1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772
|
//===- LoopUtils.cpp ---- Misc utilities for loop transformation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous loop transformation routines.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Analysis/SliceAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/AffineAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/LoopAnalysis.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Support/MathExtras.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <optional>
#define DEBUG_TYPE "loop-utils"
using namespace mlir;
using namespace affine;
using namespace presburger;
using llvm::SmallMapVector;
namespace {
// This structure is to pass and return sets of loop parameters without
// confusing the order.
struct LoopParams {
Value lowerBound;
Value upperBound;
Value step;
};
} // namespace
/// Computes the cleanup loop lower bound of the loop being unrolled with
/// the specified unroll factor; this bound will also be upper bound of the main
/// part of the unrolled loop. Computes the bound as an AffineMap with its
/// operands or a null map when the trip count can't be expressed as an affine
/// expression.
static void
getCleanupLoopLowerBound(AffineForOp forOp, unsigned unrollFactor,
AffineMap &cleanupLbMap,
SmallVectorImpl<Value> &cleanupLbOperands) {
AffineMap tripCountMap;
SmallVector<Value, 4> tripCountOperands;
getTripCountMapAndOperands(forOp, &tripCountMap, &tripCountOperands);
// Trip count can't be computed.
if (!tripCountMap) {
cleanupLbMap = AffineMap();
return;
}
OpBuilder b(forOp);
auto lbMap = forOp.getLowerBoundMap();
auto lb = b.create<AffineApplyOp>(forOp.getLoc(), lbMap,
forOp.getLowerBoundOperands());
// For each upper bound expr, get the range.
// Eg: affine.for %i = lb to min (ub1, ub2),
// where tripCountExprs yield (tr1, tr2), we create affine.apply's:
// lb + tr1 - tr1 % ufactor, lb + tr2 - tr2 % ufactor; the results of all
// these affine.apply's make up the cleanup loop lower bound.
SmallVector<AffineExpr, 4> bumpExprs(tripCountMap.getNumResults());
SmallVector<Value, 4> bumpValues(tripCountMap.getNumResults());
int64_t step = forOp.getStep();
for (unsigned i = 0, e = tripCountMap.getNumResults(); i < e; i++) {
auto tripCountExpr = tripCountMap.getResult(i);
bumpExprs[i] = (tripCountExpr - tripCountExpr % unrollFactor) * step;
auto bumpMap = AffineMap::get(tripCountMap.getNumDims(),
tripCountMap.getNumSymbols(), bumpExprs[i]);
bumpValues[i] =
b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, tripCountOperands);
}
SmallVector<AffineExpr, 4> newUbExprs(tripCountMap.getNumResults());
for (unsigned i = 0, e = bumpExprs.size(); i < e; i++)
newUbExprs[i] = b.getAffineDimExpr(0) + b.getAffineDimExpr(i + 1);
cleanupLbOperands.clear();
cleanupLbOperands.push_back(lb);
cleanupLbOperands.append(bumpValues.begin(), bumpValues.end());
cleanupLbMap = AffineMap::get(1 + tripCountMap.getNumResults(), 0, newUbExprs,
b.getContext());
// Simplify the cleanupLbMap + cleanupLbOperands.
fullyComposeAffineMapAndOperands(&cleanupLbMap, &cleanupLbOperands);
cleanupLbMap = simplifyAffineMap(cleanupLbMap);
canonicalizeMapAndOperands(&cleanupLbMap, &cleanupLbOperands);
// Remove any affine.apply's that became dead from the simplification above.
for (auto v : bumpValues)
if (v.use_empty())
v.getDefiningOp()->erase();
if (lb.use_empty())
lb.erase();
}
/// Helper to replace uses of loop carried values (iter_args) and loop
/// yield values while promoting single iteration affine.for ops.
static void replaceIterArgsAndYieldResults(AffineForOp forOp) {
// Replace uses of iter arguments with iter operands (initial values).
auto iterOperands = forOp.getIterOperands();
auto iterArgs = forOp.getRegionIterArgs();
for (auto e : llvm::zip(iterOperands, iterArgs))
std::get<1>(e).replaceAllUsesWith(std::get<0>(e));
// Replace uses of loop results with the values yielded by the loop.
auto outerResults = forOp.getResults();
auto innerResults = forOp.getBody()->getTerminator()->getOperands();
for (auto e : llvm::zip(outerResults, innerResults))
std::get<0>(e).replaceAllUsesWith(std::get<1>(e));
}
/// Promotes the loop body of a forOp to its containing block if the forOp
/// was known to have a single iteration.
// TODO: extend this for arbitrary affine bounds.
LogicalResult mlir::affine::promoteIfSingleIteration(AffineForOp forOp) {
std::optional<uint64_t> tripCount = getConstantTripCount(forOp);
if (!tripCount || *tripCount != 1)
return failure();
if (forOp.getLowerBoundMap().getNumResults() != 1)
return failure();
// Replaces all IV uses to its single iteration value.
auto iv = forOp.getInductionVar();
auto *parentBlock = forOp->getBlock();
if (!iv.use_empty()) {
if (forOp.hasConstantLowerBound()) {
OpBuilder topBuilder(forOp->getParentOfType<func::FuncOp>().getBody());
auto constOp = topBuilder.create<arith::ConstantIndexOp>(
forOp.getLoc(), forOp.getConstantLowerBound());
iv.replaceAllUsesWith(constOp);
} else {
auto lbOperands = forOp.getLowerBoundOperands();
auto lbMap = forOp.getLowerBoundMap();
OpBuilder builder(forOp);
if (lbMap == builder.getDimIdentityMap()) {
// No need of generating an affine.apply.
iv.replaceAllUsesWith(lbOperands[0]);
} else {
auto affineApplyOp =
builder.create<AffineApplyOp>(forOp.getLoc(), lbMap, lbOperands);
iv.replaceAllUsesWith(affineApplyOp);
}
}
}
replaceIterArgsAndYieldResults(forOp);
// Move the loop body operations, except for its terminator, to the loop's
// containing block.
forOp.getBody()->back().erase();
parentBlock->getOperations().splice(Block::iterator(forOp),
forOp.getBody()->getOperations());
forOp.erase();
return success();
}
/// Generates an affine.for op with the specified lower and upper bounds
/// while generating the right IV remappings to realize shifts for operations in
/// its body. The operations that go into the loop body are specified in
/// opGroupQueue starting from the specified offset, and in that order. The
/// first element of the pair specifies the shift applied to that group of
/// operations; the shift is multiplied by the loop step before being applied.
/// Returns nullptr if the generated loop simplifies to a single iteration one.
static AffineForOp generateShiftedLoop(
AffineMap lbMap, AffineMap ubMap,
const std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> &opGroupQueue,
unsigned offset, AffineForOp srcForOp, OpBuilder b) {
auto lbOperands = srcForOp.getLowerBoundOperands();
auto ubOperands = srcForOp.getUpperBoundOperands();
assert(lbMap.getNumInputs() == lbOperands.size());
assert(ubMap.getNumInputs() == ubOperands.size());
auto loopChunk = b.create<AffineForOp>(srcForOp.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, srcForOp.getStep());
auto loopChunkIV = loopChunk.getInductionVar();
auto srcIV = srcForOp.getInductionVar();
IRMapping operandMap;
auto bodyBuilder = OpBuilder::atBlockTerminator(loopChunk.getBody());
for (const auto &it : llvm::drop_begin(opGroupQueue, offset)) {
uint64_t shift = it.first;
auto ops = it.second;
// All 'same shift' operations get added with their operands being
// remapped to results of cloned operations, and their IV used remapped.
// Generate the remapping if the shift is not zero: remappedIV = newIV -
// shift.
if (!srcIV.use_empty() && shift != 0) {
auto ivRemap = bodyBuilder.create<AffineApplyOp>(
srcForOp.getLoc(),
bodyBuilder.getSingleDimShiftAffineMap(
-static_cast<int64_t>(srcForOp.getStep() * shift)),
loopChunkIV);
operandMap.map(srcIV, ivRemap);
} else {
operandMap.map(srcIV, loopChunkIV);
}
for (auto *op : ops)
bodyBuilder.clone(*op, operandMap);
};
if (succeeded(promoteIfSingleIteration(loopChunk)))
return AffineForOp();
return loopChunk;
}
// The skewing of operations with respect to one another can be used for
// example to allow overlap of asynchronous operations (such as DMA
// communication) with computation, or just relative shifting of operations
// for better register reuse, locality or parallelism. As such, the shifts are
// typically expected to be at most of the order of the number of operations.
// This method should not be used as a substitute for loop distribution/fission.
// This method uses an algorithm// in time linear in the number of operations
// in the body of the for loop - (using the 'sweep line' paradigm). This method
// asserts preservation of SSA dominance. A check for that as well as that for
// memory-based dependence preservation check rests with the users of this
// method.
LogicalResult mlir::affine::affineForOpBodySkew(AffineForOp forOp,
ArrayRef<uint64_t> shifts,
bool unrollPrologueEpilogue) {
assert(forOp.getBody()->getOperations().size() == shifts.size() &&
"too few/many shifts");
if (forOp.getBody()->begin() == std::prev(forOp.getBody()->end()))
return success();
// If the trip counts aren't constant, we would need versioning and
// conditional guards (or context information to prevent such versioning). The
// better way to pipeline for such loops is to first tile them and extract
// constant trip count "full tiles" before applying this.
auto mayBeConstTripCount = getConstantTripCount(forOp);
if (!mayBeConstTripCount) {
LLVM_DEBUG(forOp.emitRemark("non-constant trip count loop not handled"));
return success();
}
uint64_t tripCount = *mayBeConstTripCount;
assert(isOpwiseShiftValid(forOp, shifts) &&
"shifts will lead to an invalid transformation\n");
int64_t step = forOp.getStep();
unsigned numChildOps = shifts.size();
// Do a linear time (counting) sort for the shifts.
uint64_t maxShift = *std::max_element(shifts.begin(), shifts.end());
if (maxShift >= numChildOps) {
// Large shifts are not the typical use case.
forOp.emitWarning("not shifting because shifts are unrealistically large");
return success();
}
// An array of operation groups sorted by shift amount; each group has all
// operations with the same shift in the order in which they appear in the
// body of the 'affine.for' op.
std::vector<std::vector<Operation *>> sortedOpGroups(maxShift + 1);
unsigned pos = 0;
for (auto &op : forOp.getBody()->without_terminator()) {
auto shift = shifts[pos++];
sortedOpGroups[shift].push_back(&op);
}
// Unless the shifts have a specific pattern (which actually would be the
// common use case), prologue and epilogue are not meaningfully defined.
// Nevertheless, if 'unrollPrologueEpilogue' is set, we will treat the first
// loop generated as the prologue and the last as epilogue and unroll these
// fully.
AffineForOp prologue, epilogue;
// Do a sweep over the sorted shifts while storing open groups in a
// vector, and generating loop portions as necessary during the sweep. A block
// of operations is paired with its shift.
std::vector<std::pair<uint64_t, ArrayRef<Operation *>>> opGroupQueue;
auto origLbMap = forOp.getLowerBoundMap();
uint64_t lbShift = 0;
OpBuilder b(forOp);
for (uint64_t d = 0, e = sortedOpGroups.size(); d < e; ++d) {
// If nothing is shifted by d, continue.
if (sortedOpGroups[d].empty())
continue;
if (!opGroupQueue.empty()) {
assert(d > 0 &&
"Queue expected to be empty when the first block is found");
// The interval for which the loop needs to be generated here is:
// [lbShift, min(lbShift + tripCount, d)) and the body of the
// loop needs to have all operations in opQueue in that order.
AffineForOp res;
if (lbShift + tripCount * step < d * step) {
res = generateShiftedLoop(
b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, lbShift + tripCount * step),
opGroupQueue, /*offset=*/0, forOp, b);
// Entire loop for the queued op groups generated, empty it.
opGroupQueue.clear();
lbShift += tripCount * step;
} else {
res = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, d),
opGroupQueue, /*offset=*/0, forOp, b);
lbShift = d * step;
}
if (res) {
// Simplify/canonicalize the affine.for.
RewritePatternSet patterns(res.getContext());
AffineForOp::getCanonicalizationPatterns(patterns, res.getContext());
GreedyRewriteConfig config;
config.strictMode = GreedyRewriteStrictness::ExistingOps;
bool erased;
(void)applyOpPatternsAndFold(res.getOperation(), std::move(patterns),
config, /*changed=*/nullptr, &erased);
if (!erased && !prologue)
prologue = res;
if (!erased)
epilogue = res;
}
} else {
// Start of first interval.
lbShift = d * step;
}
// Augment the list of operations that get into the current open interval.
opGroupQueue.emplace_back(d, sortedOpGroups[d]);
}
// Those operations groups left in the queue now need to be processed (FIFO)
// and their loops completed.
for (unsigned i = 0, e = opGroupQueue.size(); i < e; ++i) {
uint64_t ubShift = (opGroupQueue[i].first + tripCount) * step;
epilogue = generateShiftedLoop(b.getShiftedAffineMap(origLbMap, lbShift),
b.getShiftedAffineMap(origLbMap, ubShift),
opGroupQueue, /*offset=*/i, forOp, b);
lbShift = ubShift;
if (!prologue)
prologue = epilogue;
}
// Erase the original for op.
forOp.erase();
if (unrollPrologueEpilogue && prologue)
(void)loopUnrollFull(prologue);
if (unrollPrologueEpilogue && !epilogue && epilogue != prologue)
(void)loopUnrollFull(epilogue);
return success();
}
/// Checks whether a loop nest is hyper-rectangular or not.
static LogicalResult
checkIfHyperRectangular(MutableArrayRef<AffineForOp> input) {
FlatAffineValueConstraints cst;
SmallVector<Operation *, 8> ops(input.begin(), input.end());
// 0-d or 1-d is trivially hyper-rectangular.
if (input.size() <= 1)
return success();
if (failed(getIndexSet(ops, &cst))) {
LLVM_DEBUG(llvm::dbgs() << "Index set computation failed!\n");
return failure();
}
if (!cst.isHyperRectangular(0, input.size())) {
LLVM_DEBUG(llvm::dbgs()
<< "Non-hyperrectangular nests not supported for tiling!\n");
return failure();
}
return success();
}
/// Check if the input nest is supported for tiling and whether tiling would be
/// legal or not.
template <typename t>
static LogicalResult performPreTilingChecks(MutableArrayRef<AffineForOp> input,
ArrayRef<t> tileSizes) {
assert(input.size() == tileSizes.size() && "Too few/many tile sizes");
if (llvm::any_of(input,
[](AffineForOp op) { return op.getNumResults() > 0; })) {
LLVM_DEBUG(llvm::dbgs()
<< "Cannot tile nest where a loop has yield values\n");
return failure();
}
// Check if the supplied `for` ops are all successively nested.
if (!isPerfectlyNested(input)) {
LLVM_DEBUG(llvm::dbgs() << "input loops not perfectly nested");
return failure();
}
if (failed(checkIfHyperRectangular(input)))
return failure();
return success();
}
/// Move the loop body of AffineForOp 'src' from 'src' into the specified
/// location in destination's body, ignoring the terminator.
static void moveLoopBodyImpl(AffineForOp src, AffineForOp dest,
Block::iterator loc) {
auto &ops = src.getBody()->getOperations();
dest.getBody()->getOperations().splice(loc, ops, ops.begin(),
std::prev(ops.end()));
}
/// Move the loop body of AffineForOp 'src' from 'src' to the start of dest
/// body.
static void moveLoopBody(AffineForOp src, AffineForOp dest) {
moveLoopBodyImpl(src, dest, dest.getBody()->begin());
}
/// Constructs tiled loop nest, without setting the loop bounds and move the
/// body of the original loop nest to the tiled loop nest.
static void constructTiledLoopNest(MutableArrayRef<AffineForOp> origLoops,
AffineForOp rootAffineForOp, unsigned width,
MutableArrayRef<AffineForOp> tiledLoops) {
Location loc = rootAffineForOp.getLoc();
// The outermost among the loops as we add more..
Operation *topLoop = rootAffineForOp.getOperation();
AffineForOp innermostPointLoop;
// Add intra-tile (or point) loops.
for (unsigned i = 0; i < width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
AffineForOp pointLoop = b.create<AffineForOp>(loc, 0, 0);
pointLoop.getBody()->getOperations().splice(
pointLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - 1 - i] = pointLoop;
topLoop = pointLoop.getOperation();
if (i == 0)
innermostPointLoop = pointLoop;
}
// Add tile space loops;
for (unsigned i = width; i < 2 * width; i++) {
OpBuilder b(topLoop);
// Loop bounds will be set later.
AffineForOp tileSpaceLoop = b.create<AffineForOp>(loc, 0, 0);
tileSpaceLoop.getBody()->getOperations().splice(
tileSpaceLoop.getBody()->begin(), topLoop->getBlock()->getOperations(),
topLoop);
tiledLoops[2 * width - i - 1] = tileSpaceLoop;
topLoop = tileSpaceLoop.getOperation();
}
// Move the loop body of the original nest to the new one.
moveLoopBody(origLoops.back(), innermostPointLoop);
}
/// Set lower and upper bounds of intra-tile loops for parametric tiling.
// TODO: Handle non-constant lower bounds.
static void setIntraTileBoundsParametric(OpBuilder &b, AffineForOp origLoop,
AffineForOp newInterTileLoop,
AffineForOp newIntraTileLoop,
Value tileSize) {
// The lower bound for the intra-tile loop is represented by an affine map
// as (%i, %t0)->((%i - %origlb) * %t0 + %origlb). Similarly, the upper bound
// for the intra-tile loop is represented by an affine map as (%i, %t0)->((%i
// - %origlb) * %t0) + (%t0 * %origLoopStep) + %origlb), where %i is loop IV
// of the corresponding inter-tile loop, %t0 is the corresponding tiling
// parameter, %origlb is lower bound and %origLoopStep is the loop step of the
// corresponding inter-tile loop.
assert(origLoop.hasConstantLowerBound() &&
"expected input loops to have constant lower bound.");
// Get lower bound of original loop as an affine expression.
AffineExpr origLowerBoundExpr;
origLowerBoundExpr =
b.getAffineConstantExpr(origLoop.getConstantLowerBound());
// Add dim operands from original lower/upper bound.
SmallVector<Value, 4> lbOperands, ubOperands;
AffineBound lb = origLoop.getLowerBound();
AffineBound ub = origLoop.getUpperBound();
lbOperands.reserve(lb.getNumOperands() + 2);
ubOperands.reserve(ub.getNumOperands() + 2);
AffineMap origLbMap = lb.getMap();
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origLbMap.getNumDims(); j < e; ++j)
lbOperands.push_back(lb.getOperand(j));
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add a new dim operand in lb/ubOperands corresponding to the origLoop
// IV.
lbOperands.push_back(newInterTileLoop.getInductionVar());
ubOperands.push_back(newInterTileLoop.getInductionVar());
// Get loop IV as an affine expression for lower/upper bound. Size of
// lb/ubOperands is guaranteed to be atleast one.
AffineExpr lbLoopIvExpr = b.getAffineDimExpr(lbOperands.size() - 1);
AffineExpr ubLoopIvExpr = b.getAffineDimExpr(ubOperands.size() - 1);
// Add symbol operands from original lower/upper bound.
for (unsigned j = 0, e = origLbMap.getNumSymbols(); j < e; ++j)
lbOperands.push_back(lb.getOperand(origLbMap.getNumDims() + j));
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
// Add a new symbol operand which is the tile size for this loop.
lbOperands.push_back(tileSize);
ubOperands.push_back(tileSize);
SmallVector<AffineExpr, 4> lbBoundExprs;
SmallVector<AffineExpr, 4> ubBoundExprs;
lbBoundExprs.reserve(origLbMap.getNumResults());
ubBoundExprs.reserve(origUbMap.getNumResults());
// Get tiling parameter as an affine expression for lb/ub.
AffineExpr lbTileParameter = b.getAffineSymbolExpr(origLbMap.getNumSymbols());
AffineExpr ubTileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols());
// Insert lb as inter-tile ((loop IV - origlb) * tilingParameter) + origlb.
lbBoundExprs.push_back(
((lbLoopIvExpr - origLowerBoundExpr) * lbTileParameter) +
origLowerBoundExpr);
// Get the origLoopStep as an affine expression.
AffineExpr origLoopStep = b.getAffineConstantExpr(origLoop.getStep());
// Insert ub as inter-tile ((loop IV - origlb) * tilingParameter) +
// (tilingParameter * origLoopStep) + origlb.
ubBoundExprs.push_back(
((ubLoopIvExpr - origLowerBoundExpr) * ubTileParameter) +
(ubTileParameter * origLoopStep) + origLowerBoundExpr);
ubBoundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
AffineMap lbMap =
AffineMap::get(origLbMap.getNumDims() + 1, origLbMap.getNumSymbols() + 1,
lbBoundExprs, b.getContext());
newIntraTileLoop.setLowerBound(lbOperands, lbMap);
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols() + 1,
ubBoundExprs, b.getContext());
newIntraTileLoop.setUpperBound(ubOperands, ubMap);
// Original loop step must be preserved.
newIntraTileLoop.setStep(origLoop.getStep());
}
/// Set lower and upper bounds of inter-tile loops for parametric tiling.
// TODO: Handle non-constant lower bounds.
static void setInterTileBoundsParametric(OpBuilder &b, AffineForOp origLoop,
AffineForOp newLoop, Value tileSize) {
OperandRange newLbOperands = origLoop.getLowerBoundOperands();
// The lower bounds for inter-tile loops are same as the corresponding lower
// bounds of original loops.
newLoop.setLowerBound(newLbOperands, origLoop.getLowerBoundMap());
// The new upper bound map for inter-tile loops, assuming constant lower
// bounds, are now originalLowerBound + ceildiv((originalUpperBound -
// originalLowerBound), tiling parameter); where tiling parameter is the
// respective tile size for that loop. For e.g. if the original ubmap was
// ()->(1024), the new map will be
// ()[s0]->(ceildiv((1024 -lb) % s0)), where s0 is the tiling parameter.
// Therefore a new symbol operand is inserted in the map and the result
// expression is overwritten.
assert(origLoop.hasConstantLowerBound() &&
"expected input loops to have constant lower bound.");
// Get lower bound of original loop as an affine expression.
AffineExpr origLowerBoundExpr;
origLowerBoundExpr =
b.getAffineConstantExpr(origLoop.getConstantLowerBound());
// Add dim operands from original upper bound.
SmallVector<Value, 4> ubOperands;
AffineBound ub = origLoop.getUpperBound();
ubOperands.reserve(ub.getNumOperands() + 1);
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add symbol operands from original upper bound.
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
// Add a new symbol operand which is the tile size for this loop.
ubOperands.push_back(tileSize);
// Get tiling parameter as an affine expression.
AffineExpr tileParameter = b.getAffineSymbolExpr(origUbMap.getNumSymbols());
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(origUbMap.getNumResults());
int64_t origUpperBound;
AffineExpr origUpperBoundExpr;
// If upper bound for the original loop is constant, then the constant can
// be obtained as an affine expression straight away.
if (origLoop.hasConstantUpperBound()) {
origUpperBound = origLoop.getConstantUpperBound();
// Get original constant upper bound as an affine expression.
origUpperBoundExpr = b.getAffineConstantExpr(origUpperBound);
// Insert the bound as originalLowerBoundceildiv((originalUpperBound -
// originalLowerBound), tilingParameter).
boundExprs.push_back(
origLowerBoundExpr +
(origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter));
} else {
// If upper bound for the original loop is not constant then two cases
// are possible, although there handeling is the same, 1.) The result of
// ubmap has only one result expression. For e.g.
// affine.for %i = 5 to %ub
//
// A symbol operand is added which represents the tiling parameter. The
// new loop bounds here will be like ()[s0, s1] -> ((s0 - 5) ceildiv s1 + 5)
// where 's0' is the original upper bound and 's1' is the tiling
// parameter. 2.) When ubMap has more than one result expression. For e.g.
// #map0 = affine_map<()[s0, s1] -> (s0, s1)
// affine.for %i = 5 to min #map0()[%s0, %s1]
//
// A symbol operand is added which represents the tiling parameter. The
// new loop bounds will be like ()[s0, s1, s2] -> ((s0 - 5) ceildiv s2 + 5,
// (s1 -5) ceildiv s2 + 5), where s2 is the tiling parameter.
// Insert the bounds as originalLowerBound + ceildiv((originalUpperBound -
// originalLowerBound), tilingParameter).
for (AffineExpr origUpperBoundExpr : origUbMap.getResults())
boundExprs.push_back(
origLowerBoundExpr +
(origUpperBoundExpr - origLowerBoundExpr).ceilDiv(tileParameter));
}
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims(), origUbMap.getNumSymbols() + 1,
boundExprs, b.getContext());
newLoop.setUpperBound(ubOperands, ubMap);
// Original loop step must be preserved.
newLoop.setStep(origLoop.getStep());
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions and tiling parameters are captured from SSA
/// values. Bounds of each dimension can thus be treated independently,
/// and deriving the new bounds is much simpler and faster than for the case of
/// tiling arbitrary polyhedral shapes.
static void constructParametricallyTiledIndexSetHyperRect(
MutableArrayRef<AffineForOp> origLoops,
MutableArrayRef<AffineForOp> newLoops, ArrayRef<Value> tileSizes) {
assert(!origLoops.empty() && "expected atleast one loop in band");
assert(origLoops.size() == tileSizes.size() &&
"expected tiling parameter for each loop in band.");
OpBuilder b(origLoops[0].getOperation());
unsigned width = origLoops.size();
// Set bounds for tile space loops.
for (unsigned i = 0; i < width; ++i) {
setInterTileBoundsParametric(b, origLoops[i], newLoops[i], tileSizes[i]);
}
// Set bounds for intra-tile loops.
for (unsigned i = 0; i < width; ++i) {
setIntraTileBoundsParametric(b, origLoops[i], newLoops[i],
newLoops[i + width], tileSizes[i]);
}
}
/// Constructs and sets new loop bounds after tiling for the case of
/// hyper-rectangular index sets, where the bounds of one dimension do not
/// depend on other dimensions. Bounds of each dimension can thus be treated
/// independently, and deriving the new bounds is much simpler and faster
/// than for the case of tiling arbitrary polyhedral shapes.
static void
constructTiledIndexSetHyperRect(MutableArrayRef<AffineForOp> origLoops,
MutableArrayRef<AffineForOp> newLoops,
ArrayRef<unsigned> tileSizes) {
assert(!origLoops.empty());
assert(origLoops.size() == tileSizes.size());
OpBuilder b(origLoops[0].getOperation());
unsigned width = origLoops.size();
// Bounds for tile space loops.
for (unsigned i = 0; i < width; i++) {
OperandRange newLbOperands = origLoops[i].getLowerBoundOperands();
OperandRange newUbOperands = origLoops[i].getUpperBoundOperands();
newLoops[i].setLowerBound(newLbOperands, origLoops[i].getLowerBoundMap());
newLoops[i].setUpperBound(newUbOperands, origLoops[i].getUpperBoundMap());
// If the step size of original loop is x and tileSize is y then after
// tiling the tile space loops' step size becomes x*y.
newLoops[i].setStep(tileSizes[i] * origLoops[i].getStep());
}
// Bounds for intra-tile loops.
for (unsigned i = 0; i < width; i++) {
int64_t largestDiv = getLargestDivisorOfTripCount(origLoops[i]);
std::optional<uint64_t> mayBeConstantCount =
getConstantTripCount(origLoops[i]);
// The lower bound is just the tile-space loop.
AffineMap lbMap = b.getDimIdentityMap();
newLoops[width + i].setLowerBound(
/*operands=*/newLoops[i].getInductionVar(), lbMap);
// The step sizes of intra-tile loops is just the original loops' step size.
newLoops[width + i].setStep(origLoops[i].getStep());
// Set the upper bound.
if (mayBeConstantCount && *mayBeConstantCount < tileSizes[i]) {
// Trip count is less than the tile size: upper bound is lower bound +
// trip count * stepSize.
AffineMap ubMap = b.getSingleDimShiftAffineMap(*mayBeConstantCount *
origLoops[i].getStep());
newLoops[width + i].setUpperBound(
/*operands=*/newLoops[i].getInductionVar(), ubMap);
} else if (largestDiv % tileSizes[i] != 0) {
// Intra-tile loop ii goes from i to min(i + tileSize * stepSize, ub_i).
// Construct the upper bound map; the operands are the original operands
// with 'i' (tile-space loop) appended to it. The new upper bound map is
// the original one with an additional expression i + tileSize * stepSize
// appended.
// Add dim operands from original upper bound.
SmallVector<Value, 4> ubOperands;
AffineBound ub = origLoops[i].getUpperBound();
ubOperands.reserve(ub.getNumOperands() + 1);
AffineMap origUbMap = ub.getMap();
for (unsigned j = 0, e = origUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
// Add dim operand for new loop upper bound.
ubOperands.push_back(newLoops[i].getInductionVar());
// Add symbol operands from original upper bound.
for (unsigned j = 0, e = origUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(origUbMap.getNumDims() + j));
SmallVector<AffineExpr, 4> boundExprs;
boundExprs.reserve(1 + origUbMap.getNumResults());
AffineExpr dim = b.getAffineDimExpr(origUbMap.getNumDims());
// The new upper bound map is the original one with an additional
// expression i + tileSize * stepSize (of original loop) appended.
boundExprs.push_back(dim + tileSizes[i] * origLoops[i].getStep());
boundExprs.append(origUbMap.getResults().begin(),
origUbMap.getResults().end());
AffineMap ubMap =
AffineMap::get(origUbMap.getNumDims() + 1, origUbMap.getNumSymbols(),
boundExprs, b.getContext());
newLoops[width + i].setUpperBound(/*operands=*/ubOperands, ubMap);
} else {
// No need of the min expression.
AffineExpr dim = b.getAffineDimExpr(0);
AffineMap ubMap =
AffineMap::get(1, 0, dim + tileSizes[i] * origLoops[i].getStep());
newLoops[width + i].setUpperBound(newLoops[i].getInductionVar(), ubMap);
}
}
}
LogicalResult
mlir::affine::tilePerfectlyNested(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> tileSizes,
SmallVectorImpl<AffineForOp> *tiledNest) {
if (input.empty())
return success();
if (failed(performPreTilingChecks(input, tileSizes)))
return failure();
MutableArrayRef<AffineForOp> origLoops = input;
AffineForOp rootAffineForOp = origLoops[0];
// Note that width is at least one since the band isn't empty.
unsigned width = input.size();
SmallVector<AffineForOp, 6> tiledLoops(2 * width);
// Construct a tiled loop nest without setting their bounds. Bounds are
// set later.
constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops);
SmallVector<Value, 8> origLoopIVs;
extractForInductionVars(input, &origLoopIVs);
// Set loop bounds for the tiled loop nest.
constructTiledIndexSetHyperRect(origLoops, tiledLoops, tileSizes);
// Replace original IVs with intra-tile loop IVs.
for (unsigned i = 0; i < width; i++)
origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
// Erase the old loop nest.
rootAffineForOp.erase();
if (tiledNest)
*tiledNest = std::move(tiledLoops);
return success();
}
/// Tiles the specified band of perfectly nested loops creating tile-space
/// loops and intra-tile loops, using SSA values as tiling parameters. A band
/// is a contiguous set of loops.
// TODO: handle non hyper-rectangular spaces.
LogicalResult mlir::affine::tilePerfectlyNestedParametric(
MutableArrayRef<AffineForOp> input, ArrayRef<Value> tileSizes,
SmallVectorImpl<AffineForOp> *tiledNest) {
if (input.empty())
return success();
if (failed(performPreTilingChecks(input, tileSizes)))
return failure();
MutableArrayRef<AffineForOp> origLoops = input;
AffineForOp rootAffineForOp = origLoops[0];
unsigned width = input.size();
SmallVector<AffineForOp, 6> tiledLoops(2 * width);
// Construct a tiled loop nest without setting their bounds. Bounds are
// set later.
constructTiledLoopNest(origLoops, rootAffineForOp, width, tiledLoops);
SmallVector<Value, 8> origLoopIVs;
extractForInductionVars(input, &origLoopIVs);
// Set loop bounds for the tiled loop nest.
constructParametricallyTiledIndexSetHyperRect(origLoops, tiledLoops,
tileSizes);
// Replace original IVs with intra-tile loop IVs.
for (unsigned i = 0; i < width; i++)
origLoopIVs[i].replaceAllUsesWith(tiledLoops[i + width].getInductionVar());
// Erase the old loop nest.
rootAffineForOp.erase();
if (tiledNest)
*tiledNest = std::move(tiledLoops);
return success();
}
/// Get perfectly nested sequence of loops starting at root of loop nest
/// (the first op being another AffineFor, and the second op - a terminator).
/// A loop is perfectly nested iff: the first op in the loop's body is another
/// AffineForOp, and the second op is a terminator).
void mlir::affine::getPerfectlyNestedLoops(
SmallVectorImpl<AffineForOp> &nestedLoops, AffineForOp root) {
for (unsigned i = 0; i < std::numeric_limits<unsigned>::max(); ++i) {
nestedLoops.push_back(root);
Block &body = root.getRegion().front();
if (body.begin() != std::prev(body.end(), 2))
return;
root = dyn_cast<AffineForOp>(&body.front());
if (!root)
return;
}
}
/// Identify valid and profitable bands of loops to tile. This is currently just
/// a temporary placeholder to test the mechanics of tiled code generation.
/// Returns all maximal outermost perfect loop nests to tile.
void mlir::affine::getTileableBands(
func::FuncOp f, std::vector<SmallVector<AffineForOp, 6>> *bands) {
// Get maximal perfect nest of 'affine.for' insts starting from root
// (inclusive).
for (AffineForOp forOp : f.getOps<AffineForOp>()) {
SmallVector<AffineForOp, 6> band;
getPerfectlyNestedLoops(band, forOp);
bands->push_back(band);
}
}
/// Unrolls this loop completely.
LogicalResult mlir::affine::loopUnrollFull(AffineForOp forOp) {
std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.has_value()) {
uint64_t tripCount = *mayBeConstantTripCount;
if (tripCount == 0)
return success();
if (tripCount == 1)
return promoteIfSingleIteration(forOp);
return loopUnrollByFactor(forOp, tripCount);
}
return failure();
}
/// Unrolls this loop by the specified factor or by the trip count (if constant)
/// whichever is lower.
LogicalResult mlir::affine::loopUnrollUpToFactor(AffineForOp forOp,
uint64_t unrollFactor) {
std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.has_value() &&
*mayBeConstantTripCount < unrollFactor)
return loopUnrollByFactor(forOp, *mayBeConstantTripCount);
return loopUnrollByFactor(forOp, unrollFactor);
}
/// Generates unrolled copies of AffineForOp 'loopBodyBlock', with associated
/// 'forOpIV' by 'unrollFactor', calling 'ivRemapFn' to remap 'forOpIV' for each
/// unrolled body. If specified, annotates the Ops in each unrolled iteration
/// using annotateFn.
static void generateUnrolledLoop(
Block *loopBodyBlock, Value forOpIV, uint64_t unrollFactor,
function_ref<Value(unsigned, Value, OpBuilder)> ivRemapFn,
function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn,
ValueRange iterArgs, ValueRange yieldedValues) {
// Builder to insert unrolled bodies just before the terminator of the body of
// 'forOp'.
auto builder = OpBuilder::atBlockTerminator(loopBodyBlock);
if (!annotateFn)
annotateFn = [](unsigned, Operation *, OpBuilder) {};
// Keep a pointer to the last non-terminator operation in the original block
// so that we know what to clone (since we are doing this in-place).
Block::iterator srcBlockEnd = std::prev(loopBodyBlock->end(), 2);
// Unroll the contents of 'forOp' (append unrollFactor - 1 additional copies).
SmallVector<Value, 4> lastYielded(yieldedValues);
for (unsigned i = 1; i < unrollFactor; i++) {
IRMapping operandMap;
// Prepare operand map.
operandMap.map(iterArgs, lastYielded);
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV.use_empty()) {
Value ivUnroll = ivRemapFn(i, forOpIV, builder);
operandMap.map(forOpIV, ivUnroll);
}
// Clone the original body of 'forOp'.
for (auto it = loopBodyBlock->begin(); it != std::next(srcBlockEnd); it++) {
Operation *clonedOp = builder.clone(*it, operandMap);
annotateFn(i, clonedOp, builder);
}
// Update yielded values. If the yielded value is defined outside the
// `loopBodyBlock` or if it is a BlockArgument then it won't be cloned, thus
// the `lastYielded` value remains unchanged. Else, update the `lastYielded`
// value with the clone corresponding to the yielded value.
for (unsigned i = 0, e = lastYielded.size(); i < e; i++) {
Operation *defOp = yieldedValues[i].getDefiningOp();
if (defOp && defOp->getBlock() == loopBodyBlock)
lastYielded[i] = operandMap.lookup(yieldedValues[i]);
}
}
// Make sure we annotate the Ops in the original body. We do this last so that
// any annotations are not copied into the cloned Ops above.
for (auto it = loopBodyBlock->begin(); it != std::next(srcBlockEnd); it++)
annotateFn(0, &*it, builder);
// Update operands of the yield statement.
loopBodyBlock->getTerminator()->setOperands(lastYielded);
}
/// Helper to generate cleanup loop for unroll or unroll-and-jam when the trip
/// count is not a multiple of `unrollFactor`.
static LogicalResult generateCleanupLoopForUnroll(AffineForOp forOp,
uint64_t unrollFactor) {
// Insert the cleanup loop right after 'forOp'.
OpBuilder builder(forOp->getBlock(), std::next(Block::iterator(forOp)));
auto cleanupForOp = cast<AffineForOp>(builder.clone(*forOp));
// Update uses of `forOp` results. `cleanupForOp` should use `forOp` result
// and produce results for the original users of `forOp` results.
auto results = forOp.getResults();
auto cleanupResults = cleanupForOp.getResults();
auto cleanupIterOperands = cleanupForOp.getIterOperands();
for (auto e : llvm::zip(results, cleanupResults, cleanupIterOperands)) {
std::get<0>(e).replaceAllUsesWith(std::get<1>(e));
cleanupForOp->replaceUsesOfWith(std::get<2>(e), std::get<0>(e));
}
AffineMap cleanupMap;
SmallVector<Value, 4> cleanupOperands;
getCleanupLoopLowerBound(forOp, unrollFactor, cleanupMap, cleanupOperands);
if (!cleanupMap)
return failure();
cleanupForOp.setLowerBound(cleanupOperands, cleanupMap);
// Promote the loop body up if this has turned into a single iteration loop.
(void)promoteIfSingleIteration(cleanupForOp);
// Adjust upper bound of the original loop; this is the same as the lower
// bound of the cleanup loop.
forOp.setUpperBound(cleanupOperands, cleanupMap);
return success();
}
/// Unrolls this loop by the specified factor. Returns success if the loop
/// is successfully unrolled.
LogicalResult mlir::affine::loopUnrollByFactor(
AffineForOp forOp, uint64_t unrollFactor,
function_ref<void(unsigned, Operation *, OpBuilder)> annotateFn,
bool cleanUpUnroll) {
assert(unrollFactor > 0 && "unroll factor should be positive");
std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (unrollFactor == 1) {
if (mayBeConstantTripCount && *mayBeConstantTripCount == 1 &&
failed(promoteIfSingleIteration(forOp)))
return failure();
return success();
}
// Nothing in the loop body other than the terminator.
if (llvm::hasSingleElement(forOp.getBody()->getOperations()))
return success();
// If the trip count is lower than the unroll factor, no unrolled body.
if (mayBeConstantTripCount && *mayBeConstantTripCount < unrollFactor) {
if (cleanUpUnroll) {
// Unroll the cleanup loop if cleanUpUnroll is specified.
return loopUnrollFull(forOp);
}
return failure();
}
// Generate the cleanup loop if trip count isn't a multiple of unrollFactor.
if (getLargestDivisorOfTripCount(forOp) % unrollFactor != 0) {
// Loops where the lower bound is a max expression or the upper bound is
// a min expression and the trip count doesn't divide the unroll factor
// can't be unrolled since the lower bound of the cleanup loop in such cases
// cannot be expressed as an affine function or a max over affine functions.
if (forOp.getLowerBoundMap().getNumResults() != 1 ||
forOp.getUpperBoundMap().getNumResults() != 1)
return failure();
if (cleanUpUnroll)
// Force unroll including cleanup loop
return loopUnrollFull(forOp);
if (failed(generateCleanupLoopForUnroll(forOp, unrollFactor)))
assert(false && "cleanup loop lower bound map for single result lower "
"and upper bound maps can always be determined");
}
ValueRange iterArgs(forOp.getRegionIterArgs());
auto yieldedValues = forOp.getBody()->getTerminator()->getOperands();
// Scale the step of loop being unrolled by unroll factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollFactor);
generateUnrolledLoop(
forOp.getBody(), forOp.getInductionVar(), unrollFactor,
[&](unsigned i, Value iv, OpBuilder b) {
// iv' = iv + i * step
auto d0 = b.getAffineDimExpr(0);
auto bumpMap = AffineMap::get(1, 0, d0 + i * step);
return b.create<AffineApplyOp>(forOp.getLoc(), bumpMap, iv);
},
/*annotateFn=*/annotateFn,
/*iterArgs=*/iterArgs, /*yieldedValues=*/yieldedValues);
// Promote the loop body up if this has turned into a single iteration loop.
(void)promoteIfSingleIteration(forOp);
return success();
}
LogicalResult mlir::affine::loopUnrollJamUpToFactor(AffineForOp forOp,
uint64_t unrollJamFactor) {
std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (mayBeConstantTripCount.has_value() &&
*mayBeConstantTripCount < unrollJamFactor)
return loopUnrollJamByFactor(forOp, *mayBeConstantTripCount);
return loopUnrollJamByFactor(forOp, unrollJamFactor);
}
/// Check if all control operands of all loops are defined outside of `forOp`
/// and return false if not.
static bool areInnerBoundsInvariant(AffineForOp forOp) {
auto walkResult = forOp.walk([&](AffineForOp aForOp) {
for (auto controlOperand : aForOp.getControlOperands()) {
if (!forOp.isDefinedOutsideOfLoop(controlOperand))
return WalkResult::interrupt();
}
return WalkResult::advance();
});
return !walkResult.wasInterrupted();
}
// Gathers all maximal sub-blocks of operations that do not themselves
// include a for op (a operation could have a descendant for op though
// in its tree). Ignore the block terminators.
struct JamBlockGatherer {
// Store iterators to the first and last op of each sub-block found.
std::vector<std::pair<Block::iterator, Block::iterator>> subBlocks;
// This is a linear time walk.
void walk(Operation *op) {
for (auto ®ion : op->getRegions())
for (auto &block : region)
walk(block);
}
void walk(Block &block) {
for (auto it = block.begin(), e = std::prev(block.end()); it != e;) {
auto subBlockStart = it;
while (it != e && !isa<AffineForOp>(&*it))
++it;
if (it != subBlockStart)
subBlocks.emplace_back(subBlockStart, std::prev(it));
// Process all for ops that appear next.
while (it != e && isa<AffineForOp>(&*it))
walk(&*it++);
}
}
};
/// Unrolls and jams this loop by the specified factor.
LogicalResult mlir::affine::loopUnrollJamByFactor(AffineForOp forOp,
uint64_t unrollJamFactor) {
assert(unrollJamFactor > 0 && "unroll jam factor should be positive");
std::optional<uint64_t> mayBeConstantTripCount = getConstantTripCount(forOp);
if (unrollJamFactor == 1) {
if (mayBeConstantTripCount && *mayBeConstantTripCount == 1 &&
failed(promoteIfSingleIteration(forOp)))
return failure();
return success();
}
// Nothing in the loop body other than the terminator.
if (llvm::hasSingleElement(forOp.getBody()->getOperations()))
return success();
// If the trip count is lower than the unroll jam factor, no unroll jam.
if (mayBeConstantTripCount && *mayBeConstantTripCount < unrollJamFactor) {
LLVM_DEBUG(llvm::dbgs() << "[failed] trip count < unroll-jam factor\n");
return failure();
}
// If any control operand of any inner loop of `forOp` is defined within
// `forOp`, no unroll jam.
if (!areInnerBoundsInvariant(forOp))
return failure();
// Gather all sub-blocks to jam upon the loop being unrolled.
JamBlockGatherer jbg;
jbg.walk(forOp);
auto &subBlocks = jbg.subBlocks;
// Collect loops with iter_args.
SmallVector<AffineForOp, 4> loopsWithIterArgs;
forOp.walk([&](AffineForOp aForOp) {
if (aForOp.getNumIterOperands() > 0)
loopsWithIterArgs.push_back(aForOp);
});
// Get supported reductions to be used for creating reduction ops at the end.
SmallVector<LoopReduction> reductions;
if (forOp.getNumIterOperands() > 0)
getSupportedReductions(forOp, reductions);
// Generate the cleanup loop if trip count isn't a multiple of
// unrollJamFactor.
if (getLargestDivisorOfTripCount(forOp) % unrollJamFactor != 0) {
// Loops where the lower bound is a max expression or the upper bound is
// a min expression and the trip count doesn't divide the unroll factor
// can't be unrolled since the lower bound of the cleanup loop in such cases
// cannot be expressed as an affine function or a max over affine functions.
if (forOp.getLowerBoundMap().getNumResults() != 1 ||
forOp.getUpperBoundMap().getNumResults() != 1)
return failure();
if (failed(generateCleanupLoopForUnroll(forOp, unrollJamFactor)))
assert(false && "cleanup loop lower bound map for single result lower "
"and upper bound maps can always be determined");
}
// `operandMaps[i - 1]` carries old->new operand mapping for the ith unrolled
// iteration. There are (`unrollJamFactor` - 1) iterations.
SmallVector<IRMapping, 4> operandMaps(unrollJamFactor - 1);
// For any loop with iter_args, replace it with a new loop that has
// `unrollJamFactor` copies of its iterOperands, iter_args and yield
// operands.
SmallVector<AffineForOp, 4> newLoopsWithIterArgs;
OpBuilder builder(forOp.getContext());
for (AffineForOp oldForOp : loopsWithIterArgs) {
SmallVector<Value, 4> dupIterOperands, dupIterArgs, dupYieldOperands;
ValueRange oldIterOperands = oldForOp.getIterOperands();
ValueRange oldIterArgs = oldForOp.getRegionIterArgs();
ValueRange oldYieldOperands =
cast<AffineYieldOp>(oldForOp.getBody()->getTerminator()).getOperands();
// Get additional iterOperands, iterArgs, and yield operands. We will
// fix iterOperands and yield operands after cloning of sub-blocks.
for (unsigned i = unrollJamFactor - 1; i >= 1; --i) {
dupIterOperands.append(oldIterOperands.begin(), oldIterOperands.end());
dupIterArgs.append(oldIterArgs.begin(), oldIterArgs.end());
dupYieldOperands.append(oldYieldOperands.begin(), oldYieldOperands.end());
}
// Create a new loop with additional iterOperands, iter_args and yield
// operands. This new loop will take the loop body of the original loop.
AffineForOp newForOp = affine::replaceForOpWithNewYields(
builder, oldForOp, dupIterOperands, dupYieldOperands, dupIterArgs);
newLoopsWithIterArgs.push_back(newForOp);
// `forOp` has been replaced with a new loop.
if (oldForOp == forOp)
forOp = newForOp;
assert(oldForOp.use_empty() && "old for op should not have any user");
oldForOp.erase();
// Update `operandMaps` for `newForOp` iterArgs and results.
ValueRange newIterArgs = newForOp.getRegionIterArgs();
unsigned oldNumIterArgs = oldIterArgs.size();
ValueRange newResults = newForOp.getResults();
unsigned oldNumResults = newResults.size() / unrollJamFactor;
assert(oldNumIterArgs == oldNumResults &&
"oldNumIterArgs must be the same as oldNumResults");
for (unsigned i = unrollJamFactor - 1; i >= 1; --i) {
for (unsigned j = 0; j < oldNumIterArgs; ++j) {
// `newForOp` has `unrollJamFactor` - 1 new sets of iterArgs and
// results. Update `operandMaps[i - 1]` to map old iterArgs and results
// to those in the `i`th new set.
operandMaps[i - 1].map(newIterArgs[j],
newIterArgs[i * oldNumIterArgs + j]);
operandMaps[i - 1].map(newResults[j],
newResults[i * oldNumResults + j]);
}
}
}
// Scale the step of loop being unroll-jammed by the unroll-jam factor.
int64_t step = forOp.getStep();
forOp.setStep(step * unrollJamFactor);
auto forOpIV = forOp.getInductionVar();
// Unroll and jam (appends unrollJamFactor - 1 additional copies).
for (unsigned i = unrollJamFactor - 1; i >= 1; --i) {
for (auto &subBlock : subBlocks) {
// Builder to insert unroll-jammed bodies. Insert right at the end of
// sub-block.
OpBuilder builder(subBlock.first->getBlock(), std::next(subBlock.second));
// If the induction variable is used, create a remapping to the value for
// this unrolled instance.
if (!forOpIV.use_empty()) {
// iv' = iv + i * step, i = 1 to unrollJamFactor-1.
auto d0 = builder.getAffineDimExpr(0);
auto bumpMap = AffineMap::get(1, 0, d0 + i * step);
auto ivUnroll =
builder.create<AffineApplyOp>(forOp.getLoc(), bumpMap, forOpIV);
operandMaps[i - 1].map(forOpIV, ivUnroll);
}
// Clone the sub-block being unroll-jammed.
for (auto it = subBlock.first; it != std::next(subBlock.second); ++it)
builder.clone(*it, operandMaps[i - 1]);
}
// Fix iterOperands and yield op operands of newly created loops.
for (auto newForOp : newLoopsWithIterArgs) {
unsigned oldNumIterOperands =
newForOp.getNumIterOperands() / unrollJamFactor;
unsigned numControlOperands = newForOp.getNumControlOperands();
auto yieldOp = cast<AffineYieldOp>(newForOp.getBody()->getTerminator());
unsigned oldNumYieldOperands = yieldOp.getNumOperands() / unrollJamFactor;
assert(oldNumIterOperands == oldNumYieldOperands &&
"oldNumIterOperands must be the same as oldNumYieldOperands");
for (unsigned j = 0; j < oldNumIterOperands; ++j) {
// The `i`th duplication of an old iterOperand or yield op operand
// needs to be replaced with a mapped value from `operandMaps[i - 1]`
// if such mapped value exists.
newForOp.setOperand(numControlOperands + i * oldNumIterOperands + j,
operandMaps[i - 1].lookupOrDefault(
newForOp.getOperand(numControlOperands + j)));
yieldOp.setOperand(
i * oldNumYieldOperands + j,
operandMaps[i - 1].lookupOrDefault(yieldOp.getOperand(j)));
}
}
}
if (forOp.getNumResults() > 0) {
// Create reduction ops to combine every `unrollJamFactor` related results
// into one value. For example, for %0:2 = affine.for ... and addf, we add
// %1 = arith.addf %0#0, %0#1, and replace the following uses of %0#0 with
// %1.
builder.setInsertionPointAfter(forOp);
auto loc = forOp.getLoc();
unsigned oldNumResults = forOp.getNumResults() / unrollJamFactor;
for (LoopReduction &reduction : reductions) {
unsigned pos = reduction.iterArgPosition;
Value lhs = forOp.getResult(pos);
Value rhs;
SmallPtrSet<Operation *, 4> newOps;
for (unsigned i = unrollJamFactor - 1; i >= 1; --i) {
rhs = forOp.getResult(i * oldNumResults + pos);
// Create ops based on reduction type.
lhs = arith::getReductionOp(reduction.kind, builder, loc, lhs, rhs);
if (!lhs)
return failure();
Operation *op = lhs.getDefiningOp();
assert(op && "Reduction op should have been created");
newOps.insert(op);
}
// Replace all uses except those in newly created reduction ops.
forOp.getResult(pos).replaceAllUsesExcept(lhs, newOps);
}
}
// Promote the loop body up if this has turned into a single iteration loop.
(void)promoteIfSingleIteration(forOp);
return success();
}
/// Performs loop interchange on 'forOpA' and 'forOpB', where 'forOpB' is
/// nested within 'forOpA' as the only non-terminator operation in its block.
void mlir::affine::interchangeLoops(AffineForOp forOpA, AffineForOp forOpB) {
assert(&*forOpA.getBody()->begin() == forOpB.getOperation());
auto &forOpABody = forOpA.getBody()->getOperations();
auto &forOpBBody = forOpB.getBody()->getOperations();
// 1) Splice forOpA's non-terminator operations (which is just forOpB) just
// before forOpA (in ForOpA's parent's block) this should leave 'forOpA's
// body containing only the terminator.
forOpA->getBlock()->getOperations().splice(Block::iterator(forOpA),
forOpABody, forOpABody.begin(),
std::prev(forOpABody.end()));
// 2) Splice forOpB's non-terminator operations into the beginning of forOpA's
// body (this leaves forOpB's body containing only the terminator).
forOpABody.splice(forOpABody.begin(), forOpBBody, forOpBBody.begin(),
std::prev(forOpBBody.end()));
// 3) Splice forOpA into the beginning of forOpB's body.
forOpBBody.splice(forOpBBody.begin(), forOpA->getBlock()->getOperations(),
Block::iterator(forOpA));
}
// Checks each dependence component against the permutation to see if the
// desired loop interchange would violate dependences by making the
// dependence component lexicographically negative.
static bool checkLoopInterchangeDependences(
const std::vector<SmallVector<DependenceComponent, 2>> &depCompsVec,
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Invert permutation map.
unsigned maxLoopDepth = loops.size();
SmallVector<unsigned, 4> loopPermMapInv;
loopPermMapInv.resize(maxLoopDepth);
for (unsigned i = 0; i < maxLoopDepth; ++i)
loopPermMapInv[loopPermMap[i]] = i;
// Check each dependence component against the permutation to see if the
// desired loop interchange permutation would make the dependence vectors
// lexicographically negative.
// Example 1: [-1, 1][0, 0]
// Example 2: [0, 0][-1, 1]
for (const auto &depComps : depCompsVec) {
assert(depComps.size() >= maxLoopDepth);
// Check if the first non-zero dependence component is positive.
// This iterates through loops in the desired order.
for (unsigned j = 0; j < maxLoopDepth; ++j) {
unsigned permIndex = loopPermMapInv[j];
assert(depComps[permIndex].lb);
int64_t depCompLb = *depComps[permIndex].lb;
if (depCompLb > 0)
break;
if (depCompLb < 0)
return false;
}
}
return true;
}
/// Checks if the loop interchange permutation 'loopPermMap' of the perfectly
/// nested sequence of loops in 'loops' would violate dependences.
bool mlir::affine::isValidLoopInterchangePermutation(
ArrayRef<AffineForOp> loops, ArrayRef<unsigned> loopPermMap) {
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
assert(loopPermMap.size() == loops.size());
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
return checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap);
}
/// Returns true if `loops` is a perfectly nested loop nest, where loops appear
/// in it from outermost to innermost.
bool LLVM_ATTRIBUTE_UNUSED
mlir::affine::isPerfectlyNested(ArrayRef<AffineForOp> loops) {
assert(!loops.empty() && "no loops provided");
// We already know that the block can't be empty.
auto hasTwoElements = [](Block *block) {
auto secondOpIt = std::next(block->begin());
return secondOpIt != block->end() && &*secondOpIt == &block->back();
};
auto enclosingLoop = loops.front();
for (auto loop : loops.drop_front()) {
auto parentForOp = dyn_cast<AffineForOp>(loop->getParentOp());
// parentForOp's body should be just this loop and the terminator.
if (parentForOp != enclosingLoop || !hasTwoElements(parentForOp.getBody()))
return false;
enclosingLoop = loop;
}
return true;
}
// input[i] should move from position i -> permMap[i]. Returns the position in
// `input` that becomes the new outermost loop.
unsigned mlir::affine::permuteLoops(MutableArrayRef<AffineForOp> input,
ArrayRef<unsigned> permMap) {
assert(input.size() == permMap.size() && "invalid permutation map size");
// Check whether the permutation spec is valid. This is a small vector - we'll
// just sort and check if it's iota.
SmallVector<unsigned, 4> checkPermMap(permMap.begin(), permMap.end());
llvm::sort(checkPermMap);
if (llvm::any_of(llvm::enumerate(checkPermMap),
[](const auto &en) { return en.value() != en.index(); }))
assert(false && "invalid permutation map");
// Nothing to do.
if (input.size() < 2)
return 0;
assert(isPerfectlyNested(input) && "input not perfectly nested");
// Compute the inverse mapping, invPermMap: since input[i] goes to position
// permMap[i], position i of the permuted nest is at input[invPermMap[i]].
SmallVector<std::pair<unsigned, unsigned>, 4> invPermMap;
for (unsigned i = 0, e = input.size(); i < e; ++i)
invPermMap.push_back({permMap[i], i});
llvm::sort(invPermMap);
// Move the innermost loop body to the loop that would be the innermost in the
// permuted nest (only if the innermost loop is going to change).
if (permMap.back() != input.size() - 1) {
auto *destBody = input[invPermMap.back().second].getBody();
auto *srcBody = input.back().getBody();
destBody->getOperations().splice(destBody->begin(),
srcBody->getOperations(), srcBody->begin(),
std::prev(srcBody->end()));
}
// We'll move each loop in `input` in the reverse order so that its body is
// empty when we are moving it; this incurs zero copies and no erasing.
for (int i = input.size() - 1; i >= 0; --i) {
// If this has to become the outermost loop after permutation, add it to the
// parent block of the original root.
if (permMap[i] == 0) {
// If the root remains the same, nothing to do.
if (i == 0)
continue;
// Make input[i] the new outermost loop moving it into parentBlock.
auto *parentBlock = input[0]->getBlock();
parentBlock->getOperations().splice(Block::iterator(input[0]),
input[i]->getBlock()->getOperations(),
Block::iterator(input[i]));
continue;
}
// If the parent in the permuted order is the same as in the original,
// nothing to do.
unsigned parentPosInInput = invPermMap[permMap[i] - 1].second;
if (i > 0 && static_cast<unsigned>(i - 1) == parentPosInInput)
continue;
// Move input[i] to its surrounding loop in the transformed nest.
auto *destBody = input[parentPosInInput].getBody();
destBody->getOperations().splice(destBody->begin(),
input[i]->getBlock()->getOperations(),
Block::iterator(input[i]));
}
return invPermMap[0].second;
}
// Sinks all sequential loops to the innermost levels (while preserving
// relative order among them) and moves all parallel loops to the
// outermost (while again preserving relative order among them).
AffineForOp mlir::affine::sinkSequentialLoops(AffineForOp forOp) {
SmallVector<AffineForOp, 4> loops;
getPerfectlyNestedLoops(loops, forOp);
if (loops.size() < 2)
return forOp;
// Gather dependence components for dependences between all ops in loop nest
// rooted at 'loops[0]', at loop depths in range [1, maxLoopDepth].
unsigned maxLoopDepth = loops.size();
std::vector<SmallVector<DependenceComponent, 2>> depCompsVec;
getDependenceComponents(loops[0], maxLoopDepth, &depCompsVec);
// Mark loops as either parallel or sequential.
SmallVector<bool, 8> isParallelLoop(maxLoopDepth, true);
for (auto &depComps : depCompsVec) {
assert(depComps.size() >= maxLoopDepth);
for (unsigned j = 0; j < maxLoopDepth; ++j) {
DependenceComponent &depComp = depComps[j];
assert(depComp.lb.has_value() && depComp.ub.has_value());
if (*depComp.lb != 0 || *depComp.ub != 0)
isParallelLoop[j] = false;
}
}
// Count the number of parallel loops.
unsigned numParallelLoops = 0;
for (unsigned i = 0, e = isParallelLoop.size(); i < e; ++i)
if (isParallelLoop[i])
++numParallelLoops;
// Compute permutation of loops that sinks sequential loops (and thus raises
// parallel loops) while preserving relative order.
SmallVector<unsigned, 4> loopPermMap(maxLoopDepth);
unsigned nextSequentialLoop = numParallelLoops;
unsigned nextParallelLoop = 0;
for (unsigned i = 0; i < maxLoopDepth; ++i) {
if (isParallelLoop[i]) {
loopPermMap[i] = nextParallelLoop++;
} else {
loopPermMap[i] = nextSequentialLoop++;
}
}
// Check if permutation 'loopPermMap' would violate dependences.
if (!checkLoopInterchangeDependences(depCompsVec, loops, loopPermMap))
return forOp;
// Perform loop interchange according to permutation 'loopPermMap'.
unsigned loopNestRootIndex = permuteLoops(loops, loopPermMap);
return loops[loopNestRootIndex];
}
// Factors out common behavior to add a new `iv` (resp. `iv` + `offset`) to the
// lower (resp. upper) loop bound. When called for both the lower and upper
// bounds, the resulting IR resembles:
//
// ```mlir
// affine.for %i = max (`iv, ...) to min (`iv` + `offset`) {
// ...
// }
// ```
static void augmentMapAndBounds(OpBuilder &b, Value iv, AffineMap *map,
SmallVector<Value, 4> *operands,
int64_t offset = 0) {
auto bounds = llvm::to_vector<4>(map->getResults());
bounds.push_back(b.getAffineDimExpr(map->getNumDims()) + offset);
operands->insert(operands->begin() + map->getNumDims(), iv);
*map = AffineMap::get(map->getNumDims() + 1, map->getNumSymbols(), bounds,
b.getContext());
canonicalizeMapAndOperands(map, operands);
}
// Stripmines `forOp` by `factor` and sinks it under each of the `targets`.
// Stripmine-sink is a primitive building block for generalized tiling of
// imperfectly nested loops.
// This transformation is purely mechanical and does not check legality,
// profitability or even structural correctness. It is the user's
// responsibility to specify `targets` that are dominated by `forOp`.
// Returns the new AffineForOps, one per `targets`, nested immediately under
// each of the `targets`.
static SmallVector<AffineForOp, 8>
stripmineSink(AffineForOp forOp, uint64_t factor,
ArrayRef<AffineForOp> targets) {
auto originalStep = forOp.getStep();
auto scaledStep = originalStep * factor;
forOp.setStep(scaledStep);
OpBuilder b(forOp->getBlock(), std::next(Block::iterator(forOp)));
// Lower-bound map creation.
auto lbMap = forOp.getLowerBoundMap();
SmallVector<Value, 4> lbOperands(forOp.getLowerBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &lbMap, &lbOperands);
// Upper-bound map creation.
auto ubMap = forOp.getUpperBoundMap();
SmallVector<Value, 4> ubOperands(forOp.getUpperBoundOperands());
augmentMapAndBounds(b, forOp.getInductionVar(), &ubMap, &ubOperands,
/*offset=*/scaledStep);
auto iv = forOp.getInductionVar();
SmallVector<AffineForOp, 8> innerLoops;
for (auto t : targets) {
// Insert newForOp before the terminator of `t`.
auto b = OpBuilder::atBlockTerminator(t.getBody());
auto newForOp = b.create<AffineForOp>(t.getLoc(), lbOperands, lbMap,
ubOperands, ubMap, originalStep);
auto begin = t.getBody()->begin();
// Skip terminator and `newForOp` which is just before the terminator.
auto nOps = t.getBody()->getOperations().size() - 2;
newForOp.getBody()->getOperations().splice(
newForOp.getBody()->getOperations().begin(),
t.getBody()->getOperations(), begin, std::next(begin, nOps));
replaceAllUsesInRegionWith(iv, newForOp.getInductionVar(),
newForOp.getRegion());
innerLoops.push_back(newForOp);
}
return innerLoops;
}
// Stripmines a `forOp` by `factor` and sinks it under a single `target`.
// Returns the new AffineForOps, nested immediately under `target`.
template <typename SizeType>
static AffineForOp stripmineSink(AffineForOp forOp, SizeType factor,
AffineForOp target) {
// TODO: Use cheap structural assertions that targets are nested under
// forOp and that targets are not nested under each other when DominanceInfo
// exposes the capability. It seems overkill to construct a whole function
// dominance tree at this point.
auto res = stripmineSink(forOp, factor, ArrayRef<AffineForOp>(target));
assert(res.size() == 1 && "Expected 1 inner forOp");
return res[0];
}
SmallVector<SmallVector<AffineForOp, 8>, 8>
mlir::affine::tile(ArrayRef<AffineForOp> forOps, ArrayRef<uint64_t> sizes,
ArrayRef<AffineForOp> targets) {
SmallVector<SmallVector<AffineForOp, 8>, 8> res;
SmallVector<AffineForOp, 8> currentTargets(targets.begin(), targets.end());
for (auto it : llvm::zip(forOps, sizes)) {
auto step = stripmineSink(std::get<0>(it), std::get<1>(it), currentTargets);
res.push_back(step);
currentTargets = step;
}
return res;
}
SmallVector<AffineForOp, 8> mlir::affine::tile(ArrayRef<AffineForOp> forOps,
ArrayRef<uint64_t> sizes,
AffineForOp target) {
SmallVector<AffineForOp, 8> res;
for (auto loops : tile(forOps, sizes, ArrayRef<AffineForOp>(target))) {
assert(loops.size() == 1);
res.push_back(loops[0]);
}
return res;
}
LogicalResult mlir::affine::coalesceLoops(MutableArrayRef<AffineForOp> loops) {
if (loops.size() < 2)
return success();
AffineForOp innermost = loops.back();
AffineForOp outermost = loops.front();
AffineBound ub = outermost.getUpperBound();
AffineMap origUbMap = ub.getMap();
Location loc = outermost.getLoc();
OpBuilder builder(outermost);
for (AffineForOp loop : loops) {
// We only work on normalized loops.
if (loop.getStep() != 1 || !loop.hasConstantLowerBound() ||
loop.getConstantLowerBound() != 0)
return failure();
}
SmallVector<Value, 4> upperBoundSymbols;
SmallVector<Value, 4> ubOperands(ub.getOperands().begin(),
ub.getOperands().end());
// 1. Store the upper bound of the outermost loop in a variable.
Value prev;
if (!llvm::hasSingleElement(origUbMap.getResults()))
prev = builder.create<AffineMinOp>(loc, origUbMap, ubOperands);
else
prev = builder.create<AffineApplyOp>(loc, origUbMap, ubOperands);
upperBoundSymbols.push_back(prev);
// 2. Emit code computing the upper bound of the coalesced loop as product of
// the number of iterations of all loops.
for (AffineForOp loop : loops.drop_front()) {
ub = loop.getUpperBound();
origUbMap = ub.getMap();
ubOperands = ub.getOperands();
Value upperBound;
// If upper bound map has more than one result, take their minimum.
if (!llvm::hasSingleElement(origUbMap.getResults()))
upperBound = builder.create<AffineMinOp>(loc, origUbMap, ubOperands);
else
upperBound = builder.create<AffineApplyOp>(loc, origUbMap, ubOperands);
upperBoundSymbols.push_back(upperBound);
SmallVector<Value, 4> operands;
operands.push_back(prev);
operands.push_back(upperBound);
// Maintain running product of loop upper bounds.
prev = builder.create<AffineApplyOp>(
loc,
AffineMap::get(/*dimCount=*/1,
/*symbolCount=*/1,
builder.getAffineDimExpr(0) *
builder.getAffineSymbolExpr(0)),
operands);
}
// Set upper bound of the coalesced loop.
AffineMap newUbMap = AffineMap::get(
/*dimCount=*/0,
/*symbolCount=*/1, builder.getAffineSymbolExpr(0), builder.getContext());
outermost.setUpperBound(prev, newUbMap);
builder.setInsertionPointToStart(outermost.getBody());
// 3. Remap induction variables. For each original loop, the value of the
// induction variable can be obtained by dividing the induction variable of
// the linearized loop by the total number of iterations of the loops nested
// in it modulo the number of iterations in this loop (remove the values
// related to the outer loops):
// iv_i = floordiv(iv_linear, product-of-loop-ranges-until-i) mod range_i.
// Compute these iteratively from the innermost loop by creating a "running
// quotient" of division by the range.
Value previous = outermost.getInductionVar();
for (unsigned idx = loops.size(); idx > 0; --idx) {
if (idx != loops.size()) {
SmallVector<Value, 4> operands;
operands.push_back(previous);
operands.push_back(upperBoundSymbols[idx]);
previous = builder.create<AffineApplyOp>(
loc,
AffineMap::get(
/*dimCount=*/1, /*symbolCount=*/1,
builder.getAffineDimExpr(0).floorDiv(
builder.getAffineSymbolExpr(0))),
operands);
}
// Modified value of the induction variables of the nested loops after
// coalescing.
Value inductionVariable;
if (idx == 1) {
inductionVariable = previous;
} else {
SmallVector<Value, 4> applyOperands;
applyOperands.push_back(previous);
applyOperands.push_back(upperBoundSymbols[idx - 1]);
inductionVariable = builder.create<AffineApplyOp>(
loc,
AffineMap::get(
/*dimCount=*/1, /*symbolCount=*/1,
builder.getAffineDimExpr(0) % builder.getAffineSymbolExpr(0)),
applyOperands);
}
replaceAllUsesInRegionWith(loops[idx - 1].getInductionVar(),
inductionVariable, loops.back().getRegion());
}
// 4. Move the operations from the innermost just above the second-outermost
// loop, delete the extra terminator and the second-outermost loop.
AffineForOp secondOutermostLoop = loops[1];
innermost.getBody()->back().erase();
outermost.getBody()->getOperations().splice(
Block::iterator(secondOutermostLoop.getOperation()),
innermost.getBody()->getOperations());
secondOutermostLoop.erase();
return success();
}
void mlir::affine::mapLoopToProcessorIds(scf::ForOp forOp,
ArrayRef<Value> processorId,
ArrayRef<Value> numProcessors) {
assert(processorId.size() == numProcessors.size());
if (processorId.empty())
return;
OpBuilder b(forOp);
Location loc(forOp.getLoc());
AffineExpr lhs, rhs;
bindSymbols(forOp.getContext(), lhs, rhs);
auto mulMap = AffineMap::get(0, 2, lhs * rhs);
auto addMap = AffineMap::get(0, 2, lhs + rhs);
Value linearIndex = processorId.front();
for (unsigned i = 1, e = processorId.size(); i < e; ++i) {
auto mulApplyOp = b.create<AffineApplyOp>(
loc, mulMap, ValueRange{linearIndex, numProcessors[i]});
linearIndex = b.create<AffineApplyOp>(
loc, addMap, ValueRange{mulApplyOp, processorId[i]});
}
auto mulApplyOp = b.create<AffineApplyOp>(
loc, mulMap, ValueRange{linearIndex, forOp.getStep()});
Value lb = b.create<AffineApplyOp>(
loc, addMap, ValueRange{mulApplyOp, forOp.getLowerBound()});
forOp.setLowerBound(lb);
Value step = forOp.getStep();
for (auto numProcs : numProcessors)
step = b.create<AffineApplyOp>(loc, mulMap, ValueRange{numProcs, step});
forOp.setStep(step);
}
/// Given a memref region, determine the lowest depth at which transfers can be
/// placed for it, and return the corresponding block, start and end positions
/// in the block for placing incoming (read) and outgoing (write) copies
/// respectively. The lowest depth depends on whether the region being accessed
/// is hoistable with respect to one or more immediately surrounding loops.
static void
findHighestBlockForPlacement(const MemRefRegion ®ion, Block &block,
Block::iterator &begin, Block::iterator &end,
Block **copyPlacementBlock,
Block::iterator *copyInPlacementStart,
Block::iterator *copyOutPlacementStart) {
const auto *cst = region.getConstraints();
SmallVector<Value, 4> symbols;
cst->getValues(cst->getNumDimVars(), cst->getNumDimAndSymbolVars(), &symbols);
SmallVector<AffineForOp, 4> enclosingFors;
getAffineForIVs(*block.begin(), &enclosingFors);
// Walk up loop parents till we find an IV on which this region is
// symbolic/variant.
auto it = enclosingFors.rbegin();
for (auto e = enclosingFors.rend(); it != e; ++it) {
// TODO: also need to be checking this for regions symbols that
// aren't loop IVs, whether we are within their resp. defs' dominance scope.
if (llvm::is_contained(symbols, it->getInductionVar()))
break;
}
if (it != enclosingFors.rbegin()) {
auto lastInvariantIV = *std::prev(it);
*copyInPlacementStart = Block::iterator(lastInvariantIV.getOperation());
*copyOutPlacementStart = std::next(*copyInPlacementStart);
*copyPlacementBlock = lastInvariantIV->getBlock();
} else {
*copyInPlacementStart = begin;
*copyOutPlacementStart = end;
*copyPlacementBlock = █
}
}
// Info comprising stride and number of elements transferred every stride.
struct StrideInfo {
int64_t stride;
int64_t numEltPerStride;
};
/// Returns striding information for a copy/transfer of this region with
/// potentially multiple striding levels from outermost to innermost. For an
/// n-dimensional region, there can be at most n-1 levels of striding
/// successively nested.
// TODO: make this work with non-identity layout maps.
static void getMultiLevelStrides(const MemRefRegion ®ion,
ArrayRef<int64_t> bufferShape,
SmallVectorImpl<StrideInfo> *strideInfos) {
if (bufferShape.size() <= 1)
return;
int64_t numEltPerStride = 1;
int64_t stride = 1;
for (int d = bufferShape.size() - 1; d >= 1; d--) {
int64_t dimSize = cast<MemRefType>(region.memref.getType()).getDimSize(d);
stride *= dimSize;
numEltPerStride *= bufferShape[d];
// A stride is needed only if the region has a shorter extent than the
// memref along the dimension *and* has an extent greater than one along the
// next major dimension.
if (bufferShape[d] < dimSize && bufferShape[d - 1] > 1) {
strideInfos->push_back({stride, numEltPerStride});
}
}
}
/// Generates a point-wise copy from/to `memref' to/from `fastMemRef' and
/// returns the outermost AffineForOp of the copy loop nest. `lbMaps` and
/// `ubMaps` along with `lbOperands` and `ubOperands` hold the lower and upper
/// bound information for the copy loop nest. `fastBufOffsets` contain the
/// expressions to be subtracted out from the respective copy loop iterators in
/// order to index the fast buffer. If `copyOut' is true, generates a copy-out;
/// otherwise a copy-in. Builder `b` should be set to the point the copy nest is
/// inserted.
//
/// The copy-in nest is generated as follows as an example for a 2-d region:
/// for x = ...
/// for y = ...
/// fast_buf[x - offset_x][y - offset_y] = memref[x][y]
///
static AffineForOp
generatePointWiseCopy(Location loc, Value memref, Value fastMemRef,
ArrayRef<AffineMap> lbMaps, ArrayRef<Value> lbOperands,
ArrayRef<AffineMap> ubMaps, ArrayRef<Value> ubOperands,
ArrayRef<AffineExpr> fastBufOffsets, bool isCopyOut,
OpBuilder b) {
assert(llvm::all_of(lbMaps, [&](AffineMap lbMap) {
return lbMap.getNumInputs() == lbOperands.size();
}));
assert(llvm::all_of(ubMaps, [&](AffineMap ubMap) {
return ubMap.getNumInputs() == ubOperands.size();
}));
unsigned rank = cast<MemRefType>(memref.getType()).getRank();
assert(lbMaps.size() == rank && "wrong number of lb maps");
assert(ubMaps.size() == rank && "wrong number of ub maps");
SmallVector<Value, 4> memIndices;
SmallVector<AffineExpr, 4> fastBufExprs;
SmallVector<Value, 4> fastBufMapOperands;
AffineForOp copyNestRoot;
SmallVector<AffineApplyOp, 4> mayBeDeadApplys;
for (unsigned d = 0; d < rank; ++d) {
auto forOp = createCanonicalizedAffineForOp(b, loc, lbOperands, lbMaps[d],
ubOperands, ubMaps[d]);
if (d == 0)
copyNestRoot = forOp;
b = OpBuilder::atBlockTerminator(forOp.getBody());
auto fastBufOffsetMap =
AffineMap::get(lbOperands.size(), 0, fastBufOffsets[d]);
auto offset = b.create<AffineApplyOp>(loc, fastBufOffsetMap, lbOperands);
// Construct the subscript for the fast memref being copied into/from:
// x - offset_x.
fastBufExprs.push_back(b.getAffineDimExpr(2 * d + 1) -
b.getAffineDimExpr(2 * d));
fastBufMapOperands.push_back(offset);
fastBufMapOperands.push_back(forOp.getInductionVar());
mayBeDeadApplys.push_back(offset);
// Subscript for the slow memref being copied.
memIndices.push_back(forOp.getInductionVar());
}
auto fastBufMap =
AffineMap::get(2 * rank, /*symbolCount=*/0, fastBufExprs, b.getContext());
fullyComposeAffineMapAndOperands(&fastBufMap, &fastBufMapOperands);
fastBufMap = simplifyAffineMap(fastBufMap);
canonicalizeMapAndOperands(&fastBufMap, &fastBufMapOperands);
// Drop any dead affine.applys.
for (auto applyOp : mayBeDeadApplys)
if (applyOp.use_empty())
applyOp.erase();
if (!isCopyOut) {
// Copy in.
auto load = b.create<AffineLoadOp>(loc, memref, memIndices);
b.create<AffineStoreOp>(loc, load, fastMemRef, fastBufMap,
fastBufMapOperands);
return copyNestRoot;
}
// Copy out.
auto load =
b.create<AffineLoadOp>(loc, fastMemRef, fastBufMap, fastBufMapOperands);
b.create<AffineStoreOp>(loc, load, memref, memIndices);
return copyNestRoot;
}
static InFlightDiagnostic LLVM_ATTRIBUTE_UNUSED
emitRemarkForBlock(Block &block) {
return block.getParentOp()->emitRemark();
}
/// Creates a buffer in the faster memory space for the specified memref region;
/// generates a copy from the lower memory space to this one, and replaces all
/// loads/stores in the block range [`begin', `end') of `block' to load/store
/// from that buffer. Returns failure if copies could not be generated due to
/// yet unimplemented cases. `copyInPlacementStart` and `copyOutPlacementStart`
/// in copyPlacementBlock specify the insertion points where the incoming copies
/// and outgoing copies, respectively, should be inserted (the insertion happens
/// right before the insertion point). Since `begin` can itself be invalidated
/// due to the memref rewriting done from this method, the output argument
/// `nBegin` is set to its replacement (set to `begin` if no invalidation
/// happens). Since outgoing copies could have been inserted at `end`, the
/// output argument `nEnd` is set to the new end. `sizeInBytes` is set to the
/// size of the fast buffer allocated.
static LogicalResult generateCopy(
const MemRefRegion ®ion, Block *block, Block::iterator begin,
Block::iterator end, Block *copyPlacementBlock,
Block::iterator copyInPlacementStart, Block::iterator copyOutPlacementStart,
const AffineCopyOptions ©Options, DenseMap<Value, Value> &fastBufferMap,
DenseSet<Operation *> ©Nests, uint64_t *sizeInBytes,
Block::iterator *nBegin, Block::iterator *nEnd) {
*nBegin = begin;
*nEnd = end;
func::FuncOp f = begin->getParentOfType<func::FuncOp>();
OpBuilder topBuilder(f.getBody());
Value zeroIndex = topBuilder.create<arith::ConstantIndexOp>(f.getLoc(), 0);
*sizeInBytes = 0;
if (begin == end)
return success();
// Is the copy out point at the end of the block where we are doing
// explicit copying.
bool isCopyOutAtEndOfBlock = (end == copyOutPlacementStart);
// Copies for read regions are going to be inserted at 'begin'.
OpBuilder prologue(copyPlacementBlock, copyInPlacementStart);
// Copies for write regions are going to be inserted at 'end'.
OpBuilder epilogue(copyPlacementBlock, copyOutPlacementStart);
OpBuilder &b = region.isWrite() ? epilogue : prologue;
// Builder to create constants at the top level.
auto func = copyPlacementBlock->getParent()->getParentOfType<func::FuncOp>();
OpBuilder top(func.getBody());
auto loc = region.loc;
auto memref = region.memref;
auto memRefType = cast<MemRefType>(memref.getType());
if (!memRefType.getLayout().isIdentity()) {
LLVM_DEBUG(llvm::dbgs() << "Non-identity layout map not yet supported\n");
return failure();
}
// Indices to use for the copying.
// Indices for the original memref being copied from/to.
SmallVector<Value, 4> memIndices;
// Indices for the faster buffer being copied into/from.
SmallVector<Value, 4> bufIndices;
unsigned rank = memRefType.getRank();
SmallVector<int64_t, 4> fastBufferShape;
// Compute the extents of the buffer.
std::vector<SmallVector<int64_t, 4>> lbs;
SmallVector<int64_t, 8> lbDivisors;
lbs.reserve(rank);
std::optional<int64_t> numElements = region.getConstantBoundingSizeAndShape(
&fastBufferShape, &lbs, &lbDivisors);
if (!numElements) {
LLVM_DEBUG(llvm::dbgs() << "Non-constant region size not supported\n");
return failure();
}
if (*numElements == 0) {
LLVM_DEBUG(llvm::dbgs() << "Nothing to copy\n");
return success();
}
SmallVector<AffineMap, 4> lbMaps(rank), ubMaps(rank);
for (unsigned i = 0; i < rank; ++i)
region.getLowerAndUpperBound(i, lbMaps[i], ubMaps[i]);
const FlatAffineValueConstraints *cst = region.getConstraints();
// 'regionSymbols' hold values that this memory region is symbolic/parametric
// on; these typically include loop IVs surrounding the level at which the
// copy generation is being done or other valid symbols in MLIR.
SmallVector<Value, 8> regionSymbols;
cst->getValues(rank, cst->getNumVars(), ®ionSymbols);
// Construct the index expressions for the fast memory buffer. The index
// expression for a particular dimension of the fast buffer is obtained by
// subtracting out the lower bound on the original memref's data region
// along the corresponding dimension.
// Index start offsets for faster memory buffer relative to the original.
SmallVector<AffineExpr, 4> fastBufOffsets;
fastBufOffsets.reserve(rank);
for (unsigned d = 0; d < rank; d++) {
assert(lbs[d].size() == cst->getNumCols() - rank && "incorrect bound size");
AffineExpr offset = top.getAffineConstantExpr(0);
for (unsigned j = 0, e = cst->getNumCols() - rank - 1; j < e; j++)
offset = offset + lbs[d][j] * top.getAffineDimExpr(j);
assert(lbDivisors[d] > 0);
offset =
(offset + lbs[d][cst->getNumCols() - 1 - rank]).floorDiv(lbDivisors[d]);
// Set copy start location for this dimension in the lower memory space
// memref.
if (auto caf = offset.dyn_cast<AffineConstantExpr>()) {
auto indexVal = caf.getValue();
if (indexVal == 0) {
memIndices.push_back(zeroIndex);
} else {
memIndices.push_back(
top.create<arith::ConstantIndexOp>(loc, indexVal).getResult());
}
} else {
// The coordinate for the start location is just the lower bound along the
// corresponding dimension on the memory region (stored in 'offset').
auto map = AffineMap::get(
cst->getNumDimVars() + cst->getNumSymbolVars() - rank, 0, offset);
memIndices.push_back(b.create<AffineApplyOp>(loc, map, regionSymbols));
}
// The fast buffer is copied into at location zero; addressing is relative.
bufIndices.push_back(zeroIndex);
// Record the offsets since they are needed to remap the memory accesses of
// the original memref further below.
fastBufOffsets.push_back(offset);
}
// The faster memory space buffer.
Value fastMemRef;
// Check if a buffer was already created.
bool existingBuf = fastBufferMap.count(memref) > 0;
if (!existingBuf) {
AffineMap fastBufferLayout = b.getMultiDimIdentityMap(rank);
auto fastMemRefType =
MemRefType::get(fastBufferShape, memRefType.getElementType(),
fastBufferLayout, copyOptions.fastMemorySpace);
// Create the fast memory space buffer just before the 'affine.for'
// operation.
fastMemRef =
prologue.create<memref::AllocOp>(loc, fastMemRefType).getResult();
// Record it.
fastBufferMap[memref] = fastMemRef;
// fastMemRefType is a constant shaped memref.
auto maySizeInBytes = getIntOrFloatMemRefSizeInBytes(fastMemRefType);
// We don't account for things of unknown size.
*sizeInBytes = maySizeInBytes ? *maySizeInBytes : 0;
LLVM_DEBUG(emitRemarkForBlock(*block)
<< "Creating fast buffer of type " << fastMemRefType
<< " and size " << llvm::divideCeil(*sizeInBytes, 1024)
<< " KiB\n");
} else {
// Reuse the one already created.
fastMemRef = fastBufferMap[memref];
}
auto numElementsSSA = top.create<arith::ConstantIndexOp>(loc, *numElements);
Value dmaStride = nullptr;
Value numEltPerDmaStride = nullptr;
if (copyOptions.generateDma) {
SmallVector<StrideInfo, 4> dmaStrideInfos;
getMultiLevelStrides(region, fastBufferShape, &dmaStrideInfos);
// TODO: use all stride levels once DmaStartOp is extended for
// multi-level strides.
if (dmaStrideInfos.size() > 1) {
LLVM_DEBUG(llvm::dbgs() << "Only up to one level of stride supported\n");
return failure();
}
if (!dmaStrideInfos.empty()) {
dmaStride =
top.create<arith::ConstantIndexOp>(loc, dmaStrideInfos[0].stride);
numEltPerDmaStride = top.create<arith::ConstantIndexOp>(
loc, dmaStrideInfos[0].numEltPerStride);
}
}
// Record the last operation where we want the memref replacement to end. We
// later do the memref replacement only in [begin, postDomFilter] so
// that the original memref's used in the data movement code themselves don't
// get replaced.
auto postDomFilter = std::prev(end);
// Create fully composed affine maps for each memref.
auto memAffineMap = b.getMultiDimIdentityMap(memIndices.size());
fullyComposeAffineMapAndOperands(&memAffineMap, &memIndices);
auto bufAffineMap = b.getMultiDimIdentityMap(bufIndices.size());
fullyComposeAffineMapAndOperands(&bufAffineMap, &bufIndices);
if (!copyOptions.generateDma) {
// Point-wise copy generation.
auto copyNest =
generatePointWiseCopy(loc, memref, fastMemRef, lbMaps,
/*lbOperands=*/regionSymbols, ubMaps,
/*ubOperands=*/regionSymbols, fastBufOffsets,
/*isCopyOut=*/region.isWrite(), b);
// Record this so that we can skip it from yet another copy.
copyNests.insert(copyNest);
// Since new ops are being appended (for copy out's), adjust the end to
// mark end of block range being processed if necessary.
if (region.isWrite() && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(copyNest.getOperation());
} else {
// DMA generation.
// Create a tag (single element 1-d memref) for the DMA.
auto tagMemRefType = MemRefType::get({1}, top.getIntegerType(32), {},
copyOptions.tagMemorySpace);
auto tagMemRef = prologue.create<memref::AllocOp>(loc, tagMemRefType);
SmallVector<Value, 4> tagIndices({zeroIndex});
auto tagAffineMap = b.getMultiDimIdentityMap(tagIndices.size());
fullyComposeAffineMapAndOperands(&tagAffineMap, &tagIndices);
if (!region.isWrite()) {
// DMA non-blocking read from original buffer to fast buffer.
b.create<AffineDmaStartOp>(loc, memref, memAffineMap, memIndices,
fastMemRef, bufAffineMap, bufIndices,
tagMemRef, tagAffineMap, tagIndices,
numElementsSSA, dmaStride, numEltPerDmaStride);
} else {
// DMA non-blocking write from fast buffer to the original memref.
auto op = b.create<AffineDmaStartOp>(
loc, fastMemRef, bufAffineMap, bufIndices, memref, memAffineMap,
memIndices, tagMemRef, tagAffineMap, tagIndices, numElementsSSA,
dmaStride, numEltPerDmaStride);
// Since new ops may be appended at 'end' (for outgoing DMAs), adjust the
// end to mark end of block range being processed.
if (isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(op.getOperation());
}
// Matching DMA wait to block on completion; tag always has a 0 index.
b.create<AffineDmaWaitOp>(loc, tagMemRef, tagAffineMap, zeroIndex,
numElementsSSA);
// Generate dealloc for the tag.
auto tagDeallocOp = epilogue.create<memref::DeallocOp>(loc, tagMemRef);
if (*nEnd == end && isCopyOutAtEndOfBlock)
// Since new ops are being appended (for outgoing DMAs), adjust the end to
// mark end of range of the original.
*nEnd = Block::iterator(tagDeallocOp.getOperation());
}
// Generate dealloc for the buffer.
if (!existingBuf) {
auto bufDeallocOp = epilogue.create<memref::DeallocOp>(loc, fastMemRef);
// When generating pointwise copies, `nEnd' has to be set to deallocOp on
// the fast buffer (since it marks the new end insertion point).
if (!copyOptions.generateDma && *nEnd == end && isCopyOutAtEndOfBlock)
*nEnd = Block::iterator(bufDeallocOp.getOperation());
}
// Replace all uses of the old memref with the faster one while remapping
// access indices (subtracting out lower bound offsets for each dimension).
// Ex: to replace load %A[%i, %j] with load %Abuf[%i - %iT, %j - %jT],
// index remap will be (%i, %j) -> (%i - %iT, %j - %jT),
// i.e., affine.apply (d0, d1, d2, d3) -> (d2-d0, d3-d1) (%iT, %jT, %i, %j),
// and (%iT, %jT) will be the 'extraOperands' for 'rep all memref uses with'.
// d2, d3 correspond to the original indices (%i, %j).
SmallVector<AffineExpr, 4> remapExprs;
remapExprs.reserve(rank);
for (unsigned i = 0; i < rank; i++) {
// The starting operands of indexRemap will be regionSymbols (the symbols on
// which the memref region is parametric); then those corresponding to
// the memref's original indices follow.
auto dimExpr = b.getAffineDimExpr(regionSymbols.size() + i);
remapExprs.push_back(dimExpr - fastBufOffsets[i]);
}
auto indexRemap = AffineMap::get(regionSymbols.size() + rank, 0, remapExprs,
b.getContext());
// Record the begin since it may be invalidated by memref replacement.
Block::iterator prevOfBegin;
bool isBeginAtStartOfBlock = (begin == block->begin());
if (!isBeginAtStartOfBlock)
prevOfBegin = std::prev(begin);
// *Only* those uses within the range [begin, end) of 'block' are replaced.
(void)replaceAllMemRefUsesWith(memref, fastMemRef,
/*extraIndices=*/{}, indexRemap,
/*extraOperands=*/regionSymbols,
/*symbolOperands=*/{},
/*domOpFilter=*/&*begin,
/*postDomOpFilter=*/&*postDomFilter);
*nBegin = isBeginAtStartOfBlock ? block->begin() : std::next(prevOfBegin);
return success();
}
/// Construct the memref region to just include the entire memref. Returns false
/// dynamic shaped memref's for now. `numParamLoopIVs` is the number of
/// enclosing loop IVs of `op` (starting from the outermost) that the region
/// is parametric on.
static bool getFullMemRefAsRegion(Operation *op, unsigned numParamLoopIVs,
MemRefRegion *region) {
unsigned rank;
if (auto loadOp = dyn_cast<AffineLoadOp>(op)) {
rank = loadOp.getMemRefType().getRank();
region->memref = loadOp.getMemRef();
region->setWrite(false);
} else if (auto storeOp = dyn_cast<AffineStoreOp>(op)) {
rank = storeOp.getMemRefType().getRank();
region->memref = storeOp.getMemRef();
region->setWrite(true);
} else {
assert(false && "expected load or store op");
return false;
}
auto memRefType = cast<MemRefType>(region->memref.getType());
if (!memRefType.hasStaticShape())
return false;
auto *regionCst = region->getConstraints();
// Just get the first numSymbols IVs, which the memref region is parametric
// on.
SmallVector<AffineForOp, 4> ivs;
getAffineForIVs(*op, &ivs);
ivs.resize(numParamLoopIVs);
SmallVector<Value, 4> symbols;
extractForInductionVars(ivs, &symbols);
*regionCst = FlatAffineValueConstraints(rank, numParamLoopIVs, 0);
regionCst->setValues(rank, rank + numParamLoopIVs, symbols);
// Memref dim sizes provide the bounds.
for (unsigned d = 0; d < rank; d++) {
auto dimSize = memRefType.getDimSize(d);
assert(dimSize > 0 && "filtered dynamic shapes above");
regionCst->addBound(BoundType::LB, d, 0);
regionCst->addBound(BoundType::UB, d, dimSize - 1);
}
return true;
}
LogicalResult
mlir::affine::affineDataCopyGenerate(Block::iterator begin, Block::iterator end,
const AffineCopyOptions ©Options,
std::optional<Value> filterMemRef,
DenseSet<Operation *> ©Nests) {
if (begin == end)
return success();
assert(begin->getBlock() == std::prev(end)->getBlock() &&
"Inconsistent block begin/end args");
assert(end != end->getBlock()->end() && "end can't be the block terminator");
Block *block = begin->getBlock();
// Copies will be generated for this depth, i.e., symbolic in all loops
// surrounding the this block range.
unsigned copyDepth = getNestingDepth(&*begin);
LLVM_DEBUG(llvm::dbgs() << "Generating copies at depth " << copyDepth
<< "\n");
LLVM_DEBUG(llvm::dbgs() << "from begin: " << *begin << "\n");
LLVM_DEBUG(llvm::dbgs() << "to inclusive end: " << *std::prev(end) << "\n");
// List of memory regions to copy for. We need a map vector to have a
// guaranteed iteration order to write test cases. CHECK-DAG doesn't help here
// since the alloc's for example are identical except for the SSA id.
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> readRegions;
SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4> writeRegions;
// Map from original memref's to the fast buffers that their accesses are
// replaced with.
DenseMap<Value, Value> fastBufferMap;
// To check for errors when walking the block.
bool error = false;
// Walk this range of operations to gather all memory regions.
block->walk(begin, end, [&](Operation *opInst) {
// Gather regions to allocate to buffers in faster memory space.
if (auto loadOp = dyn_cast<AffineLoadOp>(opInst)) {
if ((filterMemRef.has_value() && filterMemRef != loadOp.getMemRef()) ||
(loadOp.getMemRefType().getMemorySpaceAsInt() !=
copyOptions.slowMemorySpace))
return;
} else if (auto storeOp = dyn_cast<AffineStoreOp>(opInst)) {
if ((filterMemRef.has_value() && filterMemRef != storeOp.getMemRef()) ||
storeOp.getMemRefType().getMemorySpaceAsInt() !=
copyOptions.slowMemorySpace)
return;
} else {
// Neither load nor a store op.
return;
}
// Compute the MemRefRegion accessed.
auto region = std::make_unique<MemRefRegion>(opInst->getLoc());
if (failed(region->compute(opInst, copyDepth, /*sliceState=*/nullptr,
/*addMemRefDimBounds=*/false))) {
LLVM_DEBUG(llvm::dbgs()
<< "Error obtaining memory region: semi-affine maps?\n");
LLVM_DEBUG(llvm::dbgs() << "over-approximating to the entire memref\n");
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(
opInst->emitError("non-constant memref sizes not yet supported"));
error = true;
return;
}
}
// Each memref has a single buffer associated with it irrespective of how
// many load's and store's happen on it.
// TODO: in the future, when regions don't intersect and satisfy
// other properties (based on load/store regions), we could consider
// multiple buffers per memref.
// Add to the appropriate region if it's not already in it, or take a
// bounding box union with the existing one if it's already in there.
// Note that a memref may have both read and write regions - so update the
// region in the other list if one exists (write in case of read and vice
// versa) since there is a single bounding box for a memref across all reads
// and writes that happen on it.
// Attempts to update; returns true if 'region' exists in targetRegions.
auto updateRegion =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
&targetRegions) {
const auto *const it = targetRegions.find(region->memref);
if (it == targetRegions.end())
return false;
// Perform a union with the existing region.
if (failed(it->second->unionBoundingBox(*region))) {
LLVM_DEBUG(llvm::dbgs()
<< "Memory region bounding box failed; "
"over-approximating to the entire memref\n");
// If the union fails, we will overapproximate.
if (!getFullMemRefAsRegion(opInst, copyDepth, region.get())) {
LLVM_DEBUG(opInst->emitError(
"non-constant memref sizes not yet supported"));
error = true;
return true;
}
it->second->getConstraints()->clearAndCopyFrom(
*region->getConstraints());
} else {
// Union was computed and stored in 'it->second': copy to 'region'.
region->getConstraints()->clearAndCopyFrom(
*it->second->getConstraints());
}
return true;
};
bool existsInRead = updateRegion(readRegions);
if (error)
return;
bool existsInWrite = updateRegion(writeRegions);
if (error)
return;
// Finally add it to the region list.
if (region->isWrite() && !existsInWrite) {
writeRegions[region->memref] = std::move(region);
} else if (!region->isWrite() && !existsInRead) {
readRegions[region->memref] = std::move(region);
}
});
if (error) {
LLVM_DEBUG(begin->emitError(
"copy generation failed for one or more memref's in this block\n"));
return failure();
}
uint64_t totalCopyBuffersSizeInBytes = 0;
bool ret = true;
auto processRegions =
[&](const SmallMapVector<Value, std::unique_ptr<MemRefRegion>, 4>
®ions) {
for (const auto ®ionEntry : regions) {
// For each region, hoist copy in/out past all hoistable
// 'affine.for's.
Block::iterator copyInPlacementStart, copyOutPlacementStart;
Block *copyPlacementBlock;
findHighestBlockForPlacement(
*regionEntry.second, *block, begin, end, ©PlacementBlock,
©InPlacementStart, ©OutPlacementStart);
uint64_t sizeInBytes;
Block::iterator nBegin, nEnd;
LogicalResult iRet = generateCopy(
*regionEntry.second, block, begin, end, copyPlacementBlock,
copyInPlacementStart, copyOutPlacementStart, copyOptions,
fastBufferMap, copyNests, &sizeInBytes, &nBegin, &nEnd);
if (succeeded(iRet)) {
// begin/end could have been invalidated, and need update.
begin = nBegin;
end = nEnd;
totalCopyBuffersSizeInBytes += sizeInBytes;
}
ret = ret & succeeded(iRet);
}
};
processRegions(readRegions);
processRegions(writeRegions);
if (!ret) {
LLVM_DEBUG(begin->emitError(
"copy generation failed for one or more memref's in this block\n"));
return failure();
}
// For a range of operations, a note will be emitted at the caller.
AffineForOp forOp;
if (llvm::DebugFlag && (forOp = dyn_cast<AffineForOp>(&*begin))) {
LLVM_DEBUG(forOp.emitRemark()
<< llvm::divideCeil(totalCopyBuffersSizeInBytes, 1024)
<< " KiB of copy buffers in fast memory space for this block");
}
if (totalCopyBuffersSizeInBytes > copyOptions.fastMemCapacityBytes) {
block->getParentOp()->emitWarning(
"total size of all copy buffers' for this block exceeds fast memory "
"capacity");
}
return success();
}
// A convenience version of affineDataCopyGenerate for all ops in the body of
// an AffineForOp.
LogicalResult mlir::affine::affineDataCopyGenerate(
AffineForOp forOp, const AffineCopyOptions ©Options,
std::optional<Value> filterMemRef, DenseSet<Operation *> ©Nests) {
return affineDataCopyGenerate(forOp.getBody()->begin(),
std::prev(forOp.getBody()->end()), copyOptions,
filterMemRef, copyNests);
}
LogicalResult mlir::affine::generateCopyForMemRegion(
const MemRefRegion &memrefRegion, Operation *analyzedOp,
const AffineCopyOptions ©Options, CopyGenerateResult &result) {
Block *block = analyzedOp->getBlock();
auto begin = analyzedOp->getIterator();
auto end = std::next(begin);
DenseMap<Value, Value> fastBufferMap;
DenseSet<Operation *> copyNests;
auto err = generateCopy(memrefRegion, block, begin, end, block, begin, end,
copyOptions, fastBufferMap, copyNests,
&result.sizeInBytes, &begin, &end);
if (failed(err))
return err;
const auto &en = fastBufferMap.find(memrefRegion.memref);
// In some cases (empty loops), no copy generation would have happened.
if (en == fastBufferMap.end())
return failure();
result.alloc = en->second.getDefiningOp();
assert(result.alloc && "fast buffer expected to be locally allocated");
assert(copyNests.size() <= 1 && "At most one copy nest is expected.");
result.copyNest = copyNests.empty() ? nullptr : *copyNests.begin();
return success();
}
/// Gathers all AffineForOps in 'block' at 'currLoopDepth' in 'depthToLoops'.
static void
gatherLoopsInBlock(Block *block, unsigned currLoopDepth,
std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
// Add a new empty level to output if it doesn't exist level already.
assert(currLoopDepth <= depthToLoops.size() && "Unexpected currLoopDepth");
if (currLoopDepth == depthToLoops.size())
depthToLoops.emplace_back();
for (auto &op : *block) {
if (auto forOp = dyn_cast<AffineForOp>(op)) {
depthToLoops[currLoopDepth].push_back(forOp);
gatherLoopsInBlock(forOp.getBody(), currLoopDepth + 1, depthToLoops);
}
}
}
/// Gathers all AffineForOps in 'func.func' grouped by loop depth.
void mlir::affine::gatherLoops(
func::FuncOp func, std::vector<SmallVector<AffineForOp, 2>> &depthToLoops) {
for (auto &block : func)
gatherLoopsInBlock(&block, /*currLoopDepth=*/0, depthToLoops);
// Remove last loop level from output since it's empty.
if (!depthToLoops.empty()) {
assert(depthToLoops.back().empty() && "Last loop level is not empty?");
depthToLoops.pop_back();
}
}
// TODO: if necessary, this can be extended to also compose in any
// affine.applys, fold to constant if all result dimensions of the map are
// constant (canonicalizeMapAndOperands below already does this for single
// result bound maps), and use simplifyMap to perform algebraic simplification.
AffineForOp mlir::affine::createCanonicalizedAffineForOp(
OpBuilder b, Location loc, ValueRange lbOperands, AffineMap lbMap,
ValueRange ubOperands, AffineMap ubMap, int64_t step) {
SmallVector<Value, 4> lowerOperands(lbOperands);
SmallVector<Value, 4> upperOperands(ubOperands);
fullyComposeAffineMapAndOperands(&lbMap, &lowerOperands);
canonicalizeMapAndOperands(&lbMap, &lowerOperands);
lbMap = removeDuplicateExprs(lbMap);
fullyComposeAffineMapAndOperands(&ubMap, &upperOperands);
canonicalizeMapAndOperands(&ubMap, &upperOperands);
ubMap = removeDuplicateExprs(ubMap);
return b.create<AffineForOp>(loc, lowerOperands, lbMap, upperOperands, ubMap,
step);
}
/// Creates an AffineIfOp that encodes the conditional to choose between
/// the constant trip count version and an unknown trip count version of this
/// nest of loops. This is used to separate partial and full tiles if `loops`
/// has the intra-tile loops. The affine.if op is inserted at the builder
/// insertion point of `b`.
static AffineIfOp createSeparationCondition(MutableArrayRef<AffineForOp> loops,
OpBuilder b) {
if (loops.empty())
return nullptr;
auto *context = loops[0].getContext();
FlatAffineValueConstraints cst;
SmallVector<Operation *, 8> ops;
llvm::append_range(ops, loops);
(void)getIndexSet(ops, &cst);
// Remove constraints that are independent of these loop IVs.
cst.removeIndependentConstraints(/*pos=*/0, /*num=*/loops.size());
// Construct the constraint set representing the guard for full tiles. The
// lower bound (and upper bound) corresponding to the full tile should be
// larger (and resp. smaller) than any other lower (or upper bound).
SmallVector<int64_t, 8> fullTileLb, fullTileUb;
for (auto loop : loops) {
(void)loop;
// TODO: Non-unit stride is not an issue to generalize to.
assert(loop.getStep() == 1 && "point loop step expected to be one");
// Mark everything symbols for the purpose of finding a constant diff pair.
cst.setDimSymbolSeparation(/*newSymbolCount=*/cst.getNumDimAndSymbolVars() -
1);
unsigned fullTileLbPos, fullTileUbPos;
if (!cst.getConstantBoundOnDimSize(0, /*lb=*/nullptr,
/*boundFloorDivisor=*/nullptr,
/*ub=*/nullptr, &fullTileLbPos,
&fullTileUbPos)) {
LLVM_DEBUG(llvm::dbgs() << "Can't get constant diff pair for a loop\n");
return nullptr;
}
SmallVector<unsigned, 4> lbIndices, ubIndices;
cst.getLowerAndUpperBoundIndices(/*pos=*/0, &lbIndices, &ubIndices);
auto fLb = cst.getInequality(fullTileLbPos);
auto fUb = cst.getInequality(fullTileUbPos);
fullTileLb.assign(fLb.begin(), fLb.end());
fullTileUb.assign(fUb.begin(), fUb.end());
// Full tile lower bound should be >= than any other lower bound.
for (auto lbIndex : lbIndices)
for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i)
cst.atIneq(lbIndex, i) = fullTileLb[i] - cst.atIneq(lbIndex, i);
// Full tile upper bound should be <= any other upper bound.
for (auto ubIndex : ubIndices)
for (unsigned i = 0, e = cst.getNumCols(); i < e; ++i)
cst.atIneq(ubIndex, i) -= fullTileUb[i];
cst.removeVar(0);
}
// The previous step leads to all zeros for the full tile lb and ub position
// itself; remove those and any other duplicates / trivial redundancies.
cst.removeTrivialRedundancy();
// Turn everything into dims conservatively since we earlier turned all
// trailing ids past point loop IV into symbols. Some of these could be outer
// loop IVs; we'll canonicalize anyway.
cst.setDimSymbolSeparation(0);
IntegerSet ifCondSet = cst.getAsIntegerSet(context);
// ifCondSet can be null if cst was empty -- this can happen if all loops
// in the nest have constant trip counts.
if (!ifCondSet)
return nullptr;
SmallVector<Value, 4> setOperands;
cst.getValues(0, cst.getNumDimAndSymbolVars(), &setOperands);
canonicalizeSetAndOperands(&ifCondSet, &setOperands);
return b.create<AffineIfOp>(loops[0].getLoc(), ifCondSet, setOperands,
/*withElseRegion=*/true);
}
/// Create the full tile loop nest (along with its body).
static LogicalResult
createFullTiles(MutableArrayRef<AffineForOp> inputNest,
SmallVectorImpl<AffineForOp> &fullTileLoops, OpBuilder b) {
fullTileLoops.reserve(inputNest.size());
// For each loop in the original nest identify a lower/upper bound pair such
// that their difference is a constant.
FlatAffineValueConstraints cst;
for (auto loop : inputNest) {
// TODO: straightforward to generalize to a non-unit stride.
if (loop.getStep() != 1) {
LLVM_DEBUG(llvm::dbgs()
<< "[tile separation] non-unit stride not implemented\n");
return failure();
}
SmallVector<Operation *, 1> loopOp{loop.getOperation()};
(void)getIndexSet(loopOp, &cst);
// We will mark everything other than this loop IV as symbol for getting a
// pair of <lb, ub> with a constant difference.
cst.setDimSymbolSeparation(cst.getNumDimAndSymbolVars() - 1);
unsigned lbPos, ubPos;
if (!cst.getConstantBoundOnDimSize(/*pos=*/0, /*lb=*/nullptr,
/*boundFloorDivisor=*/nullptr,
/*ub=*/nullptr, &lbPos, &ubPos) ||
lbPos == ubPos) {
LLVM_DEBUG(llvm::dbgs() << "[tile separation] Can't get constant diff / "
"equalities not yet handled\n");
return failure();
}
// Set all variables as dimensions uniformly since some of those marked as
// symbols above could be outer loop IVs (corresponding tile space IVs).
cst.setDimSymbolSeparation(/*newSymbolCount=*/0);
AffineValueMap lbVmap, ubVmap;
cst.getIneqAsAffineValueMap(/*pos=*/0, lbPos, lbVmap, b.getContext());
cst.getIneqAsAffineValueMap(/*pos=*/0, ubPos, ubVmap, b.getContext());
AffineForOp fullTileLoop = createCanonicalizedAffineForOp(
b, loop.getLoc(), lbVmap.getOperands(), lbVmap.getAffineMap(),
ubVmap.getOperands(), ubVmap.getAffineMap());
b = OpBuilder::atBlockTerminator(fullTileLoop.getBody());
fullTileLoops.push_back(fullTileLoop);
}
// Add the body for the full tile loop nest.
IRMapping operandMap;
for (const auto &loopEn : llvm::enumerate(inputNest))
operandMap.map(loopEn.value().getInductionVar(),
fullTileLoops[loopEn.index()].getInductionVar());
b = OpBuilder::atBlockTerminator(fullTileLoops.back().getBody());
for (auto &op : inputNest.back().getBody()->without_terminator())
b.clone(op, operandMap);
return success();
}
LogicalResult
mlir::affine::separateFullTiles(MutableArrayRef<AffineForOp> inputNest,
SmallVectorImpl<AffineForOp> *fullTileNest) {
if (inputNest.empty())
return success();
auto firstLoop = inputNest[0];
// Each successive for op has to be nested in the other.
auto prevLoop = firstLoop;
for (auto loop : inputNest.drop_front(1)) {
assert(loop->getParentOp() == prevLoop && "input not contiguously nested");
prevLoop = loop;
}
// Create the full tile loop nest.
SmallVector<AffineForOp, 4> fullTileLoops;
OpBuilder b(firstLoop);
if (failed(createFullTiles(inputNest, fullTileLoops, b))) {
if (!fullTileLoops.empty())
fullTileLoops.front().erase();
return failure();
}
// Create and insert the version select right before the root of the nest.
b = OpBuilder(firstLoop);
AffineIfOp ifOp = createSeparationCondition(inputNest, b);
if (!ifOp) {
fullTileLoops.front().erase();
LLVM_DEBUG(llvm::dbgs() << "All tiles are full tiles, or failure creating "
"separation condition\n");
return failure();
}
// Move the full tile into the then block.
Block *thenBlock = ifOp.getThenBlock();
AffineForOp outermostFullTileLoop = fullTileLoops[0];
thenBlock->getOperations().splice(
std::prev(thenBlock->end()),
outermostFullTileLoop->getBlock()->getOperations(),
Block::iterator(outermostFullTileLoop));
// Move the partial tile into the else block. The partial tile is the same as
// the original loop nest.
Block *elseBlock = ifOp.getElseBlock();
elseBlock->getOperations().splice(std::prev(elseBlock->end()),
firstLoop->getBlock()->getOperations(),
Block::iterator(firstLoop));
if (fullTileNest)
*fullTileNest = std::move(fullTileLoops);
return success();
}
|