrFloat())
sizeInBits =
vectorType.getElementTypeBitWidth() * vectorType.getNumElements();
else
return std::nullopt;
} else {
return std::nullopt;
}
return llvm::divideCeil(sizeInBits, 8);
}
// Returns the size of the region.
std::optional<int64_t> MemRefRegion::getRegionSize() {
auto memRefType = cast<MemRefType>(memref.getType());
if (!memRefType.getLayout().isIdentity()) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return false;
}
// Indices to use for the DmaStart op.
// Indices for the original memref being DMAed from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being DMAed into/from.
SmallVector<Value, 4> bufIndices;
// Compute the extents of the buffer.
std::optional<int64_t> numElements = getConstantBoundingSizeAndShape();
if (!numElements) {
LLVM_DEBUG(llvm::dbgs() << "Dynamic shapes not yet supported\n");
return std::nullopt;
}
auto eltSize = getMemRefIntOrFloatEltSizeInBytes(memRefType);
if (!eltSize)
return std::nullopt;
return *eltSize * *numElements;
}
/// Returns the size of memref data in bytes if it's statically shaped,
/// std::nullopt otherwise. If the element of the memref has vector type, takes
/// into account size of the vector as well.
// TODO: improve/complete this when we have target data.
std::optional<uint64_t>
mlir::affine::getIntOrFloatMemRefSizeInBytes(MemRefType memRefType) {
if (!memRefType.hasStaticShape())
return std::nullopt;
auto elementType = memRefType.getElementType();
if (!elementType.isIntOrFloat() && !isa<VectorType>(elementType))
return std::nullopt;
auto sizeInBytes = getMemRefIntOrFloatEltSizeInBytes(memRefType);
if (!sizeInBytes)
return std::nullopt;
for (unsigned i = 0, e = memRefType.getRank(); i < e; i++) {
sizeInBytes = *sizeInBytes * memRefType.getDimSize(i);
}
return sizeInBytes;
}
template <typename LoadOrStoreOp>
LogicalResult mlir::affine::boundCheckLoadOrStoreOp(LoadOrStoreOp loadOrStoreOp,
bool emitError) {
static_assert(llvm::is_one_of<LoadOrStoreOp, AffineReadOpInterface,
AffineWriteOpInterface>::value,
"argument should be either a AffineReadOpInterface or a "
"AffineWriteOpInterface");
Operation *op = loadOrStoreOp.getOperation();
MemRefRegion region(op->getLoc());
if (failed(region.compute(op, /*loopDepth=*/0, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false)))
return success();
LLVM_DEBUG(llvm::dbgs() << "Memory region");
LLVM_DEBUG(region.getConstraints()->dump());
bool outOfBounds = false;
unsigned rank = loadOrStoreOp.getMemRefType().getRank();
// For each dimension, check for out of bounds.
for (unsigned r = 0; r < rank; r++) {
FlatAffineValueConstraints ucst(*region.getConstraints());
// Intersect memory region with constraint capturing out of bounds (both out
// of upper and out of lower), and check if the constraint system is
// feasible. If it is, there is at least one point out of bounds.
SmallVector<int64_t, 4> ineq(rank + 1, 0);
int64_t dimSize = loadOrStoreOp.getMemRefType().getDimSize(r);
// TODO: handle dynamic dim sizes.
if (dimSize == -1)
continue;
// Check for overflow: d_i >= memref dim size.
ucst.addBound(BoundType::LB, r, dimSize);
outOfBounds = !ucst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of upper bound access along dimension #" << (r + 1);
}
// Check for a negative index.
FlatAffineValueConstraints lcst(*region.getConstraints());
std::fill(ineq.begin(), ineq.end(), 0);
// d_i <= -1;
lcst.addBound(BoundType::UB, r, -1);
outOfBounds = !lcst.isEmpty();
if (outOfBounds && emitError) {
loadOrStoreOp.emitOpError()
<< "memref out of lower bound access along dimension #" << (r + 1);
}
}
return failure(outOfBounds);
}
// Explicitly instantiate the template so that the compiler knows we need them!
template LogicalResult
mlir::affine::boundCheckLoadOrStoreOp(AffineReadOpInterface loadOp,
bool emitError);
template LogicalResult
mlir::affine::boundCheckLoadOrStoreOp(AffineWriteOpInterface storeOp,
bool emitError);
// Returns in 'positions' the Block positions of 'op' in each ancestor
// Block from the Block containing operation, stopping at 'limitBlock'.
static void findInstPosition(Operation *op, Block *limitBlock,
SmallVectorImpl<unsigned> *positions) {
Block *block = op->getBlock();
while (block != limitBlock) {
// FIXME: This algorithm is unnecessarily O(n) and should be improved to not
// rely on linear scans.
int instPosInBlock = std::distance(block->begin(), op->getIterator());
positions->push_back(instPosInBlock);
op = block->getParentOp();
block = op->getBlock();
}
std::reverse(positions->begin(), positions->end());
}
// Returns the Operation in a possibly nested set of Blocks, where the
// position of the operation is represented by 'positions', which has a
// Block position for each level of nesting.
static Operation *getInstAtPosition(ArrayRef<unsigned> positions,
unsigned level, Block *block) {
unsigned i = 0;
for (auto &op : *block) {
if (i != positions[level]) {
++i;
continue;
}
if (level == positions.size() - 1)
return &op;
if (auto childAffineForOp = dyn_cast<AffineForOp>(op))
return getInstAtPosition(positions, level + 1,
childAffineForOp.getBody());
for (auto ®ion : op.getRegions()) {
for (auto &b : region)
if (auto *ret = getInstAtPosition(positions, level + 1, &b))
return ret;
}
return nullptr;
}
return nullptr;
}
// Adds loop IV bounds to 'cst' for loop IVs not found in 'ivs'.
static LogicalResult addMissingLoopIVBounds(SmallPtrSet<Value, 8> &ivs,
FlatAffineValueConstraints *cst) {
for (unsigned i = 0, e = cst->getNumDimVars(); i < e; ++i) {
auto value = cst->getValue(i);
if (ivs.count(value) == 0) {
assert(isAffineForInductionVar(value));
auto loop = getForInductionVarOwner(value);
if (failed(cst->addAffineForOpDomain(loop)))
return failure();
}
}
return success();
}
/// Returns the innermost common loop depth for the set of operations in 'ops'.
// TODO: Move this to LoopUtils.
unsigned mlir::affine::getInnermostCommonLoopDepth(
ArrayRef<Operation *> ops, SmallVectorImpl<AffineForOp> *surroundingLoops) {
unsigned numOps = ops.size();
assert(numOps > 0 && "Expected at least one operation");
std::vector<SmallVector<AffineForOp, 4>> loops(numOps);
unsigned loopDepthLimit = std::numeric_limits<unsigned>::max();
for (unsigned i = 0; i < numOps; ++i) {
getAffineForIVs(*ops[i], &loops[i]);
loopDepthLimit =
std::min(loopDepthLimit, static_cast<unsigned>(loops[i].size()));
}
unsigned loopDepth = 0;
for (unsigned d = 0; d < loopDepthLimit; ++d) {
unsigned i;
for (i = 1; i < numOps; ++i) {
if (loops[i - 1][d] != loops[i][d])
return loopDepth;
}
if (surroundingLoops)
surroundingLoops->push_back(loops[i - 1][d]);
++loopDepth;
}
return loopDepth;
}
/// Computes in 'sliceUnion' the union of all slice bounds computed at
/// 'loopDepth' between all dependent pairs of ops in 'opsA' and 'opsB', and
/// then verifies if it is valid. Returns 'SliceComputationResult::Success' if
/// union was computed correctly, an appropriate failure otherwise.
SliceComputationResult
mlir::affine::computeSliceUnion(ArrayRef<Operation *> opsA,
ArrayRef<Operation *> opsB, unsigned loopDepth,
unsigned numCommonLoops, bool isBackwardSlice,
ComputationSliceState *sliceUnion) {
// Compute the union of slice bounds between all pairs in 'opsA' and
// 'opsB' in 'sliceUnionCst'.
FlatAffineValueConstraints sliceUnionCst;
assert(sliceUnionCst.getNumDimAndSymbolVars() == 0);
std::vector<std::pair<Operation *, Operation *>> dependentOpPairs;
for (auto *i : opsA) {
MemRefAccess srcAccess(i);
for (auto *j : opsB) {
MemRefAccess dstAccess(j);
if (srcAccess.memref != dstAccess.memref)
continue;
// Check if 'loopDepth' exceeds nesting depth of src/dst ops.
if ((!isBackwardSlice && loopDepth > getNestingDepth(i)) ||
(isBackwardSlice && loopDepth > getNestingDepth(j))) {
LLVM_DEBUG(llvm::dbgs() << "Invalid loop depth\n");
return SliceComputationResult::GenericFailure;
}
bool readReadAccesses = isa<AffineReadOpInterface>(srcAccess.opInst) &&
isa<AffineReadOpInterface>(dstAccess.opInst);
FlatAffineValueConstraints dependenceConstraints;
// Check dependence between 'srcAccess' and 'dstAccess'.
DependenceResult result = checkMemrefAccessDependence(
srcAccess, dstAccess, /*loopDepth=*/numCommonLoops + 1,
&dependenceConstraints, /*dependenceComponents=*/nullptr,
/*allowRAR=*/readReadAccesses);
if (result.value == DependenceResult::Failure) {
LLVM_DEBUG(llvm::dbgs() << "Dependence check failed\n");
return SliceComputationResult::GenericFailure;
}
if (result.value == DependenceResult::NoDependence)
continue;
dependentOpPairs.emplace_back(i, j);
// Compute slice bounds for 'srcAccess' and 'dstAccess'.
ComputationSliceState tmpSliceState;
mlir::affine::getComputationSliceState(i, j, &dependenceConstraints,
loopDepth, isBackwardSlice,
&tmpSliceState);
if (sliceUnionCst.getNumDimAndSymbolVars() == 0) {
// Initialize 'sliceUnionCst' with the bounds computed in previous step.
if (failed(tmpSliceState.getAsConstraints(&sliceUnionCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return SliceComputationResult::GenericFailure;
}
assert(sliceUnionCst.getNumDimAndSymbolVars() > 0);
continue;
}
// Compute constraints for 'tmpSliceState' in 'tmpSliceCst'.
FlatAffineValueConstraints tmpSliceCst;
if (failed(tmpSliceState.getAsConstraints(&tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute slice bound constraints\n");
return SliceComputationResult::GenericFailure;
}
// Align coordinate spaces of 'sliceUnionCst' and 'tmpSliceCst' if needed.
if (!sliceUnionCst.areVarsAlignedWithOther(tmpSliceCst)) {
// Pre-constraint var alignment: record loop IVs used in each constraint
// system.
SmallPtrSet<Value, 8> sliceUnionIVs;
for (unsigned k = 0, l = sliceUnionCst.getNumDimVars(); k < l; ++k)
sliceUnionIVs.insert(sliceUnionCst.getValue(k));
SmallPtrSet<Value, 8> tmpSliceIVs;
for (unsigned k = 0, l = tmpSliceCst.getNumDimVars(); k < l; ++k)
tmpSliceIVs.insert(tmpSliceCst.getValue(k));
sliceUnionCst.mergeAndAlignVarsWithOther(/*offset=*/0, &tmpSliceCst);
// Post-constraint var alignment: add loop IV bounds missing after
// var alignment to constraint systems. This can occur if one constraint
// system uses an loop IV that is not used by the other. The call
// to unionBoundingBox below expects constraints for each Loop IV, even
// if they are the unsliced full loop bounds added here.
if (failed(addMissingLoopIVBounds(sliceUnionIVs, &sliceUnionCst)))
return SliceComputationResult::GenericFailure;
if (failed(addMissingLoopIVBounds(tmpSliceIVs, &tmpSliceCst)))
return SliceComputationResult::GenericFailure;
}
// Compute union bounding box of 'sliceUnionCst' and 'tmpSliceCst'.
if (sliceUnionCst.getNumLocalVars() > 0 ||
tmpSliceCst.getNumLocalVars() > 0 ||
failed(sliceUnionCst.unionBoundingBox(tmpSliceCst))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute union bounding box of slice bounds\n");
return SliceComputationResult::GenericFailure;
}
}
}
// Empty union.
if (sliceUnionCst.getNumDimAndSymbolVars() == 0)
return SliceComputationResult::GenericFailure;
// Gather loops surrounding ops from loop nest where slice will be inserted.
SmallVector<Operation *, 4> ops;
for (auto &dep : dependentOpPairs) {
ops.push_back(isBackwardSlice ? dep.second : dep.first);
}
SmallVector<AffineForOp, 4> surroundingLoops;
unsigned innermostCommonLoopDepth =
getInnermostCommonLoopDepth(ops, &surroundingLoops);
if (loopDepth > innermostCommonLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "Exceeds max loop depth\n");
return SliceComputationResult::GenericFailure;
}
// Store 'numSliceLoopIVs' before converting dst loop IVs to dims.
unsigned numSliceLoopIVs = sliceUnionCst.getNumDimVars();
// Convert any dst loop IVs which are symbol variables to dim variables.
sliceUnionCst.convertLoopIVSymbolsToDims();
sliceUnion->clearBounds();
sliceUnion->lbs.resize(numSliceLoopIVs, AffineMap());
sliceUnion->ubs.resize(numSliceLoopIVs, AffineMap());
// Get slice bounds from slice union constraints 'sliceUnionCst'.
sliceUnionCst.getSliceBounds(/*offset=*/0, numSliceLoopIVs,
opsA[0]->getContext(), &sliceUnion->lbs,
&sliceUnion->ubs);
// Add slice bound operands of union.
SmallVector<Value, 4> sliceBoundOperands;
sliceUnionCst.getValues(numSliceLoopIVs,
sliceUnionCst.getNumDimAndSymbolVars(),
&sliceBoundOperands);
// Copy src loop IVs from 'sliceUnionCst' to 'sliceUnion'.
sliceUnion->ivs.clear();
sliceUnionCst.getValues(0, numSliceLoopIVs, &sliceUnion->ivs);
// Set loop nest insertion point to block start at 'loopDepth'.
sliceUnion->insertPoint =
isBackwardSlice
? surroundingLoops[loopDepth - 1].getBody()->begin()
: std::prev(surroundingLoops[loopDepth - 1].getBody()->end());
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceUnion->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceUnion->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Check if the slice computed is valid. Return success only if it is verified
// that the slice is valid, otherwise return appropriate failure status.
std::optional<bool> isSliceValid = sliceUnion->isSliceValid();
if (!isSliceValid) {
LLVM_DEBUG(llvm::dbgs() << "Cannot determine if the slice is valid\n");
return SliceComputationResult::GenericFailure;
}
if (!*isSliceValid)
return SliceComputationResult::IncorrectSliceFailure;
return SliceComputationResult::Success;
}
// TODO: extend this to handle multiple result maps.
static std::optional<uint64_t> getConstDifference(AffineMap lbMap,
AffineMap ubMap) {
assert(lbMap.getNumResults() == 1 && "expected single result bound map");
assert(ubMap.getNumResults() == 1 && "expected single result bound map");
assert(lbMap.getNumDims() == ubMap.getNumDims());
assert(lbMap.getNumSymbols() == ubMap.getNumSymbols());
AffineExpr lbExpr(lbMap.getResult(0));
AffineExpr ubExpr(ubMap.getResult(0));
auto loopSpanExpr = simplifyAffineExpr(ubExpr - lbExpr, lbMap.getNumDims(),
lbMap.getNumSymbols());
auto cExpr = loopSpanExpr.dyn_cast<AffineConstantExpr>();
if (!cExpr)
return std::nullopt;
return cExpr.getValue();
}
// Builds a map 'tripCountMap' from AffineForOp to constant trip count for loop
// nest surrounding represented by slice loop bounds in 'slice'. Returns true
// on success, false otherwise (if a non-constant trip count was encountered).
// TODO: Make this work with non-unit step loops.
bool mlir::affine::buildSliceTripCountMap(
const ComputationSliceState &slice,
llvm::SmallDenseMap<Operation *, uint64_t, 8> *tripCountMap) {
unsigned numSrcLoopIVs = slice.ivs.size();
// Populate map from AffineForOp -> trip count
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
AffineForOp forOp = getForInductionVarOwner(slice.ivs[i]);
auto *op = forOp.getOperation();
AffineMap lbMap = slice.lbs[i];
AffineMap ubMap = slice.ubs[i];
// If lower or upper bound maps are null or provide no results, it implies
// that source loop was not at all sliced, and the entire loop will be a
// part of the slice.
if (!lbMap || lbMap.getNumResults() == 0 || !ubMap ||
ubMap.getNumResults() == 0) {
// The iteration of src loop IV 'i' was not sliced. Use full loop bounds.
if (forOp.hasConstantLowerBound() && forOp.hasConstantUpperBound()) {
(*tripCountMap)[op] =
forOp.getConstantUpperBound() - forOp.getConstantLowerBound();
continue;
}
std::optional<uint64_t> maybeConstTripCount = getConstantTripCount(forOp);
if (maybeConstTripCount.has_value()) {
(*tripCountMap)[op] = *maybeConstTripCount;
continue;
}
return false;
}
std::optional<uint64_t> tripCount = getConstDifference(lbMap, ubMap);
// Slice bounds are created with a constant ub - lb difference.
if (!tripCount.has_value())
return false;
(*tripCountMap)[op] = *tripCount;
}
return true;
}
// Return the number of iterations in the given slice.
uint64_t mlir::affine::getSliceIterationCount(
const llvm::SmallDenseMap<Operation *, uint64_t, 8> &sliceTripCountMap) {
uint64_t iterCount = 1;
for (const auto &count : sliceTripCountMap) {
iterCount *= count.second;
}
return iterCount;
}
const char *const kSliceFusionBarrierAttrName = "slice_fusion_barrier";
// Computes slice bounds by projecting out any loop IVs from
// 'dependenceConstraints' at depth greater than 'loopDepth', and computes slice
// bounds in 'sliceState' which represent the one loop nest's IVs in terms of
// the other loop nest's IVs, symbols and constants (using 'isBackwardsSlice').
void mlir::affine::getComputationSliceState(
Operation *depSourceOp, Operation *depSinkOp,
FlatAffineValueConstraints *dependenceConstraints, unsigned loopDepth,
bool isBackwardSlice, ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getAffineForIVs(*depSourceOp, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getAffineForIVs(*depSinkOp, &dstLoopIVs);
unsigned numDstLoopIVs = dstLoopIVs.size();
assert((!isBackwardSlice && loopDepth <= numSrcLoopIVs) ||
(isBackwardSlice && loopDepth <= numDstLoopIVs));
// Project out dimensions other than those up to 'loopDepth'.
unsigned pos = isBackwardSlice ? numSrcLoopIVs + loopDepth : loopDepth;
unsigned num =
isBackwardSlice ? numDstLoopIVs - loopDepth : numSrcLoopIVs - loopDepth;
dependenceConstraints->projectOut(pos, num);
// Add slice loop IV values to 'sliceState'.
unsigned offset = isBackwardSlice ? 0 : loopDepth;
unsigned numSliceLoopIVs = isBackwardSlice ? numSrcLoopIVs : numDstLoopIVs;
dependenceConstraints->getValues(offset, offset + numSliceLoopIVs,
&sliceState->ivs);
// Set up lower/upper bound affine maps for the slice.
sliceState->lbs.resize(numSliceLoopIVs, AffineMap());
sliceState->ubs.resize(numSliceLoopIVs, AffineMap());
// Get bounds for slice IVs in terms of other IVs, symbols, and constants.
dependenceConstraints->getSliceBounds(offset, numSliceLoopIVs,
depSourceOp->getContext(),
&sliceState->lbs, &sliceState->ubs);
// Set up bound operands for the slice's lower and upper bounds.
SmallVector<Value, 4> sliceBoundOperands;
unsigned numDimsAndSymbols = dependenceConstraints->getNumDimAndSymbolVars();
for (unsigned i = 0; i < numDimsAndSymbols; ++i) {
if (i < offset || i >= offset + numSliceLoopIVs) {
sliceBoundOperands.push_back(dependenceConstraints->getValue(i));
}
}
// Give each bound its own copy of 'sliceBoundOperands' for subsequent
// canonicalization.
sliceState->lbOperands.resize(numSliceLoopIVs, sliceBoundOperands);
sliceState->ubOperands.resize(numSliceLoopIVs, sliceBoundOperands);
// Set destination loop nest insertion point to block start at 'dstLoopDepth'.
sliceState->insertPoint =
isBackwardSlice ? dstLoopIVs[loopDepth - 1].getBody()->begin()
: std::prev(srcLoopIVs[loopDepth - 1].getBody()->end());
llvm::SmallDenseSet<Value, 8> sequentialLoops;
if (isa<AffineReadOpInterface>(depSourceOp) &&
isa<AffineReadOpInterface>(depSinkOp)) {
// For read-read access pairs, clear any slice bounds on sequential loops.
// Get sequential loops in loop nest rooted at 'srcLoopIVs[0]'.
getSequentialLoops(isBackwardSlice ? srcLoopIVs[0] : dstLoopIVs[0],
&sequentialLoops);
}
auto getSliceLoop = [&](unsigned i) {
return isBackwardSlice ? srcLoopIVs[i] : dstLoopIVs[i];
};
auto isInnermostInsertion = [&]() {
return (isBackwardSlice ? loopDepth >= srcLoopIVs.size()
: loopDepth >= dstLoopIVs.size());
};
llvm::SmallDenseMap<Operation *, uint64_t, 8> sliceTripCountMap;
auto srcIsUnitSlice = [&]() {
return (buildSliceTripCountMap(*sliceState, &sliceTripCountMap) &&
(getSliceIterationCount(sliceTripCountMap) == 1));
};
// Clear all sliced loop bounds beginning at the first sequential loop, or
// first loop with a slice fusion barrier attribute..
for (unsigned i = 0; i < numSliceLoopIVs; ++i) {
Value iv = getSliceLoop(i).getInductionVar();
if (sequentialLoops.count(iv) == 0 &&
getSliceLoop(i)->getAttr(kSliceFusionBarrierAttrName) == nullptr)
continue;
// Skip reset of bounds of reduction loop inserted in the destination loop
// that meets the following conditions:
// 1. Slice is single trip count.
// 2. Loop bounds of the source and destination match.
// 3. Is being inserted at the innermost insertion point.
std::optional<bool> isMaximal = sliceState->isMaximal();
if (isLoopParallelAndContainsReduction(getSliceLoop(i)) &&
isInnermostInsertion() && srcIsUnitSlice() && isMaximal && *isMaximal)
continue;
for (unsigned j = i; j < numSliceLoopIVs; ++j) {
sliceState->lbs[j] = AffineMap();
sliceState->ubs[j] = AffineMap();
}
break;
}
}
/// Creates a computation slice of the loop nest surrounding 'srcOpInst',
/// updates the slice loop bounds with any non-null bound maps specified in
/// 'sliceState', and inserts this slice into the loop nest surrounding
/// 'dstOpInst' at loop depth 'dstLoopDepth'.
// TODO: extend the slicing utility to compute slices that
// aren't necessarily a one-to-one relation b/w the source and destination. The
// relation between the source and destination could be many-to-many in general.
// TODO: the slice computation is incorrect in the cases
// where the dependence from the source to the destination does not cover the
// entire destination index set. Subtract out the dependent destination
// iterations from destination index set and check for emptiness --- this is one
// solution.
AffineForOp mlir::affine::insertBackwardComputationSlice(
Operation *srcOpInst, Operation *dstOpInst, unsigned dstLoopDepth,
ComputationSliceState *sliceState) {
// Get loop nest surrounding src operation.
SmallVector<AffineForOp, 4> srcLoopIVs;
getAffineForIVs(*srcOpInst, &srcLoopIVs);
unsigned numSrcLoopIVs = srcLoopIVs.size();
// Get loop nest surrounding dst operation.
SmallVector<AffineForOp, 4> dstLoopIVs;
getAffineForIVs(*dstOpInst, &dstLoopIVs);
unsigned dstLoopIVsSize = dstLoopIVs.size();
if (dstLoopDepth > dstLoopIVsSize) {
dstOpInst->emitError("invalid destination loop depth");
return AffineForOp();
}
// Find the op block positions of 'srcOpInst' within 'srcLoopIVs'.
SmallVector<unsigned, 4> positions;
// TODO: This code is incorrect since srcLoopIVs can be 0-d.
findInstPosition(srcOpInst, srcLoopIVs[0]->getBlock(), &positions);
// Clone src loop nest and insert it a the beginning of the operation block
// of the loop at 'dstLoopDepth' in 'dstLoopIVs'.
auto dstAffineForOp = dstLoopIVs[dstLoopDepth - 1];
OpBuilder b(dstAffineForOp.getBody(), dstAffineForOp.getBody()->begin());
auto sliceLoopNest =
cast<AffineForOp>(b.clone(*srcLoopIVs[0].getOperation()));
Operation *sliceInst =
getInstAtPosition(positions, /*level=*/0, sliceLoopNest.getBody());
// Get loop nest surrounding 'sliceInst'.
SmallVector<AffineForOp, 4> sliceSurroundingLoops;
getAffineForIVs(*sliceInst, &sliceSurroundingLoops);
// Sanity check.
unsigned sliceSurroundingLoopsSize = sliceSurroundingLoops.size();
(void)sliceSurroundingLoopsSize;
assert(dstLoopDepth + numSrcLoopIVs >= sliceSurroundingLoopsSize);
unsigned sliceLoopLimit = dstLoopDepth + numSrcLoopIVs;
(void)sliceLoopLimit;
assert(sliceLoopLimit >= sliceSurroundingLoopsSize);
// Update loop bounds for loops in 'sliceLoopNest'.
for (unsigned i = 0; i < numSrcLoopIVs; ++i) {
auto forOp = sliceSurroundingLoops[dstLoopDepth + i];
if (AffineMap lbMap = sliceState->lbs[i])
forOp.setLowerBound(sliceState->lbOperands[i], lbMap);
if (AffineMap ubMap = sliceState->ubs[i])
forOp.setUpperBound(sliceState->ubOperands[i], ubMap);
}
return sliceLoopNest;
}
// Constructs MemRefAccess populating it with the memref, its indices and
// opinst from 'loadOrStoreOpInst'.
MemRefAccess::MemRefAccess(Operation *loadOrStoreOpInst) {
if (auto loadOp = dyn_cast<AffineReadOpInterface>(loadOrStoreOpInst)) {
memref = loadOp.getMemRef();
opInst = loadOrStoreOpInst;
llvm::append_range(indices, loadOp.getMapOperands());
} else {
assert(isa<AffineWriteOpInterface>(loadOrStoreOpInst) &&
"Affine read/write op expected");
auto storeOp = cast<AffineWriteOpInterface>(loadOrStoreOpInst);
opInst = loadOrStoreOpInst;
memref = storeOp.getMemRef();
llvm::append_range(indices, storeOp.getMapOperands());
}
}
unsigned MemRefAccess::getRank() const {
return cast<MemRefType>(memref.getType()).getRank();
}
bool MemRefAccess::isStore() const {
return isa<AffineWriteOpInterface>(opInst);
}
/// Returns the nesting depth of this statement, i.e., the number of loops
/// surrounding this statement.
unsigned mlir::affine::getNestingDepth(Operation *op) {
Operation *currOp = op;
unsigned depth = 0;
while ((currOp = currOp->getParentOp())) {
if (isa<AffineForOp>(currOp))
depth++;
}
return depth;
}
/// Equal if both affine accesses are provably equivalent (at compile
/// time) when considering the memref, the affine maps and their respective
/// operands. The equality of access functions + operands is checked by
/// subtracting fully composed value maps, and then simplifying the difference
/// using the expression flattener.
/// TODO: this does not account for aliasing of memrefs.
bool MemRefAccess::operator==(const MemRefAccess &rhs) const {
if (memref != rhs.memref)
return false;
AffineValueMap diff, thisMap, rhsMap;
getAccessMap(&thisMap);
rhs.getAccessMap(&rhsMap);
AffineValueMap::difference(thisMap, rhsMap, &diff);
return llvm::all_of(diff.getAffineMap().getResults(),
[](AffineExpr e) { return e == 0; });
}
void mlir::affine::getAffineIVs(Operation &op, SmallVectorImpl<Value> &ivs) {
auto *currOp = op.getParentOp();
AffineForOp currAffineForOp;
// Traverse up the hierarchy collecting all 'affine.for' and affine.parallel
// operation while skipping over 'affine.if' operations.
while (currOp) {
if (AffineForOp currAffineForOp = dyn_cast<AffineForOp>(currOp))
ivs.push_back(currAffineForOp.getInductionVar());
else if (auto parOp = dyn_cast<AffineParallelOp>(currOp))
llvm::append_range(ivs, parOp.getIVs());
currOp = currOp->getParentOp();
}
std::reverse(ivs.begin(), ivs.end());
}
/// Returns the number of surrounding loops common to 'loopsA' and 'loopsB',
/// where each lists loops from outer-most to inner-most in loop nest.
unsigned mlir::affine::getNumCommonSurroundingLoops(Operation &a,
Operation &b) {
SmallVector<Value, 4> loopsA, loopsB;
getAffineIVs(a, loopsA);
getAffineIVs(b, loopsB);
unsigned minNumLoops = std::min(loopsA.size(), loopsB.size());
unsigned numCommonLoops = 0;
for (unsigned i = 0; i < minNumLoops; ++i) {
if (loopsA[i] != loopsB[i])
break;
++numCommonLoops;
}
return numCommonLoops;
}
static std::optional<int64_t> getMemoryFootprintBytes(Block &block,
Block::iterator start,
Block::iterator end,
int memorySpace) {
SmallDenseMap<Value, std::unique_ptr<MemRefRegion>, 4> regions;
// Walk this 'affine.for' operation to gather all memory regions.
auto result = block.walk(start, end, [&](Operation *opInst) -> WalkResult {
if (!isa<AffineReadOpInterface, AffineWriteOpInterface>(opInst)) {
// Neither load nor a store op.
return WalkResult::advance();
}
// Compute the memref region symbolic in any IVs enclosing this block.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(
region->compute(opInst,
/*loopDepth=*/getNestingDepth(&*block.begin())))) {
return opInst->emitError("error obtaining memory region\n");
}
auto it = regions.find(region->memref);
if (it == regions.end()) {
regions[region->memref] = std::move(region);
} else if (failed(it->second->unionBoundingBox(*region))) {
return opInst->emitWarning(
"getMemoryFootprintBytes: unable to perform a union on a memory "
"region");
}
return WalkResult::advance();
});
if (result.wasInterrupted())
return std::nullopt;
int64_t totalSizeInBytes = 0;
for (const auto ®ion : regions) {
std::optional<int64_t> size = region.second->getRegionSize();
if (!size.has_value())
return std::nullopt;
totalSizeInBytes += *size;
}
return totalSizeInBytes;
}
std::optional<int64_t> mlir::affine::getMemoryFootprintBytes(AffineForOp forOp,
int memorySpace) {
auto *forInst = forOp.getOperation();
return ::getMemoryFootprintBytes(
*forInst->getBlock(), Block::iterator(forInst),
std::next(Block::iterator(forInst)), memorySpace);
}
/// Returns whether a loop is parallel and contains a reduction loop.
bool mlir::affine::isLoopParallelAndContainsReduction(AffineForOp forOp) {
SmallVector<LoopReduction> reductions;
if (!isLoopParallel(forOp, &reductions))
return false;
return !reductions.empty();
}
/// Returns in 'sequentialLoops' all sequential loops in loop nest rooted
/// at 'forOp'.
void mlir::affine::getSequentialLoops(
AffineForOp forOp, llvm::SmallDenseSet<Value, 8> *sequentialLoops) {
forOp->walk([&](Operation *op) {
if (auto innerFor = dyn_cast<AffineForOp>(op))
if (!isLoopParallel(innerFor))
sequentialLoops->insert(innerFor.getInductionVar());
});
}
IntegerSet mlir::affine::simplifyIntegerSet(IntegerSet set) {
FlatAffineValueConstraints fac(set);
if (fac.isEmpty())
return IntegerSet::getEmptySet(set.getNumDims(), set.getNumSymbols(),
set.getContext());
fac.removeTrivialRedundancy();
auto simplifiedSet = fac.getAsIntegerSet(set.getContext());
assert(simplifiedSet && "guaranteed to succeed while roundtripping");
return simplifiedSet;
}
static void unpackOptionalValues(ArrayRef<std::optional<Value>> source,
SmallVector<Value> &target) {
target =
llvm::to_vector<4>(llvm::map_range(source, [](std::optional<Value> val) {
return val.has_value() ? *val : Value();
}));
}
/// Bound an identifier `pos` in a given FlatAffineValueConstraints with
/// constraints drawn from an affine map. Before adding the constraint, the
/// dimensions/symbols of the affine map are aligned with `constraints`.
/// `operands` are the SSA Value operands used with the affine map.
/// Note: This function adds a new symbol column to the `constraints` for each
/// dimension/symbol that exists in the affine map but not in `constraints`.
static LogicalResult alignAndAddBound(FlatAffineValueConstraints &constraints,
BoundType type, unsigned pos,
AffineMap map, ValueRange operands) {
SmallVector<Value> dims, syms, newSyms;
unpackOptionalValues(constraints.getMaybeValues(VarKind::SetDim), dims);
unpackOptionalValues(constraints.getMaybeValues(VarKind::Symbol), syms);
AffineMap alignedMap =
alignAffineMapWithValues(map, operands, dims, syms, &newSyms);
for (unsigned i = syms.size(); i < newSyms.size(); ++i)
constraints.appendSymbolVar(newSyms[i]);
return constraints.addBound(type, pos, alignedMap);
}
/// Add `val` to each result of `map`.
static AffineMap addConstToResults(AffineMap map, int64_t val) {
SmallVector<AffineExpr> newResults;
for (AffineExpr r : map.getResults())
newResults.push_back(r + val);
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), newResults,
map.getContext());
}
// Attempt to simplify the given min/max operation by proving that its value is
// bounded by the same lower and upper bound.
//
// Bounds are computed by FlatAffineValueConstraints. Invariants required for
// finding/proving bounds should be supplied via `constraints`.
//
// 1. Add dimensions for `op` and `opBound` (lower or upper bound of `op`).
// 2. Compute an upper bound of `op` (in case of `isMin`) or a lower bound (in
// case of `!isMin`) and bind it to `opBound`. SSA values that are used in
// `op` but are not part of `constraints`, are added as extra symbols.
// 3. For each result of `op`: Add result as a dimension `r_i`. Prove that:
// * If `isMin`: r_i >= opBound
// * If `isMax`: r_i <= opBound
// If this is the case, ub(op) == lb(op).
// 4. Replace `op` with `opBound`.
//
// In summary, the following constraints are added throughout this function.
// Note: `invar` are dimensions added by the caller to express the invariants.
// (Showing only the case where `isMin`.)
//
// invar | op | opBound | r_i | extra syms... | const | eq/ineq
// ------+-------+---------+-----+---------------+-------+-------------------
// (various eq./ineq. constraining `invar`, added by the caller)
// ... | 0 | 0 | 0 | 0 | ... | ...
// ------+-------+---------+-----+---------------+-------+-------------------
// (various ineq. constraining `op` in terms of `op` operands (`invar` and
// extra `op` operands "extra syms" that are not in `invar`)).
// ... | -1 | 0 | 0 | ... | ... | >= 0
// ------+-------+---------+-----+---------------+-------+-------------------
// (set `opBound` to `op` upper bound in terms of `invar` and "extra syms")
// ... | 0 | -1 | 0 | ... | ... | = 0
// ------+-------+---------+-----+---------------+-------+-------------------
// (for each `op` map result r_i: set r_i to corresponding map result,
// prove that r_i >= minOpUb via contradiction)
// ... | 0 | 0 | -1 | ... | ... | = 0
// 0 | 0 | 1 | -1 | 0 | -1 | >= 0
//
FailureOr<AffineValueMap> mlir::affine::simplifyConstrainedMinMaxOp(
Operation *op, FlatAffineValueConstraints constraints) {
bool isMin = isa<AffineMinOp>(op);
assert((isMin || isa<AffineMaxOp>(op)) && "expect AffineMin/MaxOp");
MLIRContext *ctx = op->getContext();
Builder builder(ctx);
AffineMap map =
isMin ? cast<AffineMinOp>(op).getMap() : cast<AffineMaxOp>(op).getMap();
ValueRange operands = op->getOperands();
unsigned numResults = map.getNumResults();
// Add a few extra dimensions.
unsigned dimOp = constraints.appendDimVar(); // `op`
unsigned dimOpBound = constraints.appendDimVar(); // `op` lower/upper bound
unsigned resultDimStart = constraints.appendDimVar(/*num=*/numResults);
// Add an inequality for each result expr_i of map:
// isMin: op <= expr_i, !isMin: op >= expr_i
auto boundType = isMin ? BoundType::UB : BoundType::LB;
// Upper bounds are exclusive, so add 1. (`affine.min` ops are inclusive.)
AffineMap mapLbUb = isMin ? addConstToResults(map, 1) : map;
if (failed(
alignAndAddBound(constraints, boundType, dimOp, mapLbUb, operands)))
return failure();
// Try to compute a lower/upper bound for op, expressed in terms of the other
// `dims` and extra symbols.
SmallVector<AffineMap> opLb(1), opUb(1);
constraints.getSliceBounds(dimOp, 1, ctx, &opLb, &opUb);
AffineMap sliceBound = isMin ? opUb[0] : opLb[0];
// TODO: `getSliceBounds` may return multiple bounds at the moment. This is
// a TODO of `getSliceBounds` and not handled here.
if (!sliceBound || sliceBound.getNumResults() != 1)
return failure(); // No or multiple bounds found.
// Recover the inclusive UB in the case of an `affine.min`.
AffineMap boundMap = isMin ? addConstToResults(sliceBound, -1) : sliceBound;
// Add an equality: Set dimOpBound to computed bound.
// Add back dimension for op. (Was removed by `getSliceBounds`.)
AffineMap alignedBoundMap = boundMap.shiftDims(/*shift=*/1, /*offset=*/dimOp);
if (failed(constraints.addBound(BoundType::EQ, dimOpBound, alignedBoundMap)))
return failure();
// If the constraint system is empty, there is an inconsistency. (E.g., this
// can happen if loop lb > ub.)
if (constraints.isEmpty())
return failure();
// In the case of `isMin` (`!isMin` is inversed):
// Prove that each result of `map` has a lower bound that is equal to (or
// greater than) the upper bound of `op` (`dimOpBound`). In that case, `op`
// can be replaced with the bound. I.e., prove that for each result
// expr_i (represented by dimension r_i):
//
// r_i >= opBound
//
// To prove this inequality, add its negation to the constraint set and prove
// that the constraint set is empty.
for (unsigned i = resultDimStart; i < resultDimStart + numResults; ++i) {
FlatAffineValueConstraints newConstr(constraints);
// Add an equality: r_i = expr_i
// Note: These equalities could have been added earlier and used to express
// minOp <= expr_i. However, then we run the risk that `getSliceBounds`
// computes minOpUb in terms of r_i dims, which is not desired.
if (failed(alignAndAddBound(newConstr, BoundType::EQ, i,
map.getSubMap({i - resultDimStart}), operands)))
return failure();
// If `isMin`: Add inequality: r_i < opBound
// equiv.: opBound - r_i - 1 >= 0
// If `!isMin`: Add inequality: r_i > opBound
// equiv.: -opBound + r_i - 1 >= 0
SmallVector<int64_t> ineq(newConstr.getNumCols(), 0);
ineq[dimOpBound] = isMin ? 1 : -1;
ineq[i] = isMin ? -1 : 1;
ineq[newConstr.getNumCols() - 1] = -1;
newConstr.addInequality(ineq);
if (!newConstr.isEmpty())
return failure();
}
// Lower and upper bound of `op` are equal. Replace `minOp` with its bound.
AffineMap newMap = alignedBoundMap;
SmallVector<Value> newOperands;
unpackOptionalValues(constraints.getMaybeValues(), newOperands);
// If dims/symbols have known constant values, use those in order to simplify
// the affine map further.
for (int64_t i = 0, e = constraints.getNumDimAndSymbolVars(); i < e; ++i) {
// Skip unused operands and operands that are already constants.
if (!newOperands[i] || getConstantIntValue(newOperands[i]))
continue;
if (auto bound = constraints.getConstantBound64(BoundType::EQ, i)) {
AffineExpr expr =
i < newMap.getNumDims()
? builder.getAffineDimExpr(i)
: builder.getAffineSymbolExpr(i - newMap.getNumDims());
newMap = newMap.replace(expr, builder.getAffineConstantExpr(*bound),
newMap.getNumDims(), newMap.getNumSymbols());
}
}
affine::canonicalizeMapAndOperands(&newMap, &newOperands);
return AffineValueMap(newMap, newOperands);
}
|