1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
|
//===- LoopFusion.cpp - Code to perform loop fusion -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements affine fusion.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Passes.h"
#include "mlir/Dialect/Affine/Analysis/AffineStructures.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/LoopFusionUtils.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Builders.h"
#include "mlir/Transforms/Passes.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <iomanip>
#include <optional>
#include <sstream>
namespace mlir {
namespace affine {
#define GEN_PASS_DEF_AFFINELOOPFUSION
#include "mlir/Dialect/Affine/Passes.h.inc"
} // namespace affine
} // namespace mlir
#define DEBUG_TYPE "affine-loop-fusion"
using namespace mlir;
using namespace mlir::affine;
namespace {
/// Loop fusion pass. This pass currently supports a greedy fusion policy,
/// which fuses loop nests with single-writer/single-reader memref dependences
/// with the goal of improving locality.
// TODO: Support fusion of source loop nests which write to multiple
// memrefs, where each memref can have multiple users (if profitable).
// TODO: Extend this pass to check for fusion preventing dependences,
// and add support for more general loop fusion algorithms.
struct LoopFusion : public affine::impl::AffineLoopFusionBase<LoopFusion> {
LoopFusion() = default;
LoopFusion(unsigned fastMemorySpace, uint64_t localBufSizeThresholdBytes,
bool maximalFusion, enum FusionMode affineFusionMode) {
this->fastMemorySpace = fastMemorySpace;
this->localBufSizeThreshold = localBufSizeThresholdBytes / 1024;
this->maximalFusion = maximalFusion;
this->affineFusionMode = affineFusionMode;
}
void runOnBlock(Block *block);
void runOnOperation() override;
};
} // namespace
/// Returns true if node 'srcId' can be removed after fusing it with node
/// 'dstId'. The node can be removed if any of the following conditions are met:
/// 1. 'srcId' has no output dependences after fusion and no escaping memrefs.
/// 2. 'srcId' has no output dependences after fusion, has escaping memrefs
/// and the fusion slice is maximal.
/// 3. 'srcId' has output dependences after fusion, the fusion slice is
/// maximal and the fusion insertion point dominates all the dependences.
static bool canRemoveSrcNodeAfterFusion(
unsigned srcId, unsigned dstId, const ComputationSliceState &fusionSlice,
Operation *fusedLoopInsPoint, const DenseSet<Value> &escapingMemRefs,
MemRefDependenceGraph *mdg) {
Operation *dstNodeOp = mdg->getNode(dstId)->op;
bool hasOutDepsAfterFusion = false;
for (auto &outEdge : mdg->outEdges[srcId]) {
Operation *depNodeOp = mdg->getNode(outEdge.id)->op;
// Skip dependence with dstOp since it will be removed after fusion.
if (depNodeOp == dstNodeOp)
continue;
// Only fusion within the same block is supported. Use domination analysis
// when needed.
if (depNodeOp->getBlock() != dstNodeOp->getBlock())
return false;
// Check if the insertion point of the fused loop dominates the dependence.
// Otherwise, the src loop can't be removed.
if (fusedLoopInsPoint != depNodeOp &&
!fusedLoopInsPoint->isBeforeInBlock(depNodeOp)) {
LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: dst loop doesn't "
"dominate dependence\n");
return false;
}
hasOutDepsAfterFusion = true;
}
// If src loop has dependences after fusion or it writes to an live-out or
// escaping memref, we can only remove it if the fusion slice is maximal so
// that all the dependences are preserved.
if (hasOutDepsAfterFusion || !escapingMemRefs.empty()) {
std::optional<bool> isMaximal = fusionSlice.isMaximal();
if (!isMaximal) {
LLVM_DEBUG(llvm::dbgs() << "Src loop can't be removed: can't determine "
"if fusion is maximal\n");
return false;
}
if (!*isMaximal) {
LLVM_DEBUG(llvm::dbgs()
<< "Src loop can't be removed: fusion is not maximal\n");
return false;
}
}
return true;
}
/// Returns in 'srcIdCandidates' the producer fusion candidates for consumer
/// 'dstId'. Candidates are sorted by node id order. This order corresponds to
/// the program order when the 'mdg' is created. However, program order is not
/// guaranteed and must not be required by the client. Program order won't be
/// held if the 'mdg' is reused from a previous fusion step or if the node
/// creation order changes in the future to support more advance cases.
// TODO: Move this to a loop fusion utility once 'mdg' is also moved.
static void getProducerCandidates(unsigned dstId, MemRefDependenceGraph *mdg,
SmallVectorImpl<unsigned> &srcIdCandidates) {
// Skip if no input edges along which to fuse.
if (mdg->inEdges.count(dstId) == 0)
return;
// Gather memrefs from loads in 'dstId'.
auto *dstNode = mdg->getNode(dstId);
DenseSet<Value> consumedMemrefs;
for (Operation *load : dstNode->loads)
consumedMemrefs.insert(cast<AffineReadOpInterface>(load).getMemRef());
// Traverse 'dstId' incoming edges and gather the nodes that contain a store
// to one of the consumed memrefs.
for (auto &srcEdge : mdg->inEdges[dstId]) {
auto *srcNode = mdg->getNode(srcEdge.id);
// Skip if 'srcNode' is not a loop nest.
if (!isa<AffineForOp>(srcNode->op))
continue;
if (any_of(srcNode->stores, [&](Operation *op) {
auto storeOp = cast<AffineWriteOpInterface>(op);
return consumedMemrefs.count(storeOp.getMemRef()) > 0;
}))
srcIdCandidates.push_back(srcNode->id);
}
llvm::sort(srcIdCandidates);
srcIdCandidates.erase(
std::unique(srcIdCandidates.begin(), srcIdCandidates.end()),
srcIdCandidates.end());
}
/// Returns in 'producerConsumerMemrefs' the memrefs involved in a
/// producer-consumer dependence between 'srcId' and 'dstId'.
static void
gatherProducerConsumerMemrefs(unsigned srcId, unsigned dstId,
MemRefDependenceGraph *mdg,
DenseSet<Value> &producerConsumerMemrefs) {
auto *dstNode = mdg->getNode(dstId);
auto *srcNode = mdg->getNode(srcId);
gatherProducerConsumerMemrefs(srcNode->stores, dstNode->loads,
producerConsumerMemrefs);
}
/// A memref escapes in the context of the fusion pass if either:
/// 1. it (or its alias) is a block argument, or
/// 2. created by an op not known to guarantee alias freedom,
/// 3. it (or its alias) are used by ops other than affine dereferencing ops
/// (e.g., by call op, memref load/store ops, alias creating ops, unknown ops,
/// terminator ops, etc.); such ops do not deference the memref in an affine
/// way.
static bool isEscapingMemref(Value memref, Block *block) {
Operation *defOp = memref.getDefiningOp();
// Check if 'memref' is a block argument.
if (!defOp)
return true;
// Check if this is defined to be an alias of another memref.
if (auto viewOp = dyn_cast<mlir::ViewLikeOpInterface>(defOp))
if (isEscapingMemref(viewOp.getViewSource(), block))
return true;
// Any op besides allocating ops wouldn't guarantee alias freedom
if (!hasSingleEffect<mlir::MemoryEffects::Allocate>(defOp, memref))
return true;
// Check if 'memref' is used by a non-deferencing op (including unknown ones)
// (e.g., call ops, alias creating ops, etc.).
return llvm::any_of(memref.getUsers(), [&](Operation *user) {
// Ignore users outside of `block`.
if (block->getParent()->findAncestorOpInRegion(*user)->getBlock() != block)
return false;
return !isa<AffineMapAccessInterface>(*user);
});
}
/// Returns in 'escapingMemRefs' the memrefs from affine store ops in node 'id'
/// that escape the block or are accessed in a non-affine way.
static void gatherEscapingMemrefs(unsigned id, MemRefDependenceGraph *mdg,
DenseSet<Value> &escapingMemRefs) {
auto *node = mdg->getNode(id);
for (Operation *storeOp : node->stores) {
auto memref = cast<AffineWriteOpInterface>(storeOp).getMemRef();
if (escapingMemRefs.count(memref))
continue;
if (isEscapingMemref(memref, &mdg->block))
escapingMemRefs.insert(memref);
}
}
// Initializes the data dependence graph by walking operations in `block`.
// Assigns each node in the graph a node id based on program order in 'f'.
bool MemRefDependenceGraph::init() {
LLVM_DEBUG(llvm::dbgs() << "--- Initializing MDG ---\n");
// Map from a memref to the set of ids of the nodes that have ops accessing
// the memref.
DenseMap<Value, SetVector<unsigned>> memrefAccesses;
DenseMap<Operation *, unsigned> forToNodeMap;
for (Operation &op : block) {
if (auto forOp = dyn_cast<AffineForOp>(op)) {
// Create graph node 'id' to represent top-level 'forOp' and record
// all loads and store accesses it contains.
LoopNestStateCollector collector;
collector.collect(&op);
// Return false if a region holding op other than 'affine.for' and
// 'affine.if' was found (not currently supported).
if (collector.hasNonAffineRegionOp)
return false;
Node node(nextNodeId++, &op);
for (auto *opInst : collector.loadOpInsts) {
node.loads.push_back(opInst);
auto memref = cast<AffineReadOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
for (auto *opInst : collector.storeOpInsts) {
node.stores.push_back(opInst);
auto memref = cast<AffineWriteOpInterface>(opInst).getMemRef();
memrefAccesses[memref].insert(node.id);
}
forToNodeMap[&op] = node.id;
nodes.insert({node.id, node});
} else if (auto loadOp = dyn_cast<AffineReadOpInterface>(op)) {
// Create graph node for top-level load op.
Node node(nextNodeId++, &op);
node.loads.push_back(&op);
auto memref = cast<AffineReadOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (auto storeOp = dyn_cast<AffineWriteOpInterface>(op)) {
// Create graph node for top-level store op.
Node node(nextNodeId++, &op);
node.stores.push_back(&op);
auto memref = cast<AffineWriteOpInterface>(op).getMemRef();
memrefAccesses[memref].insert(node.id);
nodes.insert({node.id, node});
} else if (op.getNumRegions() != 0) {
// Return false if another region is found (not currently supported).
return false;
} else if (op.getNumResults() > 0 && !op.use_empty()) {
// Create graph node for top-level producer of SSA values, which
// could be used by loop nest nodes.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
} else if (isa<CallOpInterface>(op)) {
// Create graph node for top-level Call Op that takes any argument of
// memref type. Call Op that returns one or more memref type results
// is already taken care of, by the previous conditions.
if (llvm::any_of(op.getOperandTypes(),
[&](Type t) { return isa<MemRefType>(t); })) {
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
}
} else if (hasEffect<MemoryEffects::Write, MemoryEffects::Free>(&op)) {
// Create graph node for top-level op, which could have a memory write
// side effect.
Node node(nextNodeId++, &op);
nodes.insert({node.id, node});
}
}
for (auto &idAndNode : nodes) {
LLVM_DEBUG(llvm::dbgs() << "Create node " << idAndNode.first << " for:\n"
<< *(idAndNode.second.op) << "\n");
(void)idAndNode;
}
// Add dependence edges between nodes which produce SSA values and their
// users. Load ops can be considered as the ones producing SSA values.
for (auto &idAndNode : nodes) {
const Node &node = idAndNode.second;
// Stores don't define SSA values, skip them.
if (!node.stores.empty())
continue;
Operation *opInst = node.op;
for (Value value : opInst->getResults()) {
for (Operation *user : value.getUsers()) {
// Ignore users outside of the block.
if (block.getParent()->findAncestorOpInRegion(*user)->getBlock() !=
&block)
continue;
SmallVector<AffineForOp, 4> loops;
getAffineForIVs(*user, &loops);
if (loops.empty())
continue;
assert(forToNodeMap.count(loops[0]) > 0 && "missing mapping");
unsigned userLoopNestId = forToNodeMap[loops[0]];
addEdge(node.id, userLoopNestId, value);
}
}
}
// Walk memref access lists and add graph edges between dependent nodes.
for (auto &memrefAndList : memrefAccesses) {
unsigned n = memrefAndList.second.size();
for (unsigned i = 0; i < n; ++i) {
unsigned srcId = memrefAndList.second[i];
bool srcHasStore =
getNode(srcId)->getStoreOpCount(memrefAndList.first) > 0;
for (unsigned j = i + 1; j < n; ++j) {
unsigned dstId = memrefAndList.second[j];
bool dstHasStore =
getNode(dstId)->getStoreOpCount(memrefAndList.first) > 0;
if (srcHasStore || dstHasStore)
addEdge(srcId, dstId, memrefAndList.first);
}
}
}
return true;
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
// This can increase the loop depth at which we can fuse a slice, since we are
// pushing loop carried dependence to a greater depth in the loop nest.
static void sinkSequentialLoops(MemRefDependenceGraph::Node *node) {
assert(isa<AffineForOp>(node->op));
AffineForOp newRootForOp = sinkSequentialLoops(cast<AffineForOp>(node->op));
node->op = newRootForOp;
}
// Creates and returns a private (single-user) memref for fused loop rooted
// at 'forOp', with (potentially reduced) memref size based on the
// MemRefRegion written to by 'srcStoreOpInst' at depth 'dstLoopDepth'.
// TODO: consider refactoring the common code from generateDma and
// this one.
static Value createPrivateMemRef(AffineForOp forOp, Operation *srcStoreOpInst,
unsigned dstLoopDepth,
std::optional<unsigned> fastMemorySpace,
uint64_t localBufSizeThreshold) {
Operation *forInst = forOp.getOperation();
// Create builder to insert alloc op just before 'forOp'.
OpBuilder b(forInst);
// Builder to create constants at the top level.
OpBuilder top(forInst->getParentRegion());
// Create new memref type based on slice bounds.
auto oldMemRef = cast<AffineWriteOpInterface>(srcStoreOpInst).getMemRef();
auto oldMemRefType = cast<MemRefType>(oldMemRef.getType());
unsigned rank = oldMemRefType.getRank();
// Compute MemRefRegion for 'srcStoreOpInst' at depth 'dstLoopDepth'.
MemRefRegion region(srcStoreOpInst->getLoc());
bool validRegion = succeeded(region.compute(srcStoreOpInst, dstLoopDepth));
(void)validRegion;
assert(validRegion && "unexpected memref region failure");
SmallVector<int64_t, 4> newShape;
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
// Query 'region' for 'newShape' and lower bounds of MemRefRegion accessed
// by 'srcStoreOpInst' at depth 'dstLoopDepth'.
std::optional<int64_t> numElements =
region.getConstantBoundingSizeAndShape(&newShape, &lbs, &lbDivisors);
assert(numElements && "non-constant number of elts in local buffer");
const FlatAffineValueConstraints *cst = region.getConstraints();
// 'outerIVs' holds the values that this memory region is symbolic/parametric
// on; this would correspond to loop IVs surrounding the level at which the
// slice is being materialized.
SmallVector<Value, 8> outerIVs;
cst->getValues(rank, cst->getNumVars(), &outerIVs);
// Build 'rank' AffineExprs from MemRefRegion 'lbs'
SmallVector<AffineExpr, 4> offsets;
offsets.reserve(rank);
for (unsigned d = 0; d < rank; ++d) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++) {
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
}
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
offsets.push_back(offset);
}
// Create 'newMemRefType' using 'newShape' from MemRefRegion accessed
// by 'srcStoreOpInst'.
auto eltSize = getMemRefIntOrFloatEltSizeInBytes(oldMemRefType);
assert(eltSize && "memrefs with size elt types expected");
uint64_t bufSize = *eltSize * *numElements;
unsigned newMemSpace;
if (bufSize <= localBufSizeThreshold && fastMemorySpace.has_value()) {
newMemSpace = *fastMemorySpace;
} else {
newMemSpace = oldMemRefType.getMemorySpaceAsInt();
}
auto newMemRefType = MemRefType::get(newShape, oldMemRefType.getElementType(),
{}, newMemSpace);
// Create new private memref for fused loop 'forOp'. 'newShape' is always
// a constant shape.
// TODO: Create/move alloc ops for private memrefs closer to their
// consumer loop nests to reduce their live range. Currently they are added
// at the beginning of the block, because loop nests can be reordered
// during the fusion pass.
Value newMemRef = top.create<memref::AllocOp>(forOp.getLoc(), newMemRefType);
// Build an AffineMap to remap access functions based on lower bound offsets.
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
auto dimExpr = b.getAffineDimExpr(outerIVs.size() + i);
auto remapExpr =
simplifyAffineExpr(dimExpr - offsets[i], outerIVs.size() + rank, 0);
remapExprs.push_back(remapExpr);
}
auto indexRemap =
AffineMap::get(outerIVs.size() + rank, 0, remapExprs, forOp.getContext());
// Replace all users of 'oldMemRef' with 'newMemRef'.
LogicalResult res =
replaceAllMemRefUsesWith(oldMemRef, newMemRef, {}, indexRemap,
/*extraOperands=*/outerIVs,
/*symbolOperands=*/{},
/*domOpFilter=*/&*forOp.getBody()->begin());
assert(succeeded(res) &&
"replaceAllMemrefUsesWith should always succeed here");
(void)res;
return newMemRef;
}
/// Walking from node 'srcId' to node 'dstId' (exclusive of 'srcId' and
/// 'dstId'), if there is any non-affine operation accessing 'memref', return
/// true. Otherwise, return false.
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
Value memref,
MemRefDependenceGraph *mdg) {
auto *srcNode = mdg->getNode(srcId);
auto *dstNode = mdg->getNode(dstId);
Value::user_range users = memref.getUsers();
// For each MemRefDependenceGraph's node that is between 'srcNode' and
// 'dstNode' (exclusive of 'srcNodes' and 'dstNode'), check whether any
// non-affine operation in the node accesses the 'memref'.
for (auto &idAndNode : mdg->nodes) {
Operation *op = idAndNode.second.op;
// Take care of operations between 'srcNode' and 'dstNode'.
if (srcNode->op->isBeforeInBlock(op) && op->isBeforeInBlock(dstNode->op)) {
// Walk inside the operation to find any use of the memref.
// Interrupt the walk if found.
auto walkResult = op->walk([&](Operation *user) {
// Skip affine ops.
if (isa<AffineMapAccessInterface>(*user))
return WalkResult::advance();
// Find a non-affine op that uses the memref.
if (llvm::is_contained(users, user))
return WalkResult::interrupt();
return WalkResult::advance();
});
if (walkResult.wasInterrupted())
return true;
}
}
return false;
}
/// Check whether a memref value in node 'srcId' has a non-affine that
/// is between node 'srcId' and node 'dstId' (exclusive of 'srcNode' and
/// 'dstNode').
static bool hasNonAffineUsersOnThePath(unsigned srcId, unsigned dstId,
MemRefDependenceGraph *mdg) {
// Collect memref values in node 'srcId'.
auto *srcNode = mdg->getNode(srcId);
llvm::SmallDenseSet<Value, 2> memRefValues;
srcNode->op->walk([&](Operation *op) {
// Skip affine ops.
if (isa<AffineForOp>(op))
return WalkResult::advance();
for (Value v : op->getOperands())
// Collect memref values only.
if (isa<MemRefType>(v.getType()))
memRefValues.insert(v);
return WalkResult::advance();
});
// Looking for users between node 'srcId' and node 'dstId'.
return llvm::any_of(memRefValues, [&](Value memref) {
return hasNonAffineUsersOnThePath(srcId, dstId, memref, mdg);
});
}
// Checks the profitability of fusing a backwards slice of the loop nest
// surrounding 'srcOpInst' into the loop nest surrounding 'dstLoadOpInsts'.
// The argument 'srcStoreOpInst' is used to calculate the storage reduction on
// the memref being produced and consumed, which is an input to the cost model.
// For producer-consumer fusion, 'srcStoreOpInst' will be the same as
// 'srcOpInst', as we are slicing w.r.t to that producer. For input-reuse
// fusion, 'srcOpInst' will be the src loop nest LoadOp which reads from the
// same memref as dst loop nest load ops, and 'srcStoreOpInst' will be the
// unique store op in the src node, which will be used to check that the write
// region is the same after input-reuse fusion. Computation slices are provided
// in 'depthSliceUnions' for each legal fusion depth. The maximal depth at which
// fusion is legal is provided in 'maxLegalFusionDepth'. Returns true if it is
// profitable to fuse the candidate loop nests. Returns false otherwise.
// `dstLoopDepth` is set to the most profitable depth at which to materialize
// the source loop nest slice.
// The profitability model executes the following steps:
// *) Computes the backward computation slice at 'srcOpInst'. This
// computation slice of the loop nest surrounding 'srcOpInst' is
// represented by modified src loop bounds in 'sliceState', which are
// functions of loop IVs in the loop nest surrounding 'srcOpInst'.
// *) Computes the cost of unfused src/dst loop nests (currently the cost of a
// loop nest is the total number of dynamic operation instances in the loop
// nest).
// *) Computes the cost of fusing a slice of the src loop nest into the dst
// loop nest at various values of dst loop depth, attempting to fuse
// the largest computation slice at the maximal dst loop depth (closest to
// the load) to minimize reuse distance and potentially enable subsequent
// load/store forwarding.
// NOTE: 'dstLoopDepth' refers to the loop depth within the destination loop
// nest, at which the src computation slice is inserted/fused.
// NOTE: We attempt to maximize the dst loop depth, but there are cases
// where a particular setting for 'dstLoopNest' might fuse an unsliced
// loop (within the src computation slice) at a depth which results in
// excessive recomputation (see unit tests for examples).
// *) Compares the total cost of the unfused loop nests to the min cost fused
// loop nest computed in the previous step, and returns true if the latter
// is lower.
// TODO: Extend profitability analysis to support scenarios with multiple
// stores.
static bool isFusionProfitable(Operation *srcOpInst, Operation *srcStoreOpInst,
AffineForOp dstForOp,
ArrayRef<ComputationSliceState> depthSliceUnions,
unsigned maxLegalFusionDepth,
unsigned *dstLoopDepth,
double computeToleranceThreshold) {
LLVM_DEBUG({
llvm::dbgs() << "Checking whether fusion is profitable between src op:\n";
llvm::dbgs() << ' ' << *srcOpInst << " and destination loop:\n";
llvm::dbgs() << dstForOp << "\n";
});
if (maxLegalFusionDepth == 0) {
LLVM_DEBUG(llvm::dbgs() << "Can't fuse: maxLegalFusionDepth is 0\n");
return false;
}
// Compute cost of sliced and unsliced src loop nest.
SmallVector<AffineForOp, 4> srcLoopIVs;
getAffineForIVs(*srcOpInst, &srcLoopIVs);
// Walk src loop nest and collect stats.
LoopNestStats srcLoopNestStats;
if (!getLoopNestStats(srcLoopIVs[0], &srcLoopNestStats))
return false;
// Compute cost of dst loop nest.
LoopNestStats dstLoopNestStats;
if (!getLoopNestStats(dstForOp, &dstLoopNestStats))
return false;
// Search for min cost value for 'dstLoopDepth'. At each value of
// 'dstLoopDepth' from 'maxLegalLoopDepth' to '1', compute computation slice
// bounds between 'srcOpInst' and each op in 'dstOpinsts' (taking the union
// of these bounds). Next the union slice bounds are used to calculate
// the cost of the slice and the cost of the slice inserted into the dst
// loop nest at 'dstLoopDepth'.
uint64_t minFusedLoopNestComputeCost = std::numeric_limits<uint64_t>::max();
double maxStorageReduction = 0.0;
std::optional<uint64_t> sliceMemEstimate;
// The best loop depth at which to materialize the slice.
std::optional<unsigned> bestDstLoopDepth;
// Compute op instance count for the src loop nest without iteration slicing.
uint64_t srcLoopNestCost = getComputeCost(srcLoopIVs[0], srcLoopNestStats);
// Compute src loop nest write region size.
MemRefRegion srcWriteRegion(srcStoreOpInst->getLoc());
if (failed(srcWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0))) {
LLVM_DEBUG(llvm::dbgs()
<< "Unable to compute MemRefRegion for source operation\n");
return false;
}
std::optional<int64_t> maybeSrcWriteRegionSizeBytes =
srcWriteRegion.getRegionSize();
if (!maybeSrcWriteRegionSizeBytes.has_value())
return false;
int64_t srcWriteRegionSizeBytes = *maybeSrcWriteRegionSizeBytes;
// Compute op instance count for the src loop nest.
uint64_t dstLoopNestCost = getComputeCost(dstForOp, dstLoopNestStats);
// Evaluate all depth choices for materializing the slice in the destination
// loop nest.
for (unsigned i = maxLegalFusionDepth; i >= 1; --i) {
const ComputationSliceState &slice = depthSliceUnions[i - 1];
// Skip slice union if it wasn't computed for this depth.
if (slice.isEmpty())
continue;
int64_t fusedLoopNestComputeCost;
if (!getFusionComputeCost(srcLoopIVs[0], srcLoopNestStats, dstForOp,
dstLoopNestStats, slice,
&fusedLoopNestComputeCost)) {
LLVM_DEBUG(llvm::dbgs() << "Unable to compute fusion compute cost\n");
continue;
}
double additionalComputeFraction =
fusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1;
// Determine what the slice write MemRefRegion would be, if the src loop
// nest slice 'slice' were to be inserted into the dst loop nest at loop
// depth 'i'.
MemRefRegion sliceWriteRegion(srcStoreOpInst->getLoc());
if (failed(sliceWriteRegion.compute(srcStoreOpInst, /*loopDepth=*/0,
&slice))) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to compute slice write region at loopDepth: " << i
<< "\n");
continue;
}
std::optional<int64_t> maybeSliceWriteRegionSizeBytes =
sliceWriteRegion.getRegionSize();
if (!maybeSliceWriteRegionSizeBytes.has_value() ||
*maybeSliceWriteRegionSizeBytes == 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Failed to get slice write region size at loopDepth: " << i
<< "\n");
continue;
}
int64_t sliceWriteRegionSizeBytes = *maybeSliceWriteRegionSizeBytes;
// If we are fusing for reuse, check that write regions remain the same.
// TODO: Write region check should check sizes and offsets in
// each dimension, so that we are sure they are covering the same memref
// region. Also, move this out to a isMemRefRegionSuperSet helper function.
if (srcOpInst != srcStoreOpInst &&
sliceWriteRegionSizeBytes != srcWriteRegionSizeBytes)
continue;
double storageReduction = static_cast<double>(srcWriteRegionSizeBytes) /
static_cast<double>(sliceWriteRegionSizeBytes);
LLVM_DEBUG({
std::stringstream msg;
msg << " evaluating fusion profitability at depth : " << i << "\n"
<< std::fixed << std::setprecision(2)
<< " additional compute fraction: "
<< 100.0 * additionalComputeFraction << "%\n"
<< " storage reduction factor: " << storageReduction << "x\n"
<< " fused nest cost: " << fusedLoopNestComputeCost << "\n"
<< " src write region size: " << srcWriteRegionSizeBytes << "\n"
<< " slice write region size: " << sliceWriteRegionSizeBytes
<< "\n";
llvm::dbgs() << msg.str();
});
// TODO: This is a placeholder cost model.
// Among all choices that add an acceptable amount of redundant computation
// (as per computeToleranceThreshold), we will simply pick the one that
// reduces the intermediary size the most.
if ((storageReduction > maxStorageReduction) &&
(additionalComputeFraction < computeToleranceThreshold)) {
maxStorageReduction = storageReduction;
bestDstLoopDepth = i;
minFusedLoopNestComputeCost = fusedLoopNestComputeCost;
sliceMemEstimate = sliceWriteRegionSizeBytes;
}
}
// A simple cost model: fuse if it reduces the memory footprint.
if (!bestDstLoopDepth) {
LLVM_DEBUG(
llvm::dbgs()
<< "All fusion choices involve more than the threshold amount of "
"redundant computation; NOT fusing.\n");
return false;
}
if (!bestDstLoopDepth) {
LLVM_DEBUG(llvm::dbgs() << "no fusion depth could be evaluated.\n");
return false;
}
// Set dstLoopDepth based on best values from search.
*dstLoopDepth = *bestDstLoopDepth;
LLVM_DEBUG(
llvm::dbgs() << " LoopFusion fusion stats:"
<< "\n best loop depth: " << bestDstLoopDepth
<< "\n src loop nest compute cost: " << srcLoopNestCost
<< "\n dst loop nest compute cost: " << dstLoopNestCost
<< "\n fused loop nest compute cost: "
<< minFusedLoopNestComputeCost << "\n");
auto dstMemSize = getMemoryFootprintBytes(dstForOp);
auto srcMemSize = getMemoryFootprintBytes(srcLoopIVs[0]);
std::optional<double> storageReduction;
if (!dstMemSize || !srcMemSize) {
LLVM_DEBUG(llvm::dbgs()
<< " fusion memory benefit cannot be evaluated; NOT fusing.\n");
return false;
}
auto srcMemSizeVal = *srcMemSize;
auto dstMemSizeVal = *dstMemSize;
assert(sliceMemEstimate && "expected value");
auto fusedMem = dstMemSizeVal + *sliceMemEstimate;
LLVM_DEBUG(llvm::dbgs() << " src mem: " << srcMemSizeVal << "\n"
<< " dst mem: " << dstMemSizeVal << "\n"
<< " fused mem: " << fusedMem << "\n"
<< " slice mem: " << sliceMemEstimate << "\n");
if (static_cast<long>(fusedMem) > srcMemSizeVal + dstMemSizeVal) {
LLVM_DEBUG(llvm::dbgs() << "Fusion is not profitable; NOT fusing.\n");
return false;
}
storageReduction =
100.0 *
(1.0 - fusedMem / (static_cast<double>(srcMemSizeVal) + dstMemSizeVal));
double additionalComputeFraction =
100.0 * (minFusedLoopNestComputeCost /
(static_cast<double>(srcLoopNestCost) + dstLoopNestCost) -
1);
(void)additionalComputeFraction;
LLVM_DEBUG({
std::stringstream msg;
msg << " fusion is most profitable at depth " << *dstLoopDepth << " with "
<< std::setprecision(2) << additionalComputeFraction
<< "% redundant computation and a ";
msg << (storageReduction ? std::to_string(*storageReduction) : "<unknown>");
msg << "% storage reduction.\n";
llvm::dbgs() << msg.str();
});
return true;
}
namespace {
// GreedyFusion greedily fuses loop nests which have a producer/consumer or
// input-reuse relationship on a memref, with the goal of improving locality.
//
// The steps of the producer-consumer fusion algorithm are as follows:
//
// *) A worklist is initialized with node ids from the dependence graph.
// *) For each node id in the worklist:
// *) Pop an AffineForOp of the worklist. This 'dstAffineForOp' will be a
// candidate destination AffineForOp into which fusion will be attempted.
// *) Add each LoadOp currently in 'dstAffineForOp' into list 'dstLoadOps'.
// *) For each LoadOp in 'dstLoadOps' do:
// *) Look up dependent loop nests which have a single store op to the same
// memref.
// *) Check if dependences would be violated by the fusion.
// *) Get a computation slice of 'srcLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'srcLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// *) Add the newly fused load/store operations to the state,
// and also add newly fused load ops to 'dstLoopOps' to be considered
// as fusion dst load ops in another iteration.
// *) Remove old src loop nest and its associated state.
//
// The steps of the input-reuse fusion algorithm are as follows:
//
// *) Initialize 'worklist' with node ids from the dependence graph.
// *) For each 'dstNode' in the worklist:
// *) Find a candidate sibling node 'sibNode' to fuse with 'dstNode' which
// loads from the same memref, but which has no dependence paths to/from.
// *) Get a computation slice of 'sibLoopNest', which adjusts its loop
// bounds to be functions of 'dstLoopNest' IVs and symbols.
// *) Fuse the 'sibLoopNest' computation slice into the 'dstLoopNest',
// at a loop depth determined by the cost model in 'isFusionProfitable'.
// This function also checks that the memref write region of 'sibLoopNest',
// is preserved in the fused loop nest.
// *) Update graph state to reflect the fusion of 'sibNode' into 'dstNode'.
//
// Given a graph where top-level operations are vertices in the set 'V' and
// edges in the set 'E' are dependences between vertices, this algorithm
// takes O(V) time for initialization, and has runtime O(V + E).
//
// This greedy algorithm is not 'maximal' due to the current restriction of
// fusing along single producer consumer edges, but there is a TODO: to fix
// this.
//
// TODO: Experiment with other fusion policies.
struct GreedyFusion {
public:
// The data dependence graph to traverse during fusion.
MemRefDependenceGraph *mdg;
// Worklist of graph nodes visited during the fusion pass.
SmallVector<unsigned, 8> worklist;
// Parameter for local buffer size threshold.
unsigned localBufSizeThreshold;
// Parameter for fast memory space.
std::optional<unsigned> fastMemorySpace;
// If true, ignore any additional (redundant) computation tolerance threshold
// that would have prevented fusion.
bool maximalFusion;
// The amount of additional computation that is tolerated while fusing
// pair-wise as a fraction of the total computation.
double computeToleranceThreshold;
using Node = MemRefDependenceGraph::Node;
GreedyFusion(MemRefDependenceGraph *mdg, unsigned localBufSizeThreshold,
std::optional<unsigned> fastMemorySpace, bool maximalFusion,
double computeToleranceThreshold)
: mdg(mdg), localBufSizeThreshold(localBufSizeThreshold),
fastMemorySpace(fastMemorySpace), maximalFusion(maximalFusion),
computeToleranceThreshold(computeToleranceThreshold) {}
/// Initializes 'worklist' with nodes from 'mdg'.
void init() {
// TODO: Add a priority queue for prioritizing nodes by different
// metrics (e.g. arithmetic intensity/flops-to-bytes ratio).
worklist.clear();
for (auto &idAndNode : mdg->nodes) {
const Node &node = idAndNode.second;
worklist.push_back(node.id);
}
}
/// Run only sibling fusion on the `mdg`.
void runSiblingFusionOnly() {
fuseSiblingNodes();
eraseUnusedMemRefAllocations();
}
/// Run only producer/consumer fusion on the `mdg`.
void runProducerConsumerFusionOnly() {
fuseProducerConsumerNodes(
/*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
eraseUnusedMemRefAllocations();
}
// Run the GreedyFusion pass.
// *) First pass through the nodes fuses single-use producer nodes into their
// unique consumer.
// *) Second pass fuses sibling nodes which share no dependence edges.
// *) Third pass fuses any remaining producer nodes into their users.
void runGreedyFusion() {
// TODO: Run this repeatedly until a fixed-point is reached.
fuseProducerConsumerNodes(/*maxSrcUserCount=*/1);
fuseSiblingNodes();
fuseProducerConsumerNodes(
/*maxSrcUserCount=*/std::numeric_limits<unsigned>::max());
eraseUnusedMemRefAllocations();
}
/// Returns true if a private memref can be created for `memref` given
/// the fusion scenario reflected by the other arguments.
bool canCreatePrivateMemRef(Value memref,
const DenseSet<Value> &srcEscapingMemRefs,
unsigned producerId, unsigned consumerId,
bool removeSrcNode) {
const Node *consumerNode = mdg->getNode(consumerId);
// If `memref` is an escaping one, do not create a private memref
// for the below scenarios, since doing so will leave the escaping
// memref unmodified as all the writes originally meant for the
// escaping memref would be performed on the private memref:
// 1. The source is to be removed after fusion,
// OR
// 2. The destination writes to `memref`.
if (srcEscapingMemRefs.count(memref) > 0 &&
(removeSrcNode || consumerNode->getStoreOpCount(memref) > 0))
return false;
// Don't create a private memref if 'srcNode' has in edges on
// 'memref' or 'dstNode' has out edges on 'memref'.
if (mdg->getIncomingMemRefAccesses(producerId, memref) > 0 ||
mdg->getOutEdgeCount(consumerId, memref) > 0)
return false;
// If 'srcNode' will be removed but it has out edges on 'memref' to
// nodes other than 'dstNode', we have to preserve dependences and
// cannot create a private memref.
if (removeSrcNode &&
any_of(mdg->outEdges[producerId], [&](const auto &edge) {
return edge.value == memref && edge.id != consumerId;
}))
return false;
return true;
}
/// Perform fusions with node `dstId` as the destination of fusion, with
/// No fusion is performed when producers with a user count greater than
/// `maxSrcUserCount` for any of the memrefs involved.
void performFusionsIntoDest(unsigned dstId, unsigned maxSrcUserCount) {
LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
return;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
return;
// Skip if 'dstNode' is a loop nest returning values.
// TODO: support loop nests that return values.
if (dstNode->op->getNumResults() > 0)
return;
LLVM_DEBUG(llvm::dbgs() << "Evaluating dst loop " << dstId << "\n");
// Sink sequential loops in 'dstNode' (and thus raise parallel loops)
// while preserving relative order. This can increase the maximum loop
// depth at which we can fuse a slice of a producer loop nest into a
// consumer loop nest.
sinkSequentialLoops(dstNode);
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
// Try to fuse 'dstNode' with candidate producer loops until a fixed point
// is reached. Fusing two loops may expose new fusion opportunities.
bool dstNodeChanged;
do {
// Gather src loop candidates for 'dstNode' and visit them in "quasi"
// reverse program order to minimize the number of iterations needed to
// reach the fixed point. Note that this is a best effort approach since
// 'getProducerCandidates' does not always guarantee that program order
// in 'srcIdCandidates'.
dstNodeChanged = false;
SmallVector<unsigned, 16> srcIdCandidates;
getProducerCandidates(dstId, mdg, srcIdCandidates);
for (unsigned srcId : llvm::reverse(srcIdCandidates)) {
// Get 'srcNode' from which to attempt fusion into 'dstNode'.
auto *srcNode = mdg->getNode(srcId);
auto srcAffineForOp = cast<AffineForOp>(srcNode->op);
LLVM_DEBUG(llvm::dbgs() << "Evaluating src loop " << srcId
<< " for dst loop " << dstId << "\n");
// Skip if 'srcNode' is a loop nest returning values.
// TODO: support loop nests that return values.
if (isa<AffineForOp>(srcNode->op) && srcNode->op->getNumResults() > 0)
continue;
DenseSet<Value> producerConsumerMemrefs;
gatherProducerConsumerMemrefs(srcId, dstId, mdg,
producerConsumerMemrefs);
// Skip if 'srcNode' out edge count on any memref is greater than
// 'maxSrcUserCount'.
if (any_of(producerConsumerMemrefs, [&](Value memref) {
return mdg->getOutEdgeCount(srcNode->id, memref) >
maxSrcUserCount;
}))
continue;
// Gather memrefs in 'srcNode' that are written and escape out of the
// block (e.g., memref block arguments, returned memrefs,
// memrefs passed to function calls, etc.).
DenseSet<Value> srcEscapingMemRefs;
gatherEscapingMemrefs(srcNode->id, mdg, srcEscapingMemRefs);
// Skip if there are non-affine operations in between the 'srcNode'
// and 'dstNode' using their memrefs. If so, we wouldn't be able to
// compute a legal insertion point for now. 'srcNode' and 'dstNode'
// memrefs with non-affine operation users would be considered
// escaping memrefs so we can limit this check to only scenarios with
// escaping memrefs.
if (!srcEscapingMemRefs.empty() &&
hasNonAffineUsersOnThePath(srcId, dstId, mdg)) {
LLVM_DEBUG(llvm::dbgs()
<< "Can't fuse: non-affine users in between the loops\n");
continue;
}
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
Operation *fusedLoopInsPoint =
mdg->getFusedLoopNestInsertionPoint(srcNode->id, dstNode->id);
if (fusedLoopInsPoint == nullptr)
continue;
// Compute the innermost common loop depth for dstNode
// producer-consumer loads/stores.
SmallVector<Operation *, 2> dstMemrefOps;
for (Operation *op : dstNode->loads)
if (producerConsumerMemrefs.count(
cast<AffineReadOpInterface>(op).getMemRef()) > 0)
dstMemrefOps.push_back(op);
for (Operation *op : dstNode->stores)
if (producerConsumerMemrefs.count(
cast<AffineWriteOpInterface>(op).getMemRef()))
dstMemrefOps.push_back(op);
unsigned dstLoopDepthTest = getInnermostCommonLoopDepth(dstMemrefOps);
// Check the feasibility of fusing src loop nest into dst loop nest
// at loop depths in range [1, dstLoopDepthTest].
unsigned maxLegalFusionDepth = 0;
SmallVector<ComputationSliceState, 8> depthSliceUnions;
depthSliceUnions.resize(dstLoopDepthTest);
FusionStrategy strategy(FusionStrategy::ProducerConsumer);
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
FusionResult result = affine::canFuseLoops(
srcAffineForOp, dstAffineForOp,
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
if (result.value == FusionResult::Success)
maxLegalFusionDepth = i;
}
if (maxLegalFusionDepth == 0) {
LLVM_DEBUG(llvm::dbgs()
<< "Can't fuse: fusion is not legal at any depth\n");
continue;
}
// Check if fusion would be profitable. We skip profitability analysis
// for maximal fusion since we already know the maximal legal depth to
// fuse.
unsigned bestDstLoopDepth = maxLegalFusionDepth;
if (!maximalFusion) {
// Retrieve producer stores from the src loop.
SmallVector<Operation *, 2> producerStores;
for (Operation *op : srcNode->stores)
if (producerConsumerMemrefs.count(
cast<AffineWriteOpInterface>(op).getMemRef()))
producerStores.push_back(op);
// TODO: Suppport multiple producer stores in profitability
// analysis. We limit profitability analysis to only scenarios with
// a single producer store for now. Note that some multi-store
// producer scenarios will still go through profitability analysis
// if only one of the stores is involved the producer-consumer
// relationship of the candidate loops.
assert(!producerStores.empty() && "Expected producer store");
if (producerStores.size() > 1)
LLVM_DEBUG(llvm::dbgs() << "Skipping profitability analysis. Not "
"supported for this case\n");
else if (!isFusionProfitable(producerStores[0], producerStores[0],
dstAffineForOp, depthSliceUnions,
maxLegalFusionDepth, &bestDstLoopDepth,
computeToleranceThreshold))
continue;
}
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
ComputationSliceState &bestSlice =
depthSliceUnions[bestDstLoopDepth - 1];
assert(!bestSlice.isEmpty() && "Missing slice union for depth");
// Determine if 'srcId' can be removed after fusion, taking into
// account remaining dependences, escaping memrefs and the fusion
// insertion point.
bool removeSrcNode = canRemoveSrcNodeAfterFusion(
srcId, dstId, bestSlice, fusedLoopInsPoint, srcEscapingMemRefs,
mdg);
DenseSet<Value> privateMemrefs;
for (Value memref : producerConsumerMemrefs) {
if (canCreatePrivateMemRef(memref, srcEscapingMemRefs, srcId, dstId,
removeSrcNode)) {
// Create a private version of this memref.
LLVM_DEBUG(llvm::dbgs()
<< "Creating private memref for " << memref << '\n');
// Create a private version of this memref.
privateMemrefs.insert(memref);
}
}
// Fuse computation slice of 'srcLoopNest' into 'dstLoopNest'.
fuseLoops(srcAffineForOp, dstAffineForOp, bestSlice);
dstNodeChanged = true;
LLVM_DEBUG(llvm::dbgs()
<< "Fused src loop " << srcId << " into dst loop " << dstId
<< " at depth " << bestDstLoopDepth << ":\n"
<< dstAffineForOp << "\n");
// Move 'dstAffineForOp' before 'insertPointInst' if needed.
if (fusedLoopInsPoint != dstAffineForOp)
dstAffineForOp->moveBefore(fusedLoopInsPoint);
// Update edges between 'srcNode' and 'dstNode'.
mdg->updateEdges(srcNode->id, dstNode->id, privateMemrefs,
removeSrcNode);
// Create private memrefs.
if (!privateMemrefs.empty()) {
// Gather stores for all the private-to-be memrefs.
DenseMap<Value, SmallVector<Operation *, 4>> privateMemRefToStores;
dstAffineForOp.walk([&](AffineWriteOpInterface storeOp) {
Value storeMemRef = storeOp.getMemRef();
if (privateMemrefs.count(storeMemRef) > 0)
privateMemRefToStores[storeMemRef].push_back(storeOp);
});
// Replace original memrefs with private memrefs. Note that all the
// loads and stores on these memrefs will be replaced with a new
// loads and stores. Any reference to the original ones becomes
// invalid after this point.
for (auto &memrefToStoresPair : privateMemRefToStores) {
// TODO: Use union of memref write regions to compute
// private memref footprint.
SmallVector<Operation *, 4> &storesForMemref =
memrefToStoresPair.second;
Value newMemRef = createPrivateMemRef(
dstAffineForOp, storesForMemref[0], bestDstLoopDepth,
fastMemorySpace, localBufSizeThreshold);
// Create new node in dependence graph for 'newMemRef' alloc op.
unsigned newMemRefNodeId = mdg->addNode(newMemRef.getDefiningOp());
// Add edge from 'newMemRef' node to dstNode.
mdg->addEdge(newMemRefNodeId, dstId, newMemRef);
}
// One or more entries for 'newMemRef' alloc op are inserted into
// the DenseMap mdg->nodes. Since an insertion may cause DenseMap to
// reallocate, update dstNode.
dstNode = mdg->getNode(dstId);
}
// Collect dst loop stats after memref privatization transformation.
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstAffineForOp);
// Clear and add back loads and stores.
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstId, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
if (removeSrcNode) {
LLVM_DEBUG(llvm::dbgs()
<< "Removing src loop " << srcId << " after fusion\n");
// srcNode is no longer valid after it is removed from mdg.
srcAffineForOp.erase();
mdg->removeNode(srcId);
srcNode = nullptr;
}
}
} while (dstNodeChanged);
}
/// Visit each node in the graph, and for each node, attempt to fuse it with
/// producer-consumer candidates. No fusion is performed when producers with a
/// user count greater than `maxSrcUserCount` for any of the memrefs involved
/// are encountered.
void fuseProducerConsumerNodes(unsigned maxSrcUserCount) {
LLVM_DEBUG(llvm::dbgs() << "--- Producer/Consumer Fusion ---\n");
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
performFusionsIntoDest(dstId, maxSrcUserCount);
}
}
// Visits each node in the graph, and for each node, attempts to fuse it with
// its sibling nodes (nodes which share a parent, but no dependence edges).
void fuseSiblingNodes() {
LLVM_DEBUG(llvm::dbgs() << "--- Sibling Fusion ---\n");
init();
while (!worklist.empty()) {
unsigned dstId = worklist.back();
worklist.pop_back();
// Skip if this node was removed (fused into another node).
if (mdg->nodes.count(dstId) == 0)
continue;
// Get 'dstNode' into which to attempt fusion.
auto *dstNode = mdg->getNode(dstId);
// Skip if 'dstNode' is not a loop nest.
if (!isa<AffineForOp>(dstNode->op))
continue;
// Attempt to fuse 'dstNode' with its sibling nodes in the graph.
fuseWithSiblingNodes(dstNode);
}
}
// Attempt to fuse 'dstNode' with sibling nodes in the graph.
void fuseWithSiblingNodes(Node *dstNode) {
DenseSet<unsigned> visitedSibNodeIds;
std::pair<unsigned, Value> idAndMemref;
auto dstAffineForOp = cast<AffineForOp>(dstNode->op);
while (findSiblingNodeToFuse(dstNode, &visitedSibNodeIds, &idAndMemref)) {
unsigned sibId = idAndMemref.first;
Value memref = idAndMemref.second;
// TODO: Check that 'sibStoreOpInst' post-dominates all other
// stores to the same memref in 'sibNode' loop nest.
auto *sibNode = mdg->getNode(sibId);
// Compute an operation list insertion point for the fused loop
// nest which preserves dependences.
assert(sibNode->op->getBlock() == dstNode->op->getBlock());
Operation *insertPointInst =
sibNode->op->isBeforeInBlock(dstNode->op)
? mdg->getFusedLoopNestInsertionPoint(sibNode->id, dstNode->id)
: mdg->getFusedLoopNestInsertionPoint(dstNode->id, sibNode->id);
if (insertPointInst == nullptr)
continue;
// Check if fusion would be profitable and at what depth.
// Get unique 'sibNode' load op to 'memref'.
SmallVector<Operation *, 2> sibLoadOpInsts;
sibNode->getLoadOpsForMemref(memref, &sibLoadOpInsts);
// Currently findSiblingNodeToFuse searches for siblings with one load.
assert(sibLoadOpInsts.size() == 1);
Operation *sibLoadOpInst = sibLoadOpInsts[0];
// Gather 'dstNode' load ops to 'memref'.
SmallVector<Operation *, 2> dstLoadOpInsts;
dstNode->getLoadOpsForMemref(memref, &dstLoadOpInsts);
SmallVector<AffineForOp, 4> dstLoopIVs;
getAffineForIVs(*dstLoadOpInsts[0], &dstLoopIVs);
unsigned dstLoopDepthTest = dstLoopIVs.size();
auto sibAffineForOp = cast<AffineForOp>(sibNode->op);
// Compute loop depth and slice union for fusion.
SmallVector<ComputationSliceState, 8> depthSliceUnions;
depthSliceUnions.resize(dstLoopDepthTest);
unsigned maxLegalFusionDepth = 0;
FusionStrategy strategy(memref);
for (unsigned i = 1; i <= dstLoopDepthTest; ++i) {
FusionResult result = affine::canFuseLoops(
sibAffineForOp, dstAffineForOp,
/*dstLoopDepth=*/i, &depthSliceUnions[i - 1], strategy);
if (result.value == FusionResult::Success)
maxLegalFusionDepth = i;
}
// Skip if fusion is not feasible at any loop depths.
if (maxLegalFusionDepth == 0)
continue;
unsigned bestDstLoopDepth = maxLegalFusionDepth;
if (!maximalFusion) {
// Check if fusion would be profitable. For sibling fusion, the sibling
// load op is treated as the src "store" op for fusion profitability
// purposes. The footprint of the load in the slice relative to the
// unfused source's determines reuse.
if (!isFusionProfitable(sibLoadOpInst, sibLoadOpInst, dstAffineForOp,
depthSliceUnions, maxLegalFusionDepth,
&bestDstLoopDepth, computeToleranceThreshold))
continue;
}
assert(bestDstLoopDepth > 0 && "Unexpected loop fusion depth");
assert(!depthSliceUnions[bestDstLoopDepth - 1].isEmpty() &&
"Fusion depth has no computed slice union");
// Check if source loop is being inserted in the innermost
// destination loop. Based on this, the fused loop may be optimized
// further inside `fuseLoops`.
bool isInnermostInsertion = (bestDstLoopDepth == dstLoopDepthTest);
// Fuse computation slice of 'sibLoopNest' into 'dstLoopNest'.
affine::fuseLoops(sibAffineForOp, dstAffineForOp,
depthSliceUnions[bestDstLoopDepth - 1],
isInnermostInsertion);
auto dstForInst = cast<AffineForOp>(dstNode->op);
// Update operation position of fused loop nest (if needed).
if (insertPointInst != dstForInst) {
dstForInst->moveBefore(insertPointInst);
}
// Update data dependence graph state post fusion.
updateStateAfterSiblingFusion(sibNode, dstNode);
}
}
// Searches block argument uses and the graph from 'dstNode' looking for a
// fusion candidate sibling node which shares no dependences with 'dstNode'
// but which loads from the same memref. Returns true and sets
// 'idAndMemrefToFuse' on success. Returns false otherwise.
bool findSiblingNodeToFuse(Node *dstNode,
DenseSet<unsigned> *visitedSibNodeIds,
std::pair<unsigned, Value> *idAndMemrefToFuse) {
// Returns true if 'sibNode' can be fused with 'dstNode' for input reuse
// on 'memref'.
auto canFuseWithSibNode = [&](Node *sibNode, Value memref) {
// Skip if 'outEdge' is not a read-after-write dependence.
// TODO: Remove restrict to single load op restriction.
if (sibNode->getLoadOpCount(memref) != 1)
return false;
// Skip if there exists a path of dependent edges between
// 'sibNode' and 'dstNode'.
if (mdg->hasDependencePath(sibNode->id, dstNode->id) ||
mdg->hasDependencePath(dstNode->id, sibNode->id))
return false;
// Skip sib node if it loads to (and stores from) the same memref on
// which it also has an input dependence edge.
DenseSet<Value> loadAndStoreMemrefSet;
sibNode->getLoadAndStoreMemrefSet(&loadAndStoreMemrefSet);
if (llvm::any_of(loadAndStoreMemrefSet, [=](Value memref) {
return mdg->getIncomingMemRefAccesses(sibNode->id, memref) > 0;
}))
return false;
// Check that all stores are to the same memref if any.
DenseSet<Value> storeMemrefs;
for (auto *storeOpInst : sibNode->stores) {
storeMemrefs.insert(
cast<AffineWriteOpInterface>(storeOpInst).getMemRef());
}
if (storeMemrefs.size() > 1)
return false;
// Skip if a memref value in one node is used by a non-affine memref
// access that lies between 'dstNode' and 'sibNode'.
if (hasNonAffineUsersOnThePath(dstNode->id, sibNode->id, mdg) ||
hasNonAffineUsersOnThePath(sibNode->id, dstNode->id, mdg))
return false;
return true;
};
// Search for siblings which load the same memref block argument.
Block *block = dstNode->op->getBlock();
for (unsigned i = 0, e = block->getNumArguments(); i != e; ++i) {
for (Operation *user : block->getArgument(i).getUsers()) {
auto loadOp = dyn_cast<AffineReadOpInterface>(user);
if (!loadOp)
continue;
// Gather loops surrounding 'use'.
SmallVector<AffineForOp, 4> loops;
getAffineForIVs(*user, &loops);
// Skip 'use' if it is not within a loop nest.
if (loops.empty())
continue;
Node *sibNode = mdg->getForOpNode(loops[0]);
assert(sibNode != nullptr);
// Skip 'use' if it not a sibling to 'dstNode'.
if (sibNode->id == dstNode->id)
continue;
// Skip 'use' if it has been visited.
if (visitedSibNodeIds->count(sibNode->id) > 0)
continue;
// Skip 'use' if it does not load from the same memref as 'dstNode'.
auto memref = loadOp.getMemRef();
if (dstNode->getLoadOpCount(memref) == 0)
continue;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, memref)) {
visitedSibNodeIds->insert(sibNode->id);
idAndMemrefToFuse->first = sibNode->id;
idAndMemrefToFuse->second = memref;
return true;
}
}
}
// Search for siblings by following edges through an intermediate src node.
// Collect candidate 'dstNode' input edges in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> inEdges;
mdg->forEachMemRefInputEdge(
dstNode->id, [&](MemRefDependenceGraph::Edge inEdge) {
// Add 'inEdge' if it is a read-after-write dependence.
if (dstNode->getLoadOpCount(inEdge.value) > 0 &&
mdg->getNode(inEdge.id)->getStoreOpCount(inEdge.value) > 0)
inEdges.push_back(inEdge);
});
// Search for sibling nodes to fuse by visiting output edges from each input
// edge in 'inEdges'.
for (auto &inEdge : inEdges) {
// Collect candidate output edges from each node 'inEdge.id' in 'inEdges'.
SmallVector<MemRefDependenceGraph::Edge, 2> outEdges;
mdg->forEachMemRefOutputEdge(
inEdge.id, [&](MemRefDependenceGraph::Edge outEdge) {
unsigned sibNodeId = outEdge.id;
if (visitedSibNodeIds->count(sibNodeId) > 0)
return;
// Skip output edge if not a sibling using the same memref.
if (outEdge.id == dstNode->id || outEdge.value != inEdge.value)
return;
auto *sibNode = mdg->getNode(sibNodeId);
if (!isa<AffineForOp>(sibNode->op))
return;
// Check if 'sibNode/dstNode' can be input-reuse fused on 'memref'.
if (canFuseWithSibNode(sibNode, outEdge.value)) {
// Add candidate 'outEdge' to sibling node.
outEdges.push_back(outEdge);
}
});
// Add first candidate if any were returned.
if (!outEdges.empty()) {
visitedSibNodeIds->insert(outEdges[0].id);
idAndMemrefToFuse->first = outEdges[0].id;
idAndMemrefToFuse->second = outEdges[0].value;
return true;
}
}
return false;
}
/// Update data dependence graph state to reflect sibling fusion of 'sibNode'
/// into 'dstNode'.
void updateStateAfterSiblingFusion(Node *sibNode, Node *dstNode) {
// Update 'sibNode' and 'dstNode' input/output edges to reflect fusion.
mdg->updateEdges(sibNode->id, dstNode->id);
// Collect dst loop stats after memref privatization transformation.
auto dstForInst = cast<AffineForOp>(dstNode->op);
LoopNestStateCollector dstLoopCollector;
dstLoopCollector.collect(dstForInst);
// Clear and add back loads and stores
mdg->clearNodeLoadAndStores(dstNode->id);
mdg->addToNode(dstNode->id, dstLoopCollector.loadOpInsts,
dstLoopCollector.storeOpInsts);
// Remove old sibling loop nest if it no longer has outgoing dependence
// edges, and it does not write to a memref which escapes the block.
if (mdg->getOutEdgeCount(sibNode->id) == 0) {
Operation *op = sibNode->op;
mdg->removeNode(sibNode->id);
op->erase();
}
}
// Clean up any allocs with no users.
void eraseUnusedMemRefAllocations() {
for (auto &pair : mdg->memrefEdgeCount) {
if (pair.second > 0)
continue;
auto memref = pair.first;
// Skip if there exist other uses (return operation or function calls).
if (!memref.use_empty())
continue;
// Use list expected to match the dep graph info.
auto *op = memref.getDefiningOp();
if (isa_and_nonnull<memref::AllocOp>(op))
op->erase();
}
}
};
} // namespace
/// Run fusion on `block`.
void LoopFusion::runOnBlock(Block *block) {
MemRefDependenceGraph g(*block);
if (!g.init()) {
LLVM_DEBUG(llvm::dbgs() << "MDG init failed\n");
return;
}
std::optional<unsigned> fastMemorySpaceOpt;
if (fastMemorySpace.hasValue())
fastMemorySpaceOpt = fastMemorySpace;
unsigned localBufSizeThresholdBytes = localBufSizeThreshold * 1024;
GreedyFusion fusion(&g, localBufSizeThresholdBytes, fastMemorySpaceOpt,
maximalFusion, computeToleranceThreshold);
if (affineFusionMode == FusionMode::ProducerConsumer)
fusion.runProducerConsumerFusionOnly();
else if (affineFusionMode == FusionMode::Sibling)
fusion.runSiblingFusionOnly();
else
fusion.runGreedyFusion();
}
void LoopFusion::runOnOperation() {
for (Region ®ion : getOperation()->getRegions())
for (Block &block : region.getBlocks())
runOnBlock(&block);
}
std::unique_ptr<Pass> mlir::affine::createLoopFusionPass(
unsigned fastMemorySpace, uint64_t localBufSizeThreshold,
bool maximalFusion, enum FusionMode affineFusionMode) {
return std::make_unique<LoopFusion>(fastMemorySpace, localBufSizeThreshold,
maximalFusion, affineFusionMode);
}
|