1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908
|
//===- Utils.cpp ---- Utilities for affine dialect transformation ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements miscellaneous transformation utilities for the Affine
// dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Affine/Utils.h"
#include "mlir/Dialect/Affine/Analysis/Utils.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Affine/IR/AffineValueMap.h"
#include "mlir/Dialect/Affine/LoopUtils.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/AffineExprVisitor.h"
#include "mlir/IR/Dominance.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
#include <optional>
#define DEBUG_TYPE "affine-utils"
using namespace mlir;
using namespace affine;
using namespace presburger;
namespace {
/// Visit affine expressions recursively and build the sequence of operations
/// that correspond to it. Visitation functions return an Value of the
/// expression subtree they visited or `nullptr` on error.
class AffineApplyExpander
: public AffineExprVisitor<AffineApplyExpander, Value> {
public:
/// This internal class expects arguments to be non-null, checks must be
/// performed at the call site.
AffineApplyExpander(OpBuilder &builder, ValueRange dimValues,
ValueRange symbolValues, Location loc)
: builder(builder), dimValues(dimValues), symbolValues(symbolValues),
loc(loc) {}
template <typename OpTy>
Value buildBinaryExpr(AffineBinaryOpExpr expr) {
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
if (!lhs || !rhs)
return nullptr;
auto op = builder.create<OpTy>(loc, lhs, rhs);
return op.getResult();
}
Value visitAddExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<arith::AddIOp>(expr);
}
Value visitMulExpr(AffineBinaryOpExpr expr) {
return buildBinaryExpr<arith::MulIOp>(expr);
}
/// Euclidean modulo operation: negative RHS is not allowed.
/// Remainder of the euclidean integer division is always non-negative.
///
/// Implemented as
///
/// a mod b =
/// let remainder = srem a, b;
/// negative = a < 0 in
/// select negative, remainder + b, remainder.
Value visitModExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "modulo by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value remainder = builder.create<arith::RemSIOp>(loc, lhs, rhs);
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value isRemainderNegative = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, remainder, zeroCst);
Value correctedRemainder =
builder.create<arith::AddIOp>(loc, remainder, rhs);
Value result = builder.create<arith::SelectOp>(
loc, isRemainderNegative, correctedRemainder, remainder);
return result;
}
/// Floor division operation (rounds towards negative infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a floordiv b =
/// let negative = a < 0 in
/// let absolute = negative ? -a - 1 : a in
/// let quotient = absolute / b in
/// negative ? -quotient - 1 : quotient
///
/// Note: this lowering does not use arith.floordivsi because the lowering of
/// that to arith.divsi (see populateCeilFloorDivExpandOpsPatterns) generates
/// not one but two arith.divsi. That could be changed to one divsi, but one
/// way or another, going through arith.floordivsi will result in more complex
/// IR because arith.floordivsi is more general than affine floordiv in that
/// it supports negative RHS.
Value visitFloorDivExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value noneCst = builder.create<arith::ConstantIndexOp>(loc, -1);
Value negative = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, lhs, zeroCst);
Value negatedDecremented = builder.create<arith::SubIOp>(loc, noneCst, lhs);
Value dividend =
builder.create<arith::SelectOp>(loc, negative, negatedDecremented, lhs);
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
Value correctedQuotient =
builder.create<arith::SubIOp>(loc, noneCst, quotient);
Value result = builder.create<arith::SelectOp>(loc, negative,
correctedQuotient, quotient);
return result;
}
/// Ceiling division operation (rounds towards positive infinity).
///
/// For positive divisors, it can be implemented without branching and with a
/// single division operation as
///
/// a ceildiv b =
/// let negative = a <= 0 in
/// let absolute = negative ? -a : a - 1 in
/// let quotient = absolute / b in
/// negative ? -quotient : quotient + 1
///
/// Note: not using arith.ceildivsi for the same reason as explained in the
/// visitFloorDivExpr comment.
Value visitCeilDivExpr(AffineBinaryOpExpr expr) {
if (auto rhsConst = expr.getRHS().dyn_cast<AffineConstantExpr>()) {
if (rhsConst.getValue() <= 0) {
emitError(loc, "division by non-positive value is not supported");
return nullptr;
}
}
auto lhs = visit(expr.getLHS());
auto rhs = visit(expr.getRHS());
assert(lhs && rhs && "unexpected affine expr lowering failure");
Value zeroCst = builder.create<arith::ConstantIndexOp>(loc, 0);
Value oneCst = builder.create<arith::ConstantIndexOp>(loc, 1);
Value nonPositive = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::sle, lhs, zeroCst);
Value negated = builder.create<arith::SubIOp>(loc, zeroCst, lhs);
Value decremented = builder.create<arith::SubIOp>(loc, lhs, oneCst);
Value dividend =
builder.create<arith::SelectOp>(loc, nonPositive, negated, decremented);
Value quotient = builder.create<arith::DivSIOp>(loc, dividend, rhs);
Value negatedQuotient =
builder.create<arith::SubIOp>(loc, zeroCst, quotient);
Value incrementedQuotient =
builder.create<arith::AddIOp>(loc, quotient, oneCst);
Value result = builder.create<arith::SelectOp>(
loc, nonPositive, negatedQuotient, incrementedQuotient);
return result;
}
Value visitConstantExpr(AffineConstantExpr expr) {
auto op = builder.create<arith::ConstantIndexOp>(loc, expr.getValue());
return op.getResult();
}
Value visitDimExpr(AffineDimExpr expr) {
assert(expr.getPosition() < dimValues.size() &&
"affine dim position out of range");
return dimValues[expr.getPosition()];
}
Value visitSymbolExpr(AffineSymbolExpr expr) {
assert(expr.getPosition() < symbolValues.size() &&
"symbol dim position out of range");
return symbolValues[expr.getPosition()];
}
private:
OpBuilder &builder;
ValueRange dimValues;
ValueRange symbolValues;
Location loc;
};
} // namespace
/// Create a sequence of operations that implement the `expr` applied to the
/// given dimension and symbol values.
mlir::Value mlir::affine::expandAffineExpr(OpBuilder &builder, Location loc,
AffineExpr expr,
ValueRange dimValues,
ValueRange symbolValues) {
return AffineApplyExpander(builder, dimValues, symbolValues, loc).visit(expr);
}
/// Create a sequence of operations that implement the `affineMap` applied to
/// the given `operands` (as it it were an AffineApplyOp).
std::optional<SmallVector<Value, 8>>
mlir::affine::expandAffineMap(OpBuilder &builder, Location loc,
AffineMap affineMap, ValueRange operands) {
auto numDims = affineMap.getNumDims();
auto expanded = llvm::to_vector<8>(
llvm::map_range(affineMap.getResults(),
[numDims, &builder, loc, operands](AffineExpr expr) {
return expandAffineExpr(builder, loc, expr,
operands.take_front(numDims),
operands.drop_front(numDims));
}));
if (llvm::all_of(expanded, [](Value v) { return v; }))
return expanded;
return std::nullopt;
}
/// Promotes the `then` or the `else` block of `ifOp` (depending on whether
/// `elseBlock` is false or true) into `ifOp`'s containing block, and discards
/// the rest of the op.
static void promoteIfBlock(AffineIfOp ifOp, bool elseBlock) {
if (elseBlock)
assert(ifOp.hasElse() && "else block expected");
Block *destBlock = ifOp->getBlock();
Block *srcBlock = elseBlock ? ifOp.getElseBlock() : ifOp.getThenBlock();
destBlock->getOperations().splice(
Block::iterator(ifOp), srcBlock->getOperations(), srcBlock->begin(),
std::prev(srcBlock->end()));
ifOp.erase();
}
/// Returns the outermost affine.for/parallel op that the `ifOp` is invariant
/// on. The `ifOp` could be hoisted and placed right before such an operation.
/// This method assumes that the ifOp has been canonicalized (to be correct and
/// effective).
static Operation *getOutermostInvariantForOp(AffineIfOp ifOp) {
// Walk up the parents past all for op that this conditional is invariant on.
auto ifOperands = ifOp.getOperands();
auto *res = ifOp.getOperation();
while (!isa<func::FuncOp>(res->getParentOp())) {
auto *parentOp = res->getParentOp();
if (auto forOp = dyn_cast<AffineForOp>(parentOp)) {
if (llvm::is_contained(ifOperands, forOp.getInductionVar()))
break;
} else if (auto parallelOp = dyn_cast<AffineParallelOp>(parentOp)) {
for (auto iv : parallelOp.getIVs())
if (llvm::is_contained(ifOperands, iv))
break;
} else if (!isa<AffineIfOp>(parentOp)) {
// Won't walk up past anything other than affine.for/if ops.
break;
}
// You can always hoist up past any affine.if ops.
res = parentOp;
}
return res;
}
/// A helper for the mechanics of mlir::hoistAffineIfOp. Hoists `ifOp` just over
/// `hoistOverOp`. Returns the new hoisted op if any hoisting happened,
/// otherwise the same `ifOp`.
static AffineIfOp hoistAffineIfOp(AffineIfOp ifOp, Operation *hoistOverOp) {
// No hoisting to do.
if (hoistOverOp == ifOp)
return ifOp;
// Create the hoisted 'if' first. Then, clone the op we are hoisting over for
// the else block. Then drop the else block of the original 'if' in the 'then'
// branch while promoting its then block, and analogously drop the 'then'
// block of the original 'if' from the 'else' branch while promoting its else
// block.
IRMapping operandMap;
OpBuilder b(hoistOverOp);
auto hoistedIfOp = b.create<AffineIfOp>(ifOp.getLoc(), ifOp.getIntegerSet(),
ifOp.getOperands(),
/*elseBlock=*/true);
// Create a clone of hoistOverOp to use for the else branch of the hoisted
// conditional. The else block may get optimized away if empty.
Operation *hoistOverOpClone = nullptr;
// We use this unique name to identify/find `ifOp`'s clone in the else
// version.
StringAttr idForIfOp = b.getStringAttr("__mlir_if_hoisting");
operandMap.clear();
b.setInsertionPointAfter(hoistOverOp);
// We'll set an attribute to identify this op in a clone of this sub-tree.
ifOp->setAttr(idForIfOp, b.getBoolAttr(true));
hoistOverOpClone = b.clone(*hoistOverOp, operandMap);
// Promote the 'then' block of the original affine.if in the then version.
promoteIfBlock(ifOp, /*elseBlock=*/false);
// Move the then version to the hoisted if op's 'then' block.
auto *thenBlock = hoistedIfOp.getThenBlock();
thenBlock->getOperations().splice(thenBlock->begin(),
hoistOverOp->getBlock()->getOperations(),
Block::iterator(hoistOverOp));
// Find the clone of the original affine.if op in the else version.
AffineIfOp ifCloneInElse;
hoistOverOpClone->walk([&](AffineIfOp ifClone) {
if (!ifClone->getAttr(idForIfOp))
return WalkResult::advance();
ifCloneInElse = ifClone;
return WalkResult::interrupt();
});
assert(ifCloneInElse && "if op clone should exist");
// For the else block, promote the else block of the original 'if' if it had
// one; otherwise, the op itself is to be erased.
if (!ifCloneInElse.hasElse())
ifCloneInElse.erase();
else
promoteIfBlock(ifCloneInElse, /*elseBlock=*/true);
// Move the else version into the else block of the hoisted if op.
auto *elseBlock = hoistedIfOp.getElseBlock();
elseBlock->getOperations().splice(
elseBlock->begin(), hoistOverOpClone->getBlock()->getOperations(),
Block::iterator(hoistOverOpClone));
return hoistedIfOp;
}
LogicalResult
mlir::affine::affineParallelize(AffineForOp forOp,
ArrayRef<LoopReduction> parallelReductions,
AffineParallelOp *resOp) {
// Fail early if there are iter arguments that are not reductions.
unsigned numReductions = parallelReductions.size();
if (numReductions != forOp.getNumIterOperands())
return failure();
Location loc = forOp.getLoc();
OpBuilder outsideBuilder(forOp);
AffineMap lowerBoundMap = forOp.getLowerBoundMap();
ValueRange lowerBoundOperands = forOp.getLowerBoundOperands();
AffineMap upperBoundMap = forOp.getUpperBoundMap();
ValueRange upperBoundOperands = forOp.getUpperBoundOperands();
// Creating empty 1-D affine.parallel op.
auto reducedValues = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.value; }));
auto reductionKinds = llvm::to_vector<4>(llvm::map_range(
parallelReductions, [](const LoopReduction &red) { return red.kind; }));
AffineParallelOp newPloop = outsideBuilder.create<AffineParallelOp>(
loc, ValueRange(reducedValues).getTypes(), reductionKinds,
llvm::ArrayRef(lowerBoundMap), lowerBoundOperands,
llvm::ArrayRef(upperBoundMap), upperBoundOperands,
llvm::ArrayRef(forOp.getStep()));
// Steal the body of the old affine for op.
newPloop.getRegion().takeBody(forOp.getRegion());
Operation *yieldOp = &newPloop.getBody()->back();
// Handle the initial values of reductions because the parallel loop always
// starts from the neutral value.
SmallVector<Value> newResults;
newResults.reserve(numReductions);
for (unsigned i = 0; i < numReductions; ++i) {
Value init = forOp.getIterOperands()[i];
// This works because we are only handling single-op reductions at the
// moment. A switch on reduction kind or a mechanism to collect operations
// participating in the reduction will be necessary for multi-op reductions.
Operation *reductionOp = yieldOp->getOperand(i).getDefiningOp();
assert(reductionOp && "yielded value is expected to be produced by an op");
outsideBuilder.getInsertionBlock()->getOperations().splice(
outsideBuilder.getInsertionPoint(), newPloop.getBody()->getOperations(),
reductionOp);
reductionOp->setOperands({init, newPloop->getResult(i)});
forOp->getResult(i).replaceAllUsesWith(reductionOp->getResult(0));
}
// Update the loop terminator to yield reduced values bypassing the reduction
// operation itself (now moved outside of the loop) and erase the block
// arguments that correspond to reductions. Note that the loop always has one
// "main" induction variable whenc coming from a non-parallel for.
unsigned numIVs = 1;
yieldOp->setOperands(reducedValues);
newPloop.getBody()->eraseArguments(numIVs, numReductions);
forOp.erase();
if (resOp)
*resOp = newPloop;
return success();
}
// Returns success if any hoisting happened.
LogicalResult mlir::affine::hoistAffineIfOp(AffineIfOp ifOp, bool *folded) {
// Bail out early if the ifOp returns a result. TODO: Consider how to
// properly support this case.
if (ifOp.getNumResults() != 0)
return failure();
// Apply canonicalization patterns and folding - this is necessary for the
// hoisting check to be correct (operands should be composed), and to be more
// effective (no unused operands). Since the pattern rewriter's folding is
// entangled with application of patterns, we may fold/end up erasing the op,
// in which case we return with `folded` being set.
RewritePatternSet patterns(ifOp.getContext());
AffineIfOp::getCanonicalizationPatterns(patterns, ifOp.getContext());
FrozenRewritePatternSet frozenPatterns(std::move(patterns));
GreedyRewriteConfig config;
config.strictMode = GreedyRewriteStrictness::ExistingOps;
bool erased;
(void)applyOpPatternsAndFold(ifOp.getOperation(), frozenPatterns, config,
/*changed=*/nullptr, &erased);
if (erased) {
if (folded)
*folded = true;
return failure();
}
if (folded)
*folded = false;
// The folding above should have ensured this, but the affine.if's
// canonicalization is missing composition of affine.applys into it.
assert(llvm::all_of(ifOp.getOperands(),
[](Value v) {
return isTopLevelValue(v) || isAffineForInductionVar(v);
}) &&
"operands not composed");
// We are going hoist as high as possible.
// TODO: this could be customized in the future.
auto *hoistOverOp = getOutermostInvariantForOp(ifOp);
AffineIfOp hoistedIfOp = ::hoistAffineIfOp(ifOp, hoistOverOp);
// Nothing to hoist over.
if (hoistedIfOp == ifOp)
return failure();
// Canonicalize to remove dead else blocks (happens whenever an 'if' moves up
// a sequence of affine.fors that are all perfectly nested).
(void)applyPatternsAndFoldGreedily(
hoistedIfOp->getParentWithTrait<OpTrait::IsIsolatedFromAbove>(),
frozenPatterns);
return success();
}
// Return the min expr after replacing the given dim.
AffineExpr mlir::affine::substWithMin(AffineExpr e, AffineExpr dim,
AffineExpr min, AffineExpr max,
bool positivePath) {
if (e == dim)
return positivePath ? min : max;
if (auto bin = e.dyn_cast<AffineBinaryOpExpr>()) {
AffineExpr lhs = bin.getLHS();
AffineExpr rhs = bin.getRHS();
if (bin.getKind() == mlir::AffineExprKind::Add)
return substWithMin(lhs, dim, min, max, positivePath) +
substWithMin(rhs, dim, min, max, positivePath);
auto c1 = bin.getLHS().dyn_cast<AffineConstantExpr>();
auto c2 = bin.getRHS().dyn_cast<AffineConstantExpr>();
if (c1 && c1.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), c1, substWithMin(rhs, dim, min, max, !positivePath));
if (c2 && c2.getValue() < 0)
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, !positivePath), c2);
return getAffineBinaryOpExpr(
bin.getKind(), substWithMin(lhs, dim, min, max, positivePath),
substWithMin(rhs, dim, min, max, positivePath));
}
return e;
}
void mlir::affine::normalizeAffineParallel(AffineParallelOp op) {
// Loops with min/max in bounds are not normalized at the moment.
if (op.hasMinMaxBounds())
return;
AffineMap lbMap = op.getLowerBoundsMap();
SmallVector<int64_t, 8> steps = op.getSteps();
// No need to do any work if the parallel op is already normalized.
bool isAlreadyNormalized =
llvm::all_of(llvm::zip(steps, lbMap.getResults()), [](auto tuple) {
int64_t step = std::get<0>(tuple);
auto lbExpr =
std::get<1>(tuple).template dyn_cast<AffineConstantExpr>();
return lbExpr && lbExpr.getValue() == 0 && step == 1;
});
if (isAlreadyNormalized)
return;
AffineValueMap ranges;
AffineValueMap::difference(op.getUpperBoundsValueMap(),
op.getLowerBoundsValueMap(), &ranges);
auto builder = OpBuilder::atBlockBegin(op.getBody());
auto zeroExpr = builder.getAffineConstantExpr(0);
SmallVector<AffineExpr, 8> lbExprs;
SmallVector<AffineExpr, 8> ubExprs;
for (unsigned i = 0, e = steps.size(); i < e; ++i) {
int64_t step = steps[i];
// Adjust the lower bound to be 0.
lbExprs.push_back(zeroExpr);
// Adjust the upper bound expression: 'range / step'.
AffineExpr ubExpr = ranges.getResult(i).ceilDiv(step);
ubExprs.push_back(ubExpr);
// Adjust the corresponding IV: 'lb + i * step'.
BlockArgument iv = op.getBody()->getArgument(i);
AffineExpr lbExpr = lbMap.getResult(i);
unsigned nDims = lbMap.getNumDims();
auto expr = lbExpr + builder.getAffineDimExpr(nDims) * step;
auto map = AffineMap::get(/*dimCount=*/nDims + 1,
/*symbolCount=*/lbMap.getNumSymbols(), expr);
// Use an 'affine.apply' op that will be simplified later in subsequent
// canonicalizations.
OperandRange lbOperands = op.getLowerBoundsOperands();
OperandRange dimOperands = lbOperands.take_front(nDims);
OperandRange symbolOperands = lbOperands.drop_front(nDims);
SmallVector<Value, 8> applyOperands{dimOperands};
applyOperands.push_back(iv);
applyOperands.append(symbolOperands.begin(), symbolOperands.end());
auto apply = builder.create<AffineApplyOp>(op.getLoc(), map, applyOperands);
iv.replaceAllUsesExcept(apply, apply);
}
SmallVector<int64_t, 8> newSteps(op.getNumDims(), 1);
op.setSteps(newSteps);
auto newLowerMap = AffineMap::get(
/*dimCount=*/0, /*symbolCount=*/0, lbExprs, op.getContext());
op.setLowerBounds({}, newLowerMap);
auto newUpperMap = AffineMap::get(ranges.getNumDims(), ranges.getNumSymbols(),
ubExprs, op.getContext());
op.setUpperBounds(ranges.getOperands(), newUpperMap);
}
LogicalResult mlir::affine::normalizeAffineFor(AffineForOp op,
bool promoteSingleIter) {
if (promoteSingleIter && succeeded(promoteIfSingleIteration(op)))
return success();
// Check if the forop is already normalized.
if (op.hasConstantLowerBound() && (op.getConstantLowerBound() == 0) &&
(op.getStep() == 1))
return success();
// Check if the lower bound has a single result only. Loops with a max lower
// bound can't be normalized without additional support like
// affine.execute_region's. If the lower bound does not have a single result
// then skip this op.
if (op.getLowerBoundMap().getNumResults() != 1)
return failure();
Location loc = op.getLoc();
OpBuilder opBuilder(op);
int64_t origLoopStep = op.getStep();
AffineBound lb = op.getLowerBound();
AffineMap originalLbMap = lb.getMap();
SmallVector<Value, 4> origLbOperands;
llvm::append_range(origLbOperands, lb.getOperands());
AffineBound ub = op.getUpperBound();
AffineMap originalUbMap = ub.getMap();
SmallVector<Value, 4> origUbOperands;
llvm::append_range(origUbOperands, ub.getOperands());
// Calculate upperBound for normalized loop.
SmallVector<Value, 4> ubOperands;
ubOperands.reserve(ub.getNumOperands() + lb.getNumOperands());
// Add dimension operands from upper/lower bound.
for (unsigned j = 0, e = originalUbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(ub.getOperand(j));
for (unsigned j = 0, e = originalLbMap.getNumDims(); j < e; ++j)
ubOperands.push_back(lb.getOperand(j));
// Add symbol operands from upper/lower bound.
for (unsigned j = 0, e = originalUbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(ub.getOperand(originalUbMap.getNumDims() + j));
for (unsigned j = 0, e = originalLbMap.getNumSymbols(); j < e; ++j)
ubOperands.push_back(lb.getOperand(originalLbMap.getNumDims() + j));
// Add original result expressions from lower/upper bound map.
SmallVector<AffineExpr, 1> origLbExprs(originalLbMap.getResults().begin(),
originalLbMap.getResults().end());
SmallVector<AffineExpr, 2> origUbExprs(originalUbMap.getResults().begin(),
originalUbMap.getResults().end());
SmallVector<AffineExpr, 4> newUbExprs;
// The original upperBound can have more than one result. For the new
// upperBound of this loop, take difference of all possible combinations of
// the ub results and lb result and ceildiv with the loop step. For e.g.,
//
// affine.for %i1 = 0 to min affine_map<(d0)[] -> (d0 + 32, 1024)>(%i0)
// will have an upperBound map as,
// affine_map<(d0)[] -> (((d0 + 32) - 0) ceildiv 1, (1024 - 0) ceildiv
// 1)>(%i0)
//
// Insert all combinations of upper/lower bound results.
for (unsigned i = 0, e = origUbExprs.size(); i < e; ++i) {
newUbExprs.push_back(
(origUbExprs[i] - origLbExprs[0]).ceilDiv(origLoopStep));
}
// Construct newUbMap.
AffineMap newUbMap = AffineMap::get(
originalLbMap.getNumDims() + originalUbMap.getNumDims(),
originalLbMap.getNumSymbols() + originalUbMap.getNumSymbols(), newUbExprs,
opBuilder.getContext());
canonicalizeMapAndOperands(&newUbMap, &ubOperands);
SmallVector<Value, 4> lbOperands(lb.getOperands().begin(),
lb.getOperands().begin() +
originalLbMap.getNumDims());
// Normalize the loop.
op.setUpperBound(ubOperands, newUbMap);
op.setLowerBound({}, opBuilder.getConstantAffineMap(0));
op.setStep(1);
// Calculate the Value of new loopIV. Create affine.apply for the value of
// the loopIV in normalized loop.
opBuilder.setInsertionPointToStart(op.getBody());
// Add an extra dim operand for loopIV.
lbOperands.push_back(op.getInductionVar());
// Add symbol operands from lower bound.
for (unsigned j = 0, e = originalLbMap.getNumSymbols(); j < e; ++j)
lbOperands.push_back(origLbOperands[originalLbMap.getNumDims() + j]);
AffineExpr origIVExpr =
opBuilder.getAffineDimExpr(originalLbMap.getNumDims());
AffineExpr newIVExpr = origIVExpr * origLoopStep + originalLbMap.getResult(0);
AffineMap ivMap = AffineMap::get(originalLbMap.getNumDims() + 1,
originalLbMap.getNumSymbols(), newIVExpr);
canonicalizeMapAndOperands(&ivMap, &lbOperands);
Operation *newIV = opBuilder.create<AffineApplyOp>(loc, ivMap, lbOperands);
op.getInductionVar().replaceAllUsesExcept(newIV->getResult(0), newIV);
return success();
}
/// Returns true if the memory operation of `destAccess` depends on `srcAccess`
/// inside of the innermost common surrounding affine loop between the two
/// accesses.
static bool mustReachAtInnermost(const MemRefAccess &srcAccess,
const MemRefAccess &destAccess) {
// Affine dependence analysis is possible only if both ops in the same
// AffineScope.
if (getAffineScope(srcAccess.opInst) != getAffineScope(destAccess.opInst))
return false;
unsigned nsLoops =
getNumCommonSurroundingLoops(*srcAccess.opInst, *destAccess.opInst);
DependenceResult result =
checkMemrefAccessDependence(srcAccess, destAccess, nsLoops + 1);
return hasDependence(result);
}
/// Returns true if `srcMemOp` may have an effect on `destMemOp` within the
/// scope of the outermost `minSurroundingLoops` loops that surround them.
/// `srcMemOp` and `destMemOp` are expected to be affine read/write ops.
static bool mayHaveEffect(Operation *srcMemOp, Operation *destMemOp,
unsigned minSurroundingLoops) {
MemRefAccess srcAccess(srcMemOp);
MemRefAccess destAccess(destMemOp);
// Affine dependence analysis here is applicable only if both ops operate on
// the same memref and if `srcMemOp` and `destMemOp` are in the same
// AffineScope. Also, we can only check if our affine scope is isolated from
// above; otherwise, values can from outside of the affine scope that the
// check below cannot analyze.
Region *srcScope = getAffineScope(srcMemOp);
if (srcAccess.memref == destAccess.memref &&
srcScope == getAffineScope(destMemOp)) {
unsigned nsLoops = getNumCommonSurroundingLoops(*srcMemOp, *destMemOp);
FlatAffineValueConstraints dependenceConstraints;
for (unsigned d = nsLoops + 1; d > minSurroundingLoops; d--) {
DependenceResult result = checkMemrefAccessDependence(
srcAccess, destAccess, d, &dependenceConstraints,
/*dependenceComponents=*/nullptr);
// A dependence failure or the presence of a dependence implies a
// side effect.
if (!noDependence(result))
return true;
}
// No side effect was seen.
return false;
}
// TODO: Check here if the memrefs alias: there is no side effect if
// `srcAccess.memref` and `destAccess.memref` don't alias.
return true;
}
template <typename EffectType, typename T>
bool mlir::affine::hasNoInterveningEffect(Operation *start, T memOp) {
auto isLocallyAllocated = [](Value memref) {
auto *defOp = memref.getDefiningOp();
return defOp && hasSingleEffect<MemoryEffects::Allocate>(defOp, memref);
};
// A boolean representing whether an intervening operation could have impacted
// memOp.
bool hasSideEffect = false;
// Check whether the effect on memOp can be caused by a given operation op.
Value memref = memOp.getMemRef();
std::function<void(Operation *)> checkOperation = [&](Operation *op) {
// If the effect has alreay been found, early exit,
if (hasSideEffect)
return;
if (auto memEffect = dyn_cast<MemoryEffectOpInterface>(op)) {
SmallVector<MemoryEffects::EffectInstance, 1> effects;
memEffect.getEffects(effects);
bool opMayHaveEffect = false;
for (auto effect : effects) {
// If op causes EffectType on a potentially aliasing location for
// memOp, mark as having the effect.
if (isa<EffectType>(effect.getEffect())) {
// TODO: This should be replaced with a check for no aliasing.
// Aliasing information should be passed to this method.
if (effect.getValue() && effect.getValue() != memref &&
isLocallyAllocated(memref) &&
isLocallyAllocated(effect.getValue()))
continue;
opMayHaveEffect = true;
break;
}
}
if (!opMayHaveEffect)
return;
// If the side effect comes from an affine read or write, try to
// prove the side effecting `op` cannot reach `memOp`.
if (isa<AffineReadOpInterface, AffineWriteOpInterface>(op)) {
// For ease, let's consider the case that `op` is a store and
// we're looking for other potential stores that overwrite memory after
// `start`, and before being read in `memOp`. In this case, we only
// need to consider other potential stores with depth >
// minSurroundingLoops since `start` would overwrite any store with a
// smaller number of surrounding loops before.
unsigned minSurroundingLoops =
getNumCommonSurroundingLoops(*start, *memOp);
if (mayHaveEffect(op, memOp, minSurroundingLoops))
hasSideEffect = true;
return;
}
// We have an op with a memory effect and we cannot prove if it
// intervenes.
hasSideEffect = true;
return;
}
if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
// Recurse into the regions for this op and check whether the internal
// operations may have the side effect `EffectType` on memOp.
for (Region ®ion : op->getRegions())
for (Block &block : region)
for (Operation &op : block)
checkOperation(&op);
return;
}
// Otherwise, conservatively assume generic operations have the effect
// on the operation
hasSideEffect = true;
};
// Check all paths from ancestor op `parent` to the operation `to` for the
// effect. It is known that `to` must be contained within `parent`.
auto until = [&](Operation *parent, Operation *to) {
// TODO check only the paths from `parent` to `to`.
// Currently we fallback and check the entire parent op, rather than
// just the paths from the parent path, stopping after reaching `to`.
// This is conservatively correct, but could be made more aggressive.
assert(parent->isAncestor(to));
checkOperation(parent);
};
// Check for all paths from operation `from` to operation `untilOp` for the
// given memory effect.
std::function<void(Operation *, Operation *)> recur =
[&](Operation *from, Operation *untilOp) {
assert(
from->getParentRegion()->isAncestor(untilOp->getParentRegion()) &&
"Checking for side effect between two operations without a common "
"ancestor");
// If the operations are in different regions, recursively consider all
// path from `from` to the parent of `to` and all paths from the parent
// of `to` to `to`.
if (from->getParentRegion() != untilOp->getParentRegion()) {
recur(from, untilOp->getParentOp());
until(untilOp->getParentOp(), untilOp);
return;
}
// Now, assuming that `from` and `to` exist in the same region, perform
// a CFG traversal to check all the relevant operations.
// Additional blocks to consider.
SmallVector<Block *, 2> todoBlocks;
{
// First consider the parent block of `from` an check all operations
// after `from`.
for (auto iter = ++from->getIterator(), end = from->getBlock()->end();
iter != end && &*iter != untilOp; ++iter) {
checkOperation(&*iter);
}
// If the parent of `from` doesn't contain `to`, add the successors
// to the list of blocks to check.
if (untilOp->getBlock() != from->getBlock())
for (Block *succ : from->getBlock()->getSuccessors())
todoBlocks.push_back(succ);
}
SmallPtrSet<Block *, 4> done;
// Traverse the CFG until hitting `to`.
while (!todoBlocks.empty()) {
Block *blk = todoBlocks.pop_back_val();
if (done.count(blk))
continue;
done.insert(blk);
for (auto &op : *blk) {
if (&op == untilOp)
break;
checkOperation(&op);
if (&op == blk->getTerminator())
for (Block *succ : blk->getSuccessors())
todoBlocks.push_back(succ);
}
}
};
recur(start, memOp);
return !hasSideEffect;
}
/// Attempt to eliminate loadOp by replacing it with a value stored into memory
/// which the load is guaranteed to retrieve. This check involves three
/// components: 1) The store and load must be on the same location 2) The store
/// must dominate (and therefore must always occur prior to) the load 3) No
/// other operations will overwrite the memory loaded between the given load
/// and store. If such a value exists, the replaced `loadOp` will be added to
/// `loadOpsToErase` and its memref will be added to `memrefsToErase`.
static void forwardStoreToLoad(AffineReadOpInterface loadOp,
SmallVectorImpl<Operation *> &loadOpsToErase,
SmallPtrSetImpl<Value> &memrefsToErase,
DominanceInfo &domInfo) {
// The store op candidate for forwarding that satisfies all conditions
// to replace the load, if any.
Operation *lastWriteStoreOp = nullptr;
for (auto *user : loadOp.getMemRef().getUsers()) {
auto storeOp = dyn_cast<AffineWriteOpInterface>(user);
if (!storeOp)
continue;
MemRefAccess srcAccess(storeOp);
MemRefAccess destAccess(loadOp);
// 1. Check if the store and the load have mathematically equivalent
// affine access functions; this implies that they statically refer to the
// same single memref element. As an example this filters out cases like:
// store %A[%i0 + 1]
// load %A[%i0]
// store %A[%M]
// load %A[%N]
// Use the AffineValueMap difference based memref access equality checking.
if (srcAccess != destAccess)
continue;
// 2. The store has to dominate the load op to be candidate.
if (!domInfo.dominates(storeOp, loadOp))
continue;
// 3. The store must reach the load. Access function equivalence only
// guarantees this for accesses in the same block. The load could be in a
// nested block that is unreachable.
if (storeOp->getBlock() != loadOp->getBlock() &&
!mustReachAtInnermost(srcAccess, destAccess))
continue;
// 4. Ensure there is no intermediate operation which could replace the
// value in memory.
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(storeOp, loadOp))
continue;
// We now have a candidate for forwarding.
assert(lastWriteStoreOp == nullptr &&
"multiple simultaneous replacement stores");
lastWriteStoreOp = storeOp;
}
if (!lastWriteStoreOp)
return;
// Perform the actual store to load forwarding.
Value storeVal =
cast<AffineWriteOpInterface>(lastWriteStoreOp).getValueToStore();
// Check if 2 values have the same shape. This is needed for affine vector
// loads and stores.
if (storeVal.getType() != loadOp.getValue().getType())
return;
loadOp.getValue().replaceAllUsesWith(storeVal);
// Record the memref for a later sweep to optimize away.
memrefsToErase.insert(loadOp.getMemRef());
// Record this to erase later.
loadOpsToErase.push_back(loadOp);
}
template bool
mlir::affine::hasNoInterveningEffect<mlir::MemoryEffects::Read,
affine::AffineReadOpInterface>(
mlir::Operation *, affine::AffineReadOpInterface);
// This attempts to find stores which have no impact on the final result.
// A writing op writeA will be eliminated if there exists an op writeB if
// 1) writeA and writeB have mathematically equivalent affine access functions.
// 2) writeB postdominates writeA.
// 3) There is no potential read between writeA and writeB.
static void findUnusedStore(AffineWriteOpInterface writeA,
SmallVectorImpl<Operation *> &opsToErase,
PostDominanceInfo &postDominanceInfo) {
for (Operation *user : writeA.getMemRef().getUsers()) {
// Only consider writing operations.
auto writeB = dyn_cast<AffineWriteOpInterface>(user);
if (!writeB)
continue;
// The operations must be distinct.
if (writeB == writeA)
continue;
// Both operations must lie in the same region.
if (writeB->getParentRegion() != writeA->getParentRegion())
continue;
// Both operations must write to the same memory.
MemRefAccess srcAccess(writeB);
MemRefAccess destAccess(writeA);
if (srcAccess != destAccess)
continue;
// writeB must postdominate writeA.
if (!postDominanceInfo.postDominates(writeB, writeA))
continue;
// There cannot be an operation which reads from memory between
// the two writes.
if (!affine::hasNoInterveningEffect<MemoryEffects::Read>(writeA, writeB))
continue;
opsToErase.push_back(writeA);
break;
}
}
// The load to load forwarding / redundant load elimination is similar to the
// store to load forwarding.
// loadA will be be replaced with loadB if:
// 1) loadA and loadB have mathematically equivalent affine access functions.
// 2) loadB dominates loadA.
// 3) There is no write between loadA and loadB.
static void loadCSE(AffineReadOpInterface loadA,
SmallVectorImpl<Operation *> &loadOpsToErase,
DominanceInfo &domInfo) {
SmallVector<AffineReadOpInterface, 4> loadCandidates;
for (auto *user : loadA.getMemRef().getUsers()) {
auto loadB = dyn_cast<AffineReadOpInterface>(user);
if (!loadB || loadB == loadA)
continue;
MemRefAccess srcAccess(loadB);
MemRefAccess destAccess(loadA);
// 1. The accesses should be to be to the same location.
if (srcAccess != destAccess) {
continue;
}
// 2. loadB should dominate loadA.
if (!domInfo.dominates(loadB, loadA))
continue;
// 3. There should not be a write between loadA and loadB.
if (!affine::hasNoInterveningEffect<MemoryEffects::Write>(
loadB.getOperation(), loadA))
continue;
// Check if two values have the same shape. This is needed for affine vector
// loads.
if (loadB.getValue().getType() != loadA.getValue().getType())
continue;
loadCandidates.push_back(loadB);
}
// Of the legal load candidates, use the one that dominates all others
// to minimize the subsequent need to loadCSE
Value loadB;
for (AffineReadOpInterface option : loadCandidates) {
if (llvm::all_of(loadCandidates, [&](AffineReadOpInterface depStore) {
return depStore == option ||
domInfo.dominates(option.getOperation(),
depStore.getOperation());
})) {
loadB = option.getValue();
break;
}
}
if (loadB) {
loadA.getValue().replaceAllUsesWith(loadB);
// Record this to erase later.
loadOpsToErase.push_back(loadA);
}
}
// The store to load forwarding and load CSE rely on three conditions:
//
// 1) store/load providing a replacement value and load being replaced need to
// have mathematically equivalent affine access functions (checked after full
// composition of load/store operands); this implies that they access the same
// single memref element for all iterations of the common surrounding loop,
//
// 2) the store/load op should dominate the load op,
//
// 3) no operation that may write to memory read by the load being replaced can
// occur after executing the instruction (load or store) providing the
// replacement value and before the load being replaced (thus potentially
// allowing overwriting the memory read by the load).
//
// The above conditions are simple to check, sufficient, and powerful for most
// cases in practice - they are sufficient, but not necessary --- since they
// don't reason about loops that are guaranteed to execute at least once or
// multiple sources to forward from.
//
// TODO: more forwarding can be done when support for
// loop/conditional live-out SSA values is available.
// TODO: do general dead store elimination for memref's. This pass
// currently only eliminates the stores only if no other loads/uses (other
// than dealloc) remain.
//
void mlir::affine::affineScalarReplace(func::FuncOp f, DominanceInfo &domInfo,
PostDominanceInfo &postDomInfo) {
// Load op's whose results were replaced by those forwarded from stores.
SmallVector<Operation *, 8> opsToErase;
// A list of memref's that are potentially dead / could be eliminated.
SmallPtrSet<Value, 4> memrefsToErase;
// Walk all load's and perform store to load forwarding.
f.walk([&](AffineReadOpInterface loadOp) {
forwardStoreToLoad(loadOp, opsToErase, memrefsToErase, domInfo);
});
for (auto *op : opsToErase)
op->erase();
opsToErase.clear();
// Walk all store's and perform unused store elimination
f.walk([&](AffineWriteOpInterface storeOp) {
findUnusedStore(storeOp, opsToErase, postDomInfo);
});
for (auto *op : opsToErase)
op->erase();
opsToErase.clear();
// Check if the store fwd'ed memrefs are now left with only stores and
// deallocs and can thus be completely deleted. Note: the canonicalize pass
// should be able to do this as well, but we'll do it here since we collected
// these anyway.
for (auto memref : memrefsToErase) {
// If the memref hasn't been locally alloc'ed, skip.
Operation *defOp = memref.getDefiningOp();
if (!defOp || !hasSingleEffect<MemoryEffects::Allocate>(defOp, memref))
// TODO: if the memref was returned by a 'call' operation, we
// could still erase it if the call had no side-effects.
continue;
if (llvm::any_of(memref.getUsers(), [&](Operation *ownerOp) {
return !isa<AffineWriteOpInterface>(ownerOp) &&
!hasSingleEffect<MemoryEffects::Free>(ownerOp, memref);
}))
continue;
// Erase all stores, the dealloc, and the alloc on the memref.
for (auto *user : llvm::make_early_inc_range(memref.getUsers()))
user->erase();
defOp->erase();
}
// To eliminate as many loads as possible, run load CSE after eliminating
// stores. Otherwise, some stores are wrongly seen as having an intervening
// effect.
f.walk([&](AffineReadOpInterface loadOp) {
loadCSE(loadOp, opsToErase, domInfo);
});
for (auto *op : opsToErase)
op->erase();
}
// Perform the replacement in `op`.
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
Value oldMemRef, Value newMemRef, Operation *op,
ArrayRef<Value> extraIndices, AffineMap indexRemap,
ArrayRef<Value> extraOperands, ArrayRef<Value> symbolOperands,
bool allowNonDereferencingOps) {
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
(void)oldMemRefRank; // unused in opt mode
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbolic operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
cast<MemRefType>(newMemRef.getType()).getElementType());
SmallVector<unsigned, 2> usePositions;
for (const auto &opEntry : llvm::enumerate(op->getOperands())) {
if (opEntry.value() == oldMemRef)
usePositions.push_back(opEntry.index());
}
// If memref doesn't appear, nothing to do.
if (usePositions.empty())
return success();
if (usePositions.size() > 1) {
// TODO: extend it for this case when needed (rare).
assert(false && "multiple dereferencing uses in a single op not supported");
return failure();
}
unsigned memRefOperandPos = usePositions.front();
OpBuilder builder(op);
// The following checks if op is dereferencing memref and performs the access
// index rewrites.
auto affMapAccInterface = dyn_cast<AffineMapAccessInterface>(op);
if (!affMapAccInterface) {
if (!allowNonDereferencingOps) {
// Failure: memref used in a non-dereferencing context (potentially
// escapes); no replacement in these cases unless allowNonDereferencingOps
// is set.
return failure();
}
op->setOperand(memRefOperandPos, newMemRef);
return success();
}
// Perform index rewrites for the dereferencing op and then replace the op
NamedAttribute oldMapAttrPair =
affMapAccInterface.getAffineMapAttrForMemRef(oldMemRef);
AffineMap oldMap = cast<AffineMapAttr>(oldMapAttrPair.getValue()).getValue();
unsigned oldMapNumInputs = oldMap.getNumInputs();
SmallVector<Value, 4> oldMapOperands(
op->operand_begin() + memRefOperandPos + 1,
op->operand_begin() + memRefOperandPos + 1 + oldMapNumInputs);
// Apply 'oldMemRefOperands = oldMap(oldMapOperands)'.
SmallVector<Value, 4> oldMemRefOperands;
SmallVector<Value, 4> affineApplyOps;
oldMemRefOperands.reserve(oldMemRefRank);
if (oldMap != builder.getMultiDimIdentityMap(oldMap.getNumDims())) {
for (auto resultExpr : oldMap.getResults()) {
auto singleResMap = AffineMap::get(oldMap.getNumDims(),
oldMap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
oldMapOperands);
oldMemRefOperands.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
oldMemRefOperands.assign(oldMapOperands.begin(), oldMapOperands.end());
}
// Construct new indices as a remap of the old ones if a remapping has been
// provided. The indices of a memref come right after it, i.e.,
// at position memRefOperandPos + 1.
SmallVector<Value, 4> remapOperands;
remapOperands.reserve(extraOperands.size() + oldMemRefRank +
symbolOperands.size());
remapOperands.append(extraOperands.begin(), extraOperands.end());
remapOperands.append(oldMemRefOperands.begin(), oldMemRefOperands.end());
remapOperands.append(symbolOperands.begin(), symbolOperands.end());
SmallVector<Value, 4> remapOutputs;
remapOutputs.reserve(oldMemRefRank);
if (indexRemap &&
indexRemap != builder.getMultiDimIdentityMap(indexRemap.getNumDims())) {
// Remapped indices.
for (auto resultExpr : indexRemap.getResults()) {
auto singleResMap = AffineMap::get(
indexRemap.getNumDims(), indexRemap.getNumSymbols(), resultExpr);
auto afOp = builder.create<AffineApplyOp>(op->getLoc(), singleResMap,
remapOperands);
remapOutputs.push_back(afOp);
affineApplyOps.push_back(afOp);
}
} else {
// No remapping specified.
remapOutputs.assign(remapOperands.begin(), remapOperands.end());
}
SmallVector<Value, 4> newMapOperands;
newMapOperands.reserve(newMemRefRank);
// Prepend 'extraIndices' in 'newMapOperands'.
for (Value extraIndex : extraIndices) {
assert((isValidDim(extraIndex) || isValidSymbol(extraIndex)) &&
"invalid memory op index");
newMapOperands.push_back(extraIndex);
}
// Append 'remapOutputs' to 'newMapOperands'.
newMapOperands.append(remapOutputs.begin(), remapOutputs.end());
// Create new fully composed AffineMap for new op to be created.
assert(newMapOperands.size() == newMemRefRank);
auto newMap = builder.getMultiDimIdentityMap(newMemRefRank);
// TODO: Avoid creating/deleting temporary AffineApplyOps here.
fullyComposeAffineMapAndOperands(&newMap, &newMapOperands);
newMap = simplifyAffineMap(newMap);
canonicalizeMapAndOperands(&newMap, &newMapOperands);
// Remove any affine.apply's that became dead as a result of composition.
for (Value value : affineApplyOps)
if (value.use_empty())
value.getDefiningOp()->erase();
OperationState state(op->getLoc(), op->getName());
// Construct the new operation using this memref.
state.operands.reserve(op->getNumOperands() + extraIndices.size());
// Insert the non-memref operands.
state.operands.append(op->operand_begin(),
op->operand_begin() + memRefOperandPos);
// Insert the new memref value.
state.operands.push_back(newMemRef);
// Insert the new memref map operands.
state.operands.append(newMapOperands.begin(), newMapOperands.end());
// Insert the remaining operands unmodified.
state.operands.append(op->operand_begin() + memRefOperandPos + 1 +
oldMapNumInputs,
op->operand_end());
// Result types don't change. Both memref's are of the same elemental type.
state.types.reserve(op->getNumResults());
for (auto result : op->getResults())
state.types.push_back(result.getType());
// Add attribute for 'newMap', other Attributes do not change.
auto newMapAttr = AffineMapAttr::get(newMap);
for (auto namedAttr : op->getAttrs()) {
if (namedAttr.getName() == oldMapAttrPair.getName())
state.attributes.push_back({namedAttr.getName(), newMapAttr});
else
state.attributes.push_back(namedAttr);
}
// Create the new operation.
auto *repOp = builder.create(state);
op->replaceAllUsesWith(repOp);
op->erase();
return success();
}
LogicalResult mlir::affine::replaceAllMemRefUsesWith(
Value oldMemRef, Value newMemRef, ArrayRef<Value> extraIndices,
AffineMap indexRemap, ArrayRef<Value> extraOperands,
ArrayRef<Value> symbolOperands, Operation *domOpFilter,
Operation *postDomOpFilter, bool allowNonDereferencingOps,
bool replaceInDeallocOp) {
unsigned newMemRefRank = cast<MemRefType>(newMemRef.getType()).getRank();
(void)newMemRefRank; // unused in opt mode
unsigned oldMemRefRank = cast<MemRefType>(oldMemRef.getType()).getRank();
(void)oldMemRefRank;
if (indexRemap) {
assert(indexRemap.getNumSymbols() == symbolOperands.size() &&
"symbol operand count mismatch");
assert(indexRemap.getNumInputs() ==
extraOperands.size() + oldMemRefRank + symbolOperands.size());
assert(indexRemap.getNumResults() + extraIndices.size() == newMemRefRank);
} else {
assert(oldMemRefRank + extraIndices.size() == newMemRefRank);
}
// Assert same elemental type.
assert(cast<MemRefType>(oldMemRef.getType()).getElementType() ==
cast<MemRefType>(newMemRef.getType()).getElementType());
std::unique_ptr<DominanceInfo> domInfo;
std::unique_ptr<PostDominanceInfo> postDomInfo;
if (domOpFilter)
domInfo = std::make_unique<DominanceInfo>(
domOpFilter->getParentOfType<func::FuncOp>());
if (postDomOpFilter)
postDomInfo = std::make_unique<PostDominanceInfo>(
postDomOpFilter->getParentOfType<func::FuncOp>());
// Walk all uses of old memref; collect ops to perform replacement. We use a
// DenseSet since an operation could potentially have multiple uses of a
// memref (although rare), and the replacement later is going to erase ops.
DenseSet<Operation *> opsToReplace;
for (auto *op : oldMemRef.getUsers()) {
// Skip this use if it's not dominated by domOpFilter.
if (domOpFilter && !domInfo->dominates(domOpFilter, op))
continue;
// Skip this use if it's not post-dominated by postDomOpFilter.
if (postDomOpFilter && !postDomInfo->postDominates(postDomOpFilter, op))
continue;
// Skip dealloc's - no replacement is necessary, and a memref replacement
// at other uses doesn't hurt these dealloc's.
if (hasSingleEffect<MemoryEffects::Free>(op, oldMemRef) &&
!replaceInDeallocOp)
continue;
// Check if the memref was used in a non-dereferencing context. It is fine
// for the memref to be used in a non-dereferencing way outside of the
// region where this replacement is happening.
if (!isa<AffineMapAccessInterface>(*op)) {
if (!allowNonDereferencingOps) {
LLVM_DEBUG(llvm::dbgs()
<< "Memref replacement failed: non-deferencing memref op: \n"
<< *op << '\n');
return failure();
}
// Non-dereferencing ops with the MemRefsNormalizable trait are
// supported for replacement.
if (!op->hasTrait<OpTrait::MemRefsNormalizable>()) {
LLVM_DEBUG(llvm::dbgs() << "Memref replacement failed: use without a "
"memrefs normalizable trait: \n"
<< *op << '\n');
return failure();
}
}
// We'll first collect and then replace --- since replacement erases the op
// that has the use, and that op could be postDomFilter or domFilter itself!
opsToReplace.insert(op);
}
for (auto *op : opsToReplace) {
if (failed(replaceAllMemRefUsesWith(
oldMemRef, newMemRef, op, extraIndices, indexRemap, extraOperands,
symbolOperands, allowNonDereferencingOps)))
llvm_unreachable("memref replacement guaranteed to succeed here");
}
return success();
}
/// Given an operation, inserts one or more single result affine
/// apply operations, results of which are exclusively used by this operation
/// operation. The operands of these newly created affine apply ops are
/// guaranteed to be loop iterators or terminal symbols of a function.
///
/// Before
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// "compute"(%idx)
///
/// After
///
/// affine.for %i = 0 to #map(%N)
/// %idx = affine.apply (d0) -> (d0 mod 2) (%i)
/// "send"(%idx, %A, ...)
/// %idx_ = affine.apply (d0) -> (d0 mod 2) (%i)
/// "compute"(%idx_)
///
/// This allows applying different transformations on send and compute (for eg.
/// different shifts/delays).
///
/// Returns nullptr either if none of opInst's operands were the result of an
/// affine.apply and thus there was no affine computation slice to create, or if
/// all the affine.apply op's supplying operands to this opInst did not have any
/// uses besides this opInst; otherwise returns the list of affine.apply
/// operations created in output argument `sliceOps`.
void mlir::affine::createAffineComputationSlice(
Operation *opInst, SmallVectorImpl<AffineApplyOp> *sliceOps) {
// Collect all operands that are results of affine apply ops.
SmallVector<Value, 4> subOperands;
subOperands.reserve(opInst->getNumOperands());
for (auto operand : opInst->getOperands())
if (isa_and_nonnull<AffineApplyOp>(operand.getDefiningOp()))
subOperands.push_back(operand);
// Gather sequence of AffineApplyOps reachable from 'subOperands'.
SmallVector<Operation *, 4> affineApplyOps;
getReachableAffineApplyOps(subOperands, affineApplyOps);
// Skip transforming if there are no affine maps to compose.
if (affineApplyOps.empty())
return;
// Check if all uses of the affine apply op's lie only in this op op, in
// which case there would be nothing to do.
bool localized = true;
for (auto *op : affineApplyOps) {
for (auto result : op->getResults()) {
for (auto *user : result.getUsers()) {
if (user != opInst) {
localized = false;
break;
}
}
}
}
if (localized)
return;
OpBuilder builder(opInst);
SmallVector<Value, 4> composedOpOperands(subOperands);
auto composedMap = builder.getMultiDimIdentityMap(composedOpOperands.size());
fullyComposeAffineMapAndOperands(&composedMap, &composedOpOperands);
// Create an affine.apply for each of the map results.
sliceOps->reserve(composedMap.getNumResults());
for (auto resultExpr : composedMap.getResults()) {
auto singleResMap = AffineMap::get(composedMap.getNumDims(),
composedMap.getNumSymbols(), resultExpr);
sliceOps->push_back(builder.create<AffineApplyOp>(
opInst->getLoc(), singleResMap, composedOpOperands));
}
// Construct the new operands that include the results from the composed
// affine apply op above instead of existing ones (subOperands). So, they
// differ from opInst's operands only for those operands in 'subOperands', for
// which they will be replaced by the corresponding one from 'sliceOps'.
SmallVector<Value, 4> newOperands(opInst->getOperands());
for (unsigned i = 0, e = newOperands.size(); i < e; i++) {
// Replace the subOperands from among the new operands.
unsigned j, f;
for (j = 0, f = subOperands.size(); j < f; j++) {
if (newOperands[i] == subOperands[j])
break;
}
if (j < subOperands.size()) {
newOperands[i] = (*sliceOps)[j];
}
}
for (unsigned idx = 0, e = newOperands.size(); idx < e; idx++) {
opInst->setOperand(idx, newOperands[idx]);
}
}
/// Enum to set patterns of affine expr in tiled-layout map.
/// TileFloorDiv: <dim expr> div <tile size>
/// TileMod: <dim expr> mod <tile size>
/// TileNone: None of the above
/// Example:
/// #tiled_2d_128x256 = affine_map<(d0, d1)
/// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
/// "d0 div 128" and "d1 div 256" ==> TileFloorDiv
/// "d0 mod 128" and "d1 mod 256" ==> TileMod
enum TileExprPattern { TileFloorDiv, TileMod, TileNone };
/// Check if `map` is a tiled layout. In the tiled layout, specific k dimensions
/// being floordiv'ed by respective tile sizes appeare in a mod with the same
/// tile sizes, and no other expression involves those k dimensions. This
/// function stores a vector of tuples (`tileSizePos`) including AffineExpr for
/// tile size, positions of corresponding `floordiv` and `mod`. If it is not a
/// tiled layout, an empty vector is returned.
static LogicalResult getTileSizePos(
AffineMap map,
SmallVectorImpl<std::tuple<AffineExpr, unsigned, unsigned>> &tileSizePos) {
// Create `floordivExprs` which is a vector of tuples including LHS and RHS of
// `floordiv` and its position in `map` output.
// Example: #tiled_2d_128x256 = affine_map<(d0, d1)
// -> (d0 div 128, d1 div 256, d0 mod 128, d1 mod 256)>
// In this example, `floordivExprs` includes {d0, 128, 0} and {d1, 256, 1}.
SmallVector<std::tuple<AffineExpr, AffineExpr, unsigned>, 4> floordivExprs;
unsigned pos = 0;
for (AffineExpr expr : map.getResults()) {
if (expr.getKind() == AffineExprKind::FloorDiv) {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
if (binaryExpr.getRHS().isa<AffineConstantExpr>())
floordivExprs.emplace_back(
std::make_tuple(binaryExpr.getLHS(), binaryExpr.getRHS(), pos));
}
pos++;
}
// Not tiled layout if `floordivExprs` is empty.
if (floordivExprs.empty()) {
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
return success();
}
// Check if LHS of `floordiv` is used in LHS of `mod`. If not used, `map` is
// not tiled layout.
for (std::tuple<AffineExpr, AffineExpr, unsigned> fexpr : floordivExprs) {
AffineExpr floordivExprLHS = std::get<0>(fexpr);
AffineExpr floordivExprRHS = std::get<1>(fexpr);
unsigned floordivPos = std::get<2>(fexpr);
// Walk affinexpr of `map` output except `fexpr`, and check if LHS and RHS
// of `fexpr` are used in LHS and RHS of `mod`. If LHS of `fexpr` is used
// other expr, the map is not tiled layout. Example of non tiled layout:
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 floordiv 256)>
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 128)>
// affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2 mod 256, d2 mod
// 256)>
bool found = false;
pos = 0;
for (AffineExpr expr : map.getResults()) {
bool notTiled = false;
if (pos != floordivPos) {
expr.walk([&](AffineExpr e) {
if (e == floordivExprLHS) {
if (expr.getKind() == AffineExprKind::Mod) {
AffineBinaryOpExpr binaryExpr = expr.cast<AffineBinaryOpExpr>();
// If LHS and RHS of `mod` are the same with those of floordiv.
if (floordivExprLHS == binaryExpr.getLHS() &&
floordivExprRHS == binaryExpr.getRHS()) {
// Save tile size (RHS of `mod`), and position of `floordiv` and
// `mod` if same expr with `mod` is not found yet.
if (!found) {
tileSizePos.emplace_back(
std::make_tuple(binaryExpr.getRHS(), floordivPos, pos));
found = true;
} else {
// Non tiled layout: Have multilpe `mod` with the same LHS.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// mod 256, d2 mod 256)>
notTiled = true;
}
} else {
// Non tiled layout: RHS of `mod` is different from `floordiv`.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// mod 128)>
notTiled = true;
}
} else {
// Non tiled layout: LHS is the same, but not `mod`.
// eg. affine_map<(d0, d1, d2) -> (d0, d1, d2 floordiv 256, d2
// floordiv 256)>
notTiled = true;
}
}
});
}
if (notTiled) {
tileSizePos = SmallVector<std::tuple<AffineExpr, unsigned, unsigned>>{};
return success();
}
pos++;
}
}
return success();
}
/// Check if `dim` dimension of memrefType with `layoutMap` becomes dynamic
/// after normalization. Dimensions that include dynamic dimensions in the map
/// output will become dynamic dimensions. Return true if `dim` is dynamic
/// dimension.
///
/// Example:
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
///
/// If d1 is dynamic dimension, 2nd and 3rd dimension of map output are dynamic.
/// memref<4x?xf32, #map0> ==> memref<4x?x?xf32>
static bool
isNormalizedMemRefDynamicDim(unsigned dim, AffineMap layoutMap,
SmallVectorImpl<unsigned> &inMemrefTypeDynDims,
MLIRContext *context) {
bool isDynamicDim = false;
AffineExpr expr = layoutMap.getResults()[dim];
// Check if affine expr of the dimension includes dynamic dimension of input
// memrefType.
expr.walk([&inMemrefTypeDynDims, &isDynamicDim, &context](AffineExpr e) {
if (e.isa<AffineDimExpr>()) {
for (unsigned dm : inMemrefTypeDynDims) {
if (e == getAffineDimExpr(dm, context)) {
isDynamicDim = true;
}
}
}
});
return isDynamicDim;
}
/// Create affine expr to calculate dimension size for a tiled-layout map.
static AffineExpr createDimSizeExprForTiledLayout(AffineExpr oldMapOutput,
TileExprPattern pat) {
// Create map output for the patterns.
// "floordiv <tile size>" ==> "ceildiv <tile size>"
// "mod <tile size>" ==> "<tile size>"
AffineExpr newMapOutput;
AffineBinaryOpExpr binaryExpr = nullptr;
switch (pat) {
case TileExprPattern::TileMod:
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
newMapOutput = binaryExpr.getRHS();
break;
case TileExprPattern::TileFloorDiv:
binaryExpr = oldMapOutput.cast<AffineBinaryOpExpr>();
newMapOutput = getAffineBinaryOpExpr(
AffineExprKind::CeilDiv, binaryExpr.getLHS(), binaryExpr.getRHS());
break;
default:
newMapOutput = oldMapOutput;
}
return newMapOutput;
}
/// Create new maps to calculate each dimension size of `newMemRefType`, and
/// create `newDynamicSizes` from them by using AffineApplyOp.
///
/// Steps for normalizing dynamic memrefs for a tiled layout map
/// Example:
/// #map0 = affine_map<(d0, d1) -> (d0, d1 floordiv 32, d1 mod 32)>
/// %0 = dim %arg0, %c1 :memref<4x?xf32>
/// %1 = alloc(%0) : memref<4x?xf32, #map0>
///
/// (Before this function)
/// 1. Check if `map`(#map0) is a tiled layout using `getTileSizePos()`. Only
/// single layout map is supported.
///
/// 2. Create normalized memrefType using `isNormalizedMemRefDynamicDim()`. It
/// is memref<4x?x?xf32> in the above example.
///
/// (In this function)
/// 3. Create new maps to calculate each dimension of the normalized memrefType
/// using `createDimSizeExprForTiledLayout()`. In the tiled layout, the
/// dimension size can be calculated by replacing "floordiv <tile size>" with
/// "ceildiv <tile size>" and "mod <tile size>" with "<tile size>".
/// - New map in the above example
/// #map0 = affine_map<(d0, d1) -> (d0)>
/// #map1 = affine_map<(d0, d1) -> (d1 ceildiv 32)>
/// #map2 = affine_map<(d0, d1) -> (32)>
///
/// 4. Create AffineApplyOp to apply the new maps. The output of AffineApplyOp
/// is used in dynamicSizes of new AllocOp.
/// %0 = dim %arg0, %c1 : memref<4x?xf32>
/// %c4 = arith.constant 4 : index
/// %1 = affine.apply #map1(%c4, %0)
/// %2 = affine.apply #map2(%c4, %0)
static void createNewDynamicSizes(MemRefType oldMemRefType,
MemRefType newMemRefType, AffineMap map,
memref::AllocOp *allocOp, OpBuilder b,
SmallVectorImpl<Value> &newDynamicSizes) {
// Create new input for AffineApplyOp.
SmallVector<Value, 4> inAffineApply;
ArrayRef<int64_t> oldMemRefShape = oldMemRefType.getShape();
unsigned dynIdx = 0;
for (unsigned d = 0; d < oldMemRefType.getRank(); ++d) {
if (oldMemRefShape[d] < 0) {
// Use dynamicSizes of allocOp for dynamic dimension.
inAffineApply.emplace_back(allocOp->getDynamicSizes()[dynIdx]);
dynIdx++;
} else {
// Create ConstantOp for static dimension.
auto constantAttr = b.getIntegerAttr(b.getIndexType(), oldMemRefShape[d]);
inAffineApply.emplace_back(
b.create<arith::ConstantOp>(allocOp->getLoc(), constantAttr));
}
}
// Create new map to calculate each dimension size of new memref for each
// original map output. Only for dynamic dimesion of `newMemRefType`.
unsigned newDimIdx = 0;
ArrayRef<int64_t> newMemRefShape = newMemRefType.getShape();
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(map, tileSizePos);
for (AffineExpr expr : map.getResults()) {
if (newMemRefShape[newDimIdx] < 0) {
// Create new maps to calculate each dimension size of new memref.
enum TileExprPattern pat = TileExprPattern::TileNone;
for (auto pos : tileSizePos) {
if (newDimIdx == std::get<1>(pos))
pat = TileExprPattern::TileFloorDiv;
else if (newDimIdx == std::get<2>(pos))
pat = TileExprPattern::TileMod;
}
AffineExpr newMapOutput = createDimSizeExprForTiledLayout(expr, pat);
AffineMap newMap =
AffineMap::get(map.getNumInputs(), map.getNumSymbols(), newMapOutput);
Value affineApp =
b.create<AffineApplyOp>(allocOp->getLoc(), newMap, inAffineApply);
newDynamicSizes.emplace_back(affineApp);
}
newDimIdx++;
}
}
// TODO: Currently works for static memrefs with a single layout map.
LogicalResult mlir::affine::normalizeMemRef(memref::AllocOp *allocOp) {
MemRefType memrefType = allocOp->getType();
OpBuilder b(*allocOp);
// Fetch a new memref type after normalizing the old memref to have an
// identity map layout.
MemRefType newMemRefType = normalizeMemRefType(memrefType);
if (newMemRefType == memrefType)
// Either memrefType already had an identity map or the map couldn't be
// transformed to an identity map.
return failure();
Value oldMemRef = allocOp->getResult();
SmallVector<Value, 4> symbolOperands(allocOp->getSymbolOperands());
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
memref::AllocOp newAlloc;
// Check if `layoutMap` is a tiled layout. Only single layout map is
// supported for normalizing dynamic memrefs.
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(layoutMap, tileSizePos);
if (newMemRefType.getNumDynamicDims() > 0 && !tileSizePos.empty()) {
MemRefType oldMemRefType = cast<MemRefType>(oldMemRef.getType());
SmallVector<Value, 4> newDynamicSizes;
createNewDynamicSizes(oldMemRefType, newMemRefType, layoutMap, allocOp, b,
newDynamicSizes);
// Add the new dynamic sizes in new AllocOp.
newAlloc =
b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
newDynamicSizes, allocOp->getAlignmentAttr());
} else {
newAlloc = b.create<memref::AllocOp>(allocOp->getLoc(), newMemRefType,
allocOp->getAlignmentAttr());
}
// Replace all uses of the old memref.
if (failed(replaceAllMemRefUsesWith(oldMemRef, /*newMemRef=*/newAlloc,
/*extraIndices=*/{},
/*indexRemap=*/layoutMap,
/*extraOperands=*/{},
/*symbolOperands=*/symbolOperands,
/*domOpFilter=*/nullptr,
/*postDomOpFilter=*/nullptr,
/*allowNonDereferencingOps=*/true))) {
// If it failed (due to escapes for example), bail out.
newAlloc.erase();
return failure();
}
// Replace any uses of the original alloc op and erase it. All remaining uses
// have to be dealloc's; RAMUW above would've failed otherwise.
assert(llvm::all_of(oldMemRef.getUsers(), [&](Operation *op) {
return hasSingleEffect<MemoryEffects::Free>(op, oldMemRef);
}));
oldMemRef.replaceAllUsesWith(newAlloc);
allocOp->erase();
return success();
}
MemRefType mlir::affine::normalizeMemRefType(MemRefType memrefType) {
unsigned rank = memrefType.getRank();
if (rank == 0)
return memrefType;
if (memrefType.getLayout().isIdentity()) {
// Either no maps is associated with this memref or this memref has
// a trivial (identity) map.
return memrefType;
}
AffineMap layoutMap = memrefType.getLayout().getAffineMap();
unsigned numSymbolicOperands = layoutMap.getNumSymbols();
// We don't do any checks for one-to-one'ness; we assume that it is
// one-to-one.
// Normalize only static memrefs and dynamic memrefs with a tiled-layout map
// for now.
// TODO: Normalize the other types of dynamic memrefs.
SmallVector<std::tuple<AffineExpr, unsigned, unsigned>> tileSizePos;
(void)getTileSizePos(layoutMap, tileSizePos);
if (memrefType.getNumDynamicDims() > 0 && tileSizePos.empty())
return memrefType;
// We have a single map that is not an identity map. Create a new memref
// with the right shape and an identity layout map.
ArrayRef<int64_t> shape = memrefType.getShape();
// FlatAffineValueConstraint may later on use symbolicOperands.
FlatAffineValueConstraints fac(rank, numSymbolicOperands);
SmallVector<unsigned, 4> memrefTypeDynDims;
for (unsigned d = 0; d < rank; ++d) {
// Use constraint system only in static dimensions.
if (shape[d] > 0) {
fac.addBound(BoundType::LB, d, 0);
fac.addBound(BoundType::UB, d, shape[d] - 1);
} else {
memrefTypeDynDims.emplace_back(d);
}
}
// We compose this map with the original index (logical) space to derive
// the upper bounds for the new index space.
unsigned newRank = layoutMap.getNumResults();
if (failed(fac.composeMatchingMap(layoutMap)))
return memrefType;
// TODO: Handle semi-affine maps.
// Project out the old data dimensions.
fac.projectOut(newRank, fac.getNumVars() - newRank - fac.getNumLocalVars());
SmallVector<int64_t, 4> newShape(newRank);
MLIRContext *context = memrefType.getContext();
for (unsigned d = 0; d < newRank; ++d) {
// Check if this dimension is dynamic.
bool isDynDim =
isNormalizedMemRefDynamicDim(d, layoutMap, memrefTypeDynDims, context);
if (isDynDim) {
newShape[d] = ShapedType::kDynamic;
} else {
// The lower bound for the shape is always zero.
std::optional<int64_t> ubConst = fac.getConstantBound64(BoundType::UB, d);
// For a static memref and an affine map with no symbols, this is
// always bounded. However, when we have symbols, we may not be able to
// obtain a constant upper bound. Also, mapping to a negative space is
// invalid for normalization.
if (!ubConst.has_value() || *ubConst < 0) {
LLVM_DEBUG(llvm::dbgs()
<< "can't normalize map due to unknown/invalid upper bound");
return memrefType;
}
// If dimension of new memrefType is dynamic, the value is -1.
newShape[d] = *ubConst + 1;
}
}
// Create the new memref type after trivializing the old layout map.
MemRefType newMemRefType =
MemRefType::Builder(memrefType)
.setShape(newShape)
.setLayout(AffineMapAttr::get(
AffineMap::getMultiDimIdentityMap(newRank, context)));
return newMemRefType;
}
DivModValue mlir::affine::getDivMod(OpBuilder &b, Location loc, Value lhs,
Value rhs) {
DivModValue result;
AffineExpr d0, d1;
bindDims(b.getContext(), d0, d1);
result.quotient =
affine::makeComposedAffineApply(b, loc, d0.floorDiv(d1), {lhs, rhs});
result.remainder =
affine::makeComposedAffineApply(b, loc, d0 % d1, {lhs, rhs});
return result;
}
/// Create IR that computes the product of all elements in the set.
static FailureOr<OpFoldResult> getIndexProduct(OpBuilder &b, Location loc,
ArrayRef<Value> set) {
if (set.empty())
return failure();
OpFoldResult result = set[0];
AffineExpr s0, s1;
bindSymbols(b.getContext(), s0, s1);
for (unsigned i = 1, e = set.size(); i < e; i++)
result = makeComposedFoldedAffineApply(b, loc, s0 * s1, {result, set[i]});
return result;
}
FailureOr<SmallVector<Value>>
mlir::affine::delinearizeIndex(OpBuilder &b, Location loc, Value linearIndex,
ArrayRef<Value> basis) {
unsigned numDims = basis.size();
SmallVector<Value> divisors;
for (unsigned i = 1; i < numDims; i++) {
ArrayRef<Value> slice = basis.drop_front(i);
FailureOr<OpFoldResult> prod = getIndexProduct(b, loc, slice);
if (failed(prod))
return failure();
divisors.push_back(getValueOrCreateConstantIndexOp(b, loc, *prod));
}
SmallVector<Value> results;
results.reserve(divisors.size() + 1);
Value residual = linearIndex;
for (Value divisor : divisors) {
DivModValue divMod = getDivMod(b, loc, residual, divisor);
results.push_back(divMod.quotient);
residual = divMod.remainder;
}
results.push_back(residual);
return results;
}
|