File: GPUTransformOps.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1170 lines) | stat: -rw-r--r-- 47,056 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
//===- GPUTransformOps.cpp - Implementation of GPU transform ops ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"

#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.h"
#include "mlir/Dialect/GPU/TransformOps/Utils.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/DeviceMappingInterface.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/Dialect/Transform/IR/TransformDialect.h"
#include "mlir/Dialect/Transform/IR/TransformInterfaces.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/OpDefinition.h"
#include "mlir/IR/Visitors.h"
#include "mlir/Support/LLVM.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"

using namespace mlir;
using namespace mlir::gpu;
using namespace mlir::transform;
using namespace mlir::transform::gpu;

#define DEBUG_TYPE "gpu-transforms"
#define DEBUG_TYPE_ALIAS "gpu-transforms-alias"

#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
#define DBGS_ALIAS() (llvm::dbgs() << '[' << DEBUG_TYPE_ALIAS << "] ")

//===----------------------------------------------------------------------===//
// EliminateBarriersOp
//===----------------------------------------------------------------------===//

// The functions below provide interface-like verification, but are too specific
// to barrier elimination to become interfaces.

/// Implement the MemoryEffectsOpInterface in the suitable way.
static bool isKnownNoEffectsOpWithoutInterface(Operation *op) {
  // memref::AssumeAlignment is conceptually pure, but marking it as such would
  // make DCE immediately remove it.
  return isa<memref::AssumeAlignmentOp>(op);
}

/// Returns `true` if the op is defines the parallel region that is subject to
/// barrier synchronization.
static bool isParallelRegionBoundary(Operation *op) {
  if (op->hasAttr("__parallel_region_boundary_for_test"))
    return true;

  return isa<GPUFuncOp, LaunchOp>(op);
}

/// Returns `true` if the op behaves like a sequential loop, e.g., the control
/// flow "wraps around" from the end of the body region back to its start.
static bool isSequentialLoopLike(Operation *op) { return isa<scf::ForOp>(op); }

/// Returns `true` if the regions of the op are guaranteed to be executed at
/// most once. Thus, if an operation in one of the nested regions of `op` is
/// executed than so are all the other operations in this region.
static bool hasSingleExecutionBody(Operation *op) {
  return isa<scf::IfOp, memref::AllocaScopeOp>(op);
}

/// Returns `true` if the operation is known to produce a pointer-like object
/// distinct from any other object produced by a similar operation. For example,
/// an allocation produces such an object.
static bool producesDistinctBase(Operation *op) {
  return isa_and_nonnull<memref::AllocOp, memref::AllocaOp>(op);
}

/// Populates `effects` with all memory effects without associating them to a
/// specific value.
static void addAllValuelessEffects(
    SmallVectorImpl<MemoryEffects::EffectInstance> &effects) {
  effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Read>());
  effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Write>());
  effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Allocate>());
  effects.emplace_back(MemoryEffects::Effect::get<MemoryEffects::Free>());
}

/// Collect the memory effects of the given op in 'effects'. Returns 'true' if
/// it could extract the effect information from the op, otherwise returns
/// 'false' and conservatively populates the list with all possible effects
/// associated with no particular value or symbol.
static bool
collectEffects(Operation *op,
               SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
               bool ignoreBarriers = true) {
  // Skip over barriers to avoid infinite recursion (those barriers would ask
  // this barrier again).
  if (ignoreBarriers && isa<BarrierOp>(op))
    return true;

  // Skip over ops that we know have no effects.
  if (isKnownNoEffectsOpWithoutInterface(op))
    return true;

  // Collect effect instances the operation. Note that the implementation of
  // getEffects erases all effect instances that have the type other than the
  // template parameter so we collect them first in a local buffer and then
  // copy.
  if (auto iface = dyn_cast<MemoryEffectOpInterface>(op)) {
    SmallVector<MemoryEffects::EffectInstance> localEffects;
    iface.getEffects(localEffects);
    llvm::append_range(effects, localEffects);
    return true;
  }
  if (op->hasTrait<OpTrait::HasRecursiveMemoryEffects>()) {
    for (auto &region : op->getRegions()) {
      for (auto &block : region) {
        for (auto &innerOp : block)
          if (!collectEffects(&innerOp, effects, ignoreBarriers))
            return false;
      }
    }
    return true;
  }

  // We need to be conservative here in case the op doesn't have the interface
  // and assume it can have any possible effect.
  addAllValuelessEffects(effects);
  return false;
}

/// Collects memory effects from operations that may be executed before `op` in
/// a trivial structured control flow, e.g., without branches. Stops at the
/// parallel region boundary or at the barrier operation if `stopAtBarrier` is
/// set. Returns `true` if the memory effects added to `effects` are exact,
/// `false` if they are a conservative over-approximation. The latter means that
/// `effects` contain instances not associated with a specific value.
bool getEffectsBefore(Operation *op,
                      SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
                      bool stopAtBarrier) {
  if (!op->getBlock())
    return true;

  // If there is a non-structured control flow, bail.
  Region *region = op->getBlock()->getParent();
  if (region && !llvm::hasSingleElement(region->getBlocks())) {
    addAllValuelessEffects(effects);
    return false;
  }

  // Collect all effects before the op.
  if (op != &op->getBlock()->front()) {
    for (Operation *it = op->getPrevNode(); it != nullptr;
         it = it->getPrevNode()) {
      if (isa<BarrierOp>(it)) {
        if (stopAtBarrier)
          return true;
        else
          continue;
      }
      if (!collectEffects(it, effects))
        return false;
    }
  }

  // Stop if reached the parallel region boundary.
  if (isParallelRegionBoundary(op->getParentOp()))
    return true;

  // Otherwise, keep collecting above the parent operation.
  if (!getEffectsBefore(op->getParentOp(), effects, stopAtBarrier))
    return false;

  // If the op is loop-like, collect effects from the trailing operations until
  // we hit a barrier because they can executed before the current operation by
  // the previous iteration of this loop. For example, in the following loop
  //
  //   for i = ... {
  //     op1
  //     ...
  //     barrier
  //     op2
  //   }
  //
  // the operation `op2` at iteration `i` is known to be executed before the
  // operation `op1` at iteration `i+1` and the side effects must be ordered
  // appropriately.
  if (isSequentialLoopLike(op->getParentOp())) {
    // Assuming loop terminators have no side effects.
    return getEffectsBefore(op->getBlock()->getTerminator(), effects,
                            /*stopAtBarrier=*/true);
  }

  // If the parent operation is not guaranteed to execute its (single-block)
  // region once, walk the block.
  bool conservative = false;
  if (!hasSingleExecutionBody(op->getParentOp()))
    op->getParentOp()->walk([&](Operation *in) {
      if (conservative)
        return WalkResult::interrupt();
      if (!collectEffects(in, effects)) {
        conservative = true;
        return WalkResult::interrupt();
      }
      return WalkResult::advance();
    });

  return !conservative;
}

/// Collects memory effects from operations that may be executed after `op` in
/// a trivial structured control flow, e.g., without branches. Stops at the
/// parallel region boundary or at the barrier operation if `stopAtBarrier` is
/// set. Returns `true` if the memory effects added to `effects` are exact,
/// `false` if they are a conservative over-approximation. The latter means that
/// `effects` contain instances not associated with a specific value.
bool getEffectsAfter(Operation *op,
                     SmallVectorImpl<MemoryEffects::EffectInstance> &effects,
                     bool stopAtBarrier) {
  if (!op->getBlock())
    return true;

  // If there is a non-structured control flow, bail.
  Region *region = op->getBlock()->getParent();
  if (region && !llvm::hasSingleElement(region->getBlocks())) {
    addAllValuelessEffects(effects);
    return false;
  }

  // Collect all effects after the op.
  if (op != &op->getBlock()->back())
    for (Operation *it = op->getNextNode(); it != nullptr;
         it = it->getNextNode()) {
      if (isa<BarrierOp>(it)) {
        if (stopAtBarrier)
          return true;
        continue;
      }
      if (!collectEffects(it, effects))
        return false;
    }

  // Stop if reached the parallel region boundary.
  if (isParallelRegionBoundary(op->getParentOp()))
    return true;

  // Otherwise, keep collecting below the parent operation.
  if (!getEffectsAfter(op->getParentOp(), effects, stopAtBarrier))
    return false;

  // If the op is loop-like, collect effects from the leading operations until
  // we hit a barrier because they can executed after the current operation by
  // the next iteration of this loop. For example, in the following loop
  //
  //   for i = ... {
  //     op1
  //     ...
  //     barrier
  //     op2
  //   }
  //
  // the operation `op1` at iteration `i` is known to be executed after the
  // operation `op2` at iteration `i-1` and the side effects must be ordered
  // appropriately.
  if (isSequentialLoopLike(op->getParentOp())) {
    if (isa<BarrierOp>(op->getBlock()->front()))
      return true;

    bool exact = collectEffects(&op->getBlock()->front(), effects);
    return getEffectsAfter(&op->getBlock()->front(), effects,
                           /*stopAtBarrier=*/true) &&
           exact;
  }

  // If the parent operation is not guaranteed to execute its (single-block)
  // region once, walk the block.
  bool conservative = false;
  if (!hasSingleExecutionBody(op->getParentOp()))
    op->getParentOp()->walk([&](Operation *in) {
      if (conservative)
        return WalkResult::interrupt();
      if (!collectEffects(in, effects)) {
        conservative = true;
        return WalkResult::interrupt();
      }
      return WalkResult::advance();
    });

  return !conservative;
}

/// Looks through known "view-like" ops to find the base memref.
static Value getBase(Value v) {
  while (true) {
    Operation *definingOp = v.getDefiningOp();
    if (!definingOp)
      break;

    bool shouldContinue =
        TypeSwitch<Operation *, bool>(v.getDefiningOp())
            .Case<memref::CastOp, memref::SubViewOp, memref::ViewOp>(
                [&](auto op) {
                  v = op.getSource();
                  return true;
                })
            .Case<memref::TransposeOp>([&](auto op) {
              v = op.getIn();
              return true;
            })
            .Case<memref::CollapseShapeOp, memref::ExpandShapeOp>([&](auto op) {
              v = op.getSrc();
              return true;
            })
            .Default([](Operation *) { return false; });
    if (!shouldContinue)
      break;
  }
  return v;
}

/// Returns `true` if the value is defined as a function argument.
static bool isFunctionArgument(Value v) {
  auto arg = dyn_cast<BlockArgument>(v);
  return arg && isa<FunctionOpInterface>(arg.getOwner()->getParentOp());
}

/// Returns the operand that the operation "propagates" through it for capture
/// purposes. That is, if the value produced by this operation is captured, then
/// so is the returned value.
static Value propagatesCapture(Operation *op) {
  return llvm::TypeSwitch<Operation *, Value>(op)
      .Case(
          [](ViewLikeOpInterface viewLike) { return viewLike.getViewSource(); })
      .Case([](CastOpInterface castLike) { return castLike->getOperand(0); })
      .Case([](memref::TransposeOp transpose) { return transpose.getIn(); })
      .Case<memref::ExpandShapeOp, memref::CollapseShapeOp>(
          [](auto op) { return op.getSrc(); })
      .Default([](Operation *) { return Value(); });
}

/// Returns `true` if the given operation is known to capture the given value,
/// `false` if it is known not to capture the given value, `nullopt` if neither
/// is known.
static std::optional<bool> getKnownCapturingStatus(Operation *op, Value v) {
  return llvm::TypeSwitch<Operation *, std::optional<bool>>(op)
      // Store-like operations don't capture the destination, but do capture
      // the value.
      .Case<memref::StoreOp, vector::TransferWriteOp>(
          [&](auto op) { return op.getValue() == v; })
      .Case<vector::StoreOp, vector::MaskedStoreOp>(
          [&](auto op) { return op.getValueToStore() == v; })
      // These operations are known not to capture.
      .Case([](memref::DeallocOp) { return false; })
      // By default, we don't know anything.
      .Default([](Operation *) { return std::nullopt; });
}

/// Returns `true` if the value may be captured by any of its users, i.e., if
/// the user may be storing this value into memory. This makes aliasing analysis
/// more conservative as it cannot assume the pointer-like value is only passed
/// around through SSA use-def.
bool maybeCaptured(Value v) {
  SmallVector<Value> todo = {v};
  while (!todo.empty()) {
    Value v = todo.pop_back_val();
    for (Operation *user : v.getUsers()) {
      // A user that is known to only read cannot capture.
      auto iface = dyn_cast<MemoryEffectOpInterface>(user);
      if (iface) {
        SmallVector<MemoryEffects::EffectInstance> effects;
        iface.getEffects(effects);
        if (llvm::all_of(effects,
                         [](const MemoryEffects::EffectInstance &effect) {
                           return isa<MemoryEffects::Read>(effect.getEffect());
                         })) {
          continue;
        }
      }

      // When an operation is known to create an alias, consider if the
      // source is captured as well.
      if (Value v = propagatesCapture(user)) {
        todo.push_back(v);
        continue;
      }

      std::optional<bool> knownCaptureStatus = getKnownCapturingStatus(user, v);
      if (!knownCaptureStatus || *knownCaptureStatus)
        return true;
    }
  }

  return false;
}

/// Returns true if two values may be referencing aliasing memory. This is a
/// rather naive and conservative analysis. Values defined by different
/// allocation-like operations as well as values derived from those by casts and
/// views cannot alias each other. Similarly, values defined by allocations
/// inside a function cannot alias function arguments. Global values cannot
/// alias each other or local allocations. Values that are captured, i.e.
/// themselves potentially stored in memory, are considered as aliasing with
/// everything. This seems sufficient to achieve barrier removal in structured
/// control flow, more complex cases would require a proper dataflow analysis.
static bool mayAlias(Value first, Value second) {
  DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, {
    DBGS_ALIAS() << "checking aliasing between ";
    DBGS_ALIAS() << first << "\n";
    DBGS_ALIAS() << "                      and ";
    DBGS_ALIAS() << second << "\n";
  });

  first = getBase(first);
  second = getBase(second);

  DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, {
    DBGS_ALIAS() << "base ";
    DBGS_ALIAS() << first << "\n";
    DBGS_ALIAS() << " and ";
    DBGS_ALIAS() << second << "\n";
  });

  // Values derived from the same base memref do alias (unless we do a more
  // advanced analysis to prove non-overlapping accesses).
  if (first == second) {
    DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> do alias!\n");
    return true;
  }

  // Different globals cannot alias.
  if (auto globFirst = first.getDefiningOp<memref::GetGlobalOp>()) {
    if (auto globSecond = second.getDefiningOp<memref::GetGlobalOp>()) {
      return globFirst.getNameAttr() == globSecond.getNameAttr();
    }
  }

  // Two function arguments marked as noalias do not alias.
  auto isNoaliasFuncArgument = [](Value value) {
    auto bbArg = dyn_cast<BlockArgument>(value);
    if (!bbArg)
      return false;
    auto iface = dyn_cast<FunctionOpInterface>(bbArg.getOwner()->getParentOp());
    if (!iface)
      return false;
    // TODO: we need a way to not depend on the LLVM dialect here.
    return iface.getArgAttr(bbArg.getArgNumber(), "llvm.noalias") != nullptr;
  };
  if (isNoaliasFuncArgument(first) && isNoaliasFuncArgument(second))
    return false;

  bool isDistinct[] = {producesDistinctBase(first.getDefiningOp()),
                       producesDistinctBase(second.getDefiningOp())};
  bool isGlobal[] = {first.getDefiningOp<memref::GetGlobalOp>() != nullptr,
                     second.getDefiningOp<memref::GetGlobalOp>() != nullptr};

  // Non-equivalent distinct bases and globals cannot alias. At this point, we
  // have already filtered out based on values being equal and global name being
  // equal.
  if ((isDistinct[0] || isGlobal[0]) && (isDistinct[1] || isGlobal[1]))
    return false;

  bool isArg[] = {isFunctionArgument(first), isFunctionArgument(second)};

  // Distinct bases (allocations) cannot have been passed as an argument.
  if ((isDistinct[0] && isArg[1]) || (isDistinct[1] && isArg[0]))
    return false;

  // Non-captured base distinct values cannot conflict with another base value.
  if (isDistinct[0] && !maybeCaptured(first))
    return false;
  if (isDistinct[1] && !maybeCaptured(second))
    return false;

  // Otherwise, conservatively assume aliasing.
  DEBUG_WITH_TYPE(DEBUG_TYPE_ALIAS, DBGS_ALIAS() << "-> may alias!\n");
  return true;
}

/// Returns `true` if the effect may be affecting memory aliasing the value. If
/// the effect is not associated with any value, it is assumed to affect all
/// memory and therefore aliases with everything.
bool mayAlias(MemoryEffects::EffectInstance a, Value v2) {
  if (Value v = a.getValue()) {
    return mayAlias(v, v2);
  }
  return true;
}

/// Returns `true` if the two effects may be affecting aliasing memory. If
/// an effect is not associated with any value, it is assumed to affect all
/// memory and therefore aliases with everything. Effects on different resources
/// cannot alias.
bool mayAlias(MemoryEffects::EffectInstance a,
              MemoryEffects::EffectInstance b) {
  if (a.getResource()->getResourceID() != b.getResource()->getResourceID())
    return false;
  if (Value v2 = b.getValue()) {
    return mayAlias(a, v2);
  } else if (Value v = a.getValue()) {
    return mayAlias(b, v);
  }
  return true;
}

/// Returns `true` if any of the "before" effect instances has a conflict with
/// any "after" instance for the purpose of barrier elimination. The effects are
/// supposed to be limited to a barrier synchronization scope. A conflict exists
/// if effects instances affect aliasing memory locations and at least on of
/// then as a write. As an exception, if the non-write effect is an allocation
/// effect, there is no conflict since we are only expected to see the
/// allocation happening in the same thread and it cannot be accessed from
/// another thread without capture (which we do handle in alias analysis).
static bool
haveConflictingEffects(ArrayRef<MemoryEffects::EffectInstance> beforeEffects,
                       ArrayRef<MemoryEffects::EffectInstance> afterEffects) {
  for (const MemoryEffects::EffectInstance &before : beforeEffects) {
    for (const MemoryEffects::EffectInstance &after : afterEffects) {
      // If cannot alias, definitely no conflict.
      if (!mayAlias(before, after))
        continue;

      // Read/read is not a conflict.
      if (isa<MemoryEffects::Read>(before.getEffect()) &&
          isa<MemoryEffects::Read>(after.getEffect())) {
        continue;
      }

      // Allocate/* is not a conflict since the allocation happens within the
      // thread context.
      // TODO: This is not the case for */Free unless the allocation happened in
      // the thread context, which we could also check for.
      if (isa<MemoryEffects::Allocate>(before.getEffect()) ||
          isa<MemoryEffects::Allocate>(after.getEffect())) {
        continue;
      }

      // In the particular case that the before effect is a free, we only have 2
      // possibilities:
      //   1. either the program is well-formed and there must be an interleaved
      //      alloc that must limit the scope of effect lookback and we can
      //      safely ignore the free -> read / free -> write and free -> free
      //      conflicts.
      //   2. either the program is ill-formed and we are in undefined behavior
      //      territory.
      if (isa<MemoryEffects::Free>(before.getEffect()))
        continue;

      // Other kinds of effects create a conflict, e.g. read-after-write.
      LLVM_DEBUG(
          DBGS() << "found a conflict between (before): " << before.getValue()
                 << " read:" << isa<MemoryEffects::Read>(before.getEffect())
                 << " write:" << isa<MemoryEffects::Write>(before.getEffect())
                 << " alloc:"
                 << isa<MemoryEffects::Allocate>(before.getEffect()) << " free:"
                 << isa<MemoryEffects::Free>(before.getEffect()) << "\n");
      LLVM_DEBUG(
          DBGS() << "and (after):                " << after.getValue()
                 << " read:" << isa<MemoryEffects::Read>(after.getEffect())
                 << " write:" << isa<MemoryEffects::Write>(after.getEffect())
                 << " alloc:" << isa<MemoryEffects::Allocate>(after.getEffect())
                 << " free:" << isa<MemoryEffects::Free>(after.getEffect())
                 << "\n");
      return true;
    }
  }

  return false;
}

namespace {
/// Barrier elimination pattern. If a barrier does not enforce any conflicting
/// pair of memory effects, including a pair that is enforced by another
/// barrier, it is unnecessary and can be removed. Adapted from
/// "High-Performance GPU-to-CPU Transpilation and Optimization via High-Level
/// Parallel Constructs" by Moses, Ivanov, Domke, Endo, Doerfert, and Zinenko in
/// PPoPP 2023 and implementation in Polygeist.
class BarrierElimination final : public OpRewritePattern<BarrierOp> {
public:
  using OpRewritePattern<BarrierOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(BarrierOp barrier,
                                PatternRewriter &rewriter) const override {
    LLVM_DEBUG(DBGS() << "checking the necessity of: " << barrier << " "
                      << barrier.getLoc() << "\n");

    SmallVector<MemoryEffects::EffectInstance> beforeEffects;
    getEffectsBefore(barrier, beforeEffects, /*stopAtBarrier=*/true);

    SmallVector<MemoryEffects::EffectInstance> afterEffects;
    getEffectsAfter(barrier, afterEffects, /*stopAtBarrier=*/true);

    if (!haveConflictingEffects(beforeEffects, afterEffects)) {
      LLVM_DEBUG(DBGS() << "the surrounding barriers are sufficient, removing "
                        << barrier << "\n");
      rewriter.eraseOp(barrier);
      return success();
    }

    LLVM_DEBUG(DBGS() << "barrier is necessary: " << barrier << " "
                      << barrier.getLoc() << "\n");
    return failure();
  }
};
} // namespace

void EliminateBarriersOp::populatePatterns(RewritePatternSet &patterns) {
  patterns.insert<BarrierElimination>(getContext());
}

//===----------------------------------------------------------------------===//
// Block and thread mapping utilities.
//===----------------------------------------------------------------------===//

static DiagnosedSilenceableFailure
definiteFailureHelper(std::optional<TransformOpInterface> transformOp,
                      Operation *target, const Twine &message) {
  if (transformOp.has_value())
    return transformOp->emitDefiniteFailure() << message;
  return emitDefiniteFailure(target, message);
}

/// Check if given mapping attributes are one of the desired attributes
static DiagnosedSilenceableFailure
checkMappingAttributeTypes(std::optional<TransformOpInterface> transformOp,
                           scf::ForallOp forallOp) {
  if (!forallOp.getMapping().has_value())
    return definiteFailureHelper(transformOp, forallOp,
                                 "mapping must be present");

  bool hasBlockMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUBlockMappingAttr>(attr);
      });
  bool hasThreadMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUThreadMappingAttr>(attr);
      });
  bool hasWarpMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPUWarpMappingAttr>(attr);
      });
  bool hasLinearMapping =
      llvm::any_of(forallOp.getMapping().value(), [](Attribute attr) {
        return isa<GPULinearIdMappingAttr>(attr);
      });
  int64_t countMappingTypes = 0;
  countMappingTypes += hasBlockMapping ? 1 : 0;
  countMappingTypes += hasThreadMapping ? 1 : 0;
  countMappingTypes += hasWarpMapping ? 1 : 0;
  countMappingTypes += hasLinearMapping ? 1 : 0;
  if (countMappingTypes > 1) {
    return definiteFailureHelper(
        transformOp, forallOp,
        "cannot mix different mapping types, use nesting");
  }

  DenseSet<Attribute> seen;
  for (Attribute map : forallOp.getMapping()->getValue()) {
    if (seen.contains(map)) {
      return definiteFailureHelper(
          transformOp, forallOp,
          "duplicated attribute, cannot map different loops "
          "to the same processor");
    }
    seen.insert(map);
  }

  return DiagnosedSilenceableFailure::success();
}

static DiagnosedSilenceableFailure
verifyGpuMapping(std::optional<TransformOpInterface> transformOp,
                 scf::ForallOp forallOp) {
  // Check the types of the mapping attributes match.
  DiagnosedSilenceableFailure typeRes =
      checkMappingAttributeTypes(transformOp, forallOp);
  if (!typeRes.succeeded())
    return typeRes;

  // Perform other non-types verifications.
  if (!forallOp.isNormalized())
    return definiteFailureHelper(transformOp, forallOp,
                                 "unsupported non-normalized loops");
  if (forallOp.getNumResults() > 0)
    return definiteFailureHelper(transformOp, forallOp,
                                 "only bufferized scf.forall can be mapped");
  if (forallOp.getRank() > 3)
    return definiteFailureHelper(transformOp, forallOp,
                                 "scf.forall with rank > 3 does not lower");
  if (llvm::any_of(forallOp.getMixedUpperBound(), [&](OpFoldResult ofr) {
        return !getConstantIntValue(ofr).has_value();
      })) {
    return definiteFailureHelper(transformOp, forallOp,
                                 "unsupported dynamic sizes in forall op");
  }
  return DiagnosedSilenceableFailure::success();
}

/// Struct to return the result of the rewrite of a forall operation.
struct ForallRewriteResult {
  SmallVector<int64_t> mappingSizes;
  SmallVector<Value> mappingIds;
};

/// Helper to replace ids of dimensions known to be 1 by 0 to simplify the IR.
template <typename OpTy, typename OperationOrBlock>
static void
replaceUnitMappingIdsHelper(RewriterBase &rewriter, Location loc,
                            OperationOrBlock *parent, Value replacement,
                            ArrayRef<int64_t> availableMappingSizes) {
  parent->walk([&](OpTy idOp) {
    if (availableMappingSizes[static_cast<int64_t>(idOp.getDimension())] == 1)
      rewriter.replaceAllUsesWith(idOp.getResult(), replacement);
  });
}

static DiagnosedSilenceableFailure rewriteOneForallCommonImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    scf::ForallOp forallOp, ForallRewriteResult &result,
    ArrayRef<int64_t> availableMappingSizes, const GpuIdBuilder &gpuIdBuilder) {
  LDBG("--start rewriteOneForallCommonImpl");

  // Step 0. GPU-specific verifications. There is no better place to anchor
  // those right now: the ForallOp is target-independent and the transform
  // op does not apply to individual ForallOp.
  DiagnosedSilenceableFailure diag = verifyGpuMapping(transformOp, forallOp);
  if (!diag.succeeded())
    return diag;

  // Step 1. Complete the mapping to a full mapping (with 1s) if necessary.
  SmallVector<int64_t> tmpMappingSizes = llvm::to_vector(
      llvm::map_range(forallOp.getMixedUpperBound(), [](OpFoldResult ofr) {
        auto maybeStaticValue = getConstantIntValue(ofr);
        assert(maybeStaticValue && "expected static value");
        return maybeStaticValue.value();
      }));
  SmallVector<Attribute> forallMappingAttrs =
      llvm::to_vector(forallOp.getMapping()->getValue());
  for (auto attr : gpuIdBuilder.mappingAttributes) {
    if (llvm::is_contained(forallMappingAttrs, attr))
      continue;
    forallMappingAttrs.push_back(attr);
    tmpMappingSizes.push_back(1);
  }
  LLVM_DEBUG(
      llvm::interleaveComma(
          tmpMappingSizes,
          DBGS() << "----tmpMappingSizes extracted from scf.forall op: ");
      llvm::dbgs() << "\n");

  // Step 2. sort the values by the corresponding DeviceMappingAttrInterface.
  auto comparator = [&](Attribute a, Attribute b) -> bool {
    return cast<DeviceMappingAttrInterface>(a).getMappingId() <
           cast<DeviceMappingAttrInterface>(b).getMappingId();
  };
  SmallVector<int64_t> forallMappingSizes =
      getValuesSortedByKey(forallMappingAttrs, tmpMappingSizes, comparator);
  LLVM_DEBUG(llvm::interleaveComma(forallMappingSizes,
                                   DBGS() << "----forallMappingSizes: ");
             llvm::dbgs() << "\n"; llvm::interleaveComma(
                 forallMappingAttrs, DBGS() << "----mappingAttrs: ");
             llvm::dbgs() << "\n");

  // Step 3. Generate the mappingIdOps using the provided generator.
  Location loc = forallOp.getLoc();
  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPoint(forallOp);
  IdBuilderResult builderResult =
      gpuIdBuilder.idBuilder(rewriter, loc, forallMappingSizes);

  // Step 4. Map the induction variables to the mappingIdOps, this may involve a
  // permutation.
  SmallVector<Value> mappingIdOps = builderResult.mappingIdOps;
  IRMapping bvm;
  for (auto [iv, dim] :
       llvm::zip_equal(forallOp.getInductionVars(),
                       ArrayRef<Attribute>{forallMappingAttrs}.take_front(
                           forallOp.getInductionVars().size()))) {
    Value peIdOp = mappingIdOps[static_cast<int64_t>(
        cast<DeviceMappingAttrInterface>(dim).getMappingId())];
    bvm.map(iv, peIdOp);
  }

  // Step 5. If the availableMappingSizes are already known, create conditionals
  // to predicate the region. Otherwise, the current forall determines the
  // availableMappingSizes and no predication occurs.
  Value predicate;
  if (!availableMappingSizes.empty()) {
    SmallVector<int64_t> predicateMappingSizes =
        builderResult.predicateMappingSizes;
    SmallVector<Value> predicateIdOps = builderResult.predicateIdOps;
    // clang-format off
    LLVM_DEBUG(
        llvm::interleaveComma(
          predicateMappingSizes, DBGS() << "----predicateMappingSizes: ");
        llvm::dbgs() << "\n"; 
        llvm::interleaveComma(
          availableMappingSizes, DBGS() << "----availableMappingSizes: ");
        llvm::dbgs() << "\n";
        llvm::interleaveComma(predicateIdOps, DBGS() << "----predicateIdOps: ");
        llvm::dbgs() << "\n");
    // clang-format on
    for (auto [id, mappingSize, availableMappingSize] : llvm::zip_equal(
             predicateIdOps, predicateMappingSizes, availableMappingSizes)) {
      if (mappingSize > availableMappingSize) {
        return definiteFailureHelper(
            transformOp, forallOp,
            "Trying to map to fewer GPU threads than loop iterations but "
            "overprovisioning is not yet supported. "
            "Try additional tiling of the before mapping or map to more "
            "threads.");
      }
      if (mappingSize == availableMappingSize)
        continue;
      Value idx = rewriter.create<arith::ConstantIndexOp>(loc, mappingSize);
      Value tmpPredicate = rewriter.create<arith::CmpIOp>(
          loc, arith::CmpIPredicate::ult, id, idx);
      LDBG("----predicate: " << tmpPredicate);
      predicate = predicate ? rewriter.create<arith::AndIOp>(loc, predicate,
                                                             tmpPredicate)
                            : tmpPredicate;
    }
  }

  // Step 6. Move the body of forallOp.
  // Erase the terminator first, it will not be used.
  rewriter.eraseOp(forallOp.getTerminator());
  Block *targetBlock;
  Block::iterator insertionPoint;
  if (predicate) {
    // Step 6.a. If predicated, move at the beginning.
    auto ifOp = rewriter.create<scf::IfOp>(loc, predicate,
                                           /*withElseRegion=*/false);
    targetBlock = ifOp.thenBlock();
    insertionPoint = ifOp.thenBlock()->begin();
  } else {
    // Step 6.b. Otherwise, move inline just at the rewriter insertion
    // point.
    targetBlock = forallOp->getBlock();
    insertionPoint = rewriter.getInsertionPoint();
  }
  Block &sourceBlock = forallOp.getRegion().front();
  targetBlock->getOperations().splice(insertionPoint,
                                      sourceBlock.getOperations());

  // Step 7. RAUW indices.
  for (Value loopIndex : forallOp.getInductionVars()) {
    Value threadIdx = bvm.lookup(loopIndex);
    rewriter.replaceAllUsesWith(loopIndex, threadIdx);
  }

  // Step 8. Erase old op.
  rewriter.eraseOp(forallOp);

  result = ForallRewriteResult{forallMappingSizes, mappingIdOps};
  return DiagnosedSilenceableFailure::success();
}

//===----------------------------------------------------------------------===//
// MapForallToBlocks
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure mlir::transform::gpu::mapForallToBlocksImpl(
    RewriterBase &rewriter, TransformOpInterface transformOp,
    scf::ForallOp forallOp, SmallVectorImpl<int64_t> &gridDims,
    const GpuIdBuilder &gpuIdBuilder) {
  LDBG("Start mapForallToBlocksImpl");

  Location loc = forallOp.getLoc();
  Block *parentBlock = forallOp->getBlock();
  Value zero;
  {
    // Create an early zero index value for replacements and immediately reset
    // the insertion point.
    OpBuilder::InsertionGuard guard(rewriter);
    rewriter.setInsertionPointToStart(parentBlock);
    zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  }

  SmallVector<int64_t> anyAvailableMappingSizes;
  ForallRewriteResult rewriteResult;
  // Pass an empty anyAvailableMappingSizes.
  DiagnosedSilenceableFailure diag =
      rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult,
                                 anyAvailableMappingSizes, gpuIdBuilder);

  // Return if anything goes wrong, use silenceable failure as a match failure.
  if (!diag.succeeded())
    return diag;

  // Set the gridDims that act as a return.
  gridDims = rewriteResult.mappingSizes;

  // Replace ids of dimensions known to be 1 by 0 to simplify the IR.
  // Here, the result of mapping determines the available mapping sizes.
  replaceUnitMappingIdsHelper<BlockDimOp>(rewriter, loc, parentBlock, zero,
                                          gridDims);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure transform::MapForallToBlocks::applyToOne(
    transform::TransformRewriter &rewriter, Operation *target,
    ApplyToEachResultList &results, transform::TransformState &state) {
  LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
  auto transformOp = cast<TransformOpInterface>(getOperation());

  if (!getGenerateGpuLaunch() && !gpuLaunch) {
    DiagnosedSilenceableFailure diag =
        emitSilenceableError()
        << "Given target is not gpu.launch, set `generate_gpu_launch` "
           "attribute";
    diag.attachNote(target->getLoc()) << "when applied to this payload op";
    return diag;
  }

  scf::ForallOp topLevelForallOp;
  DiagnosedSilenceableFailure diag = mlir::transform::gpu::findTopLevelForallOp(
      target, topLevelForallOp, transformOp);
  if (!diag.succeeded()) {
    diag.attachNote(target->getLoc()) << "when applied to this payload op";
    return diag;
  }

  SmallVector<int64_t> gridDims{getGridDims()};
  if (!getGenerateGpuLaunch() && gridDims.size() != 3)
    return transformOp.emitDefiniteFailure("transform require size-3 mapping");

  OpBuilder::InsertionGuard guard(rewriter);
  rewriter.setInsertionPoint(topLevelForallOp);

  // Generate gpu launch here and move the forall inside
  if (getGenerateGpuLaunch()) {
    DiagnosedSilenceableFailure diag =
        createGpuLaunch(rewriter, target->getLoc(), transformOp, gpuLaunch);
    if (!diag.succeeded()) {
      return diag;
    }
    rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
    Operation *newForallOp = rewriter.clone(*topLevelForallOp);
    rewriter.eraseOp(topLevelForallOp);
    topLevelForallOp = cast<scf::ForallOp>(newForallOp);
  }

  GpuBlockIdBuilder gpuBlockIdBuilder(getContext(), {}, {});
  diag = mlir::transform::gpu::mapForallToBlocksImpl(
      rewriter, transformOp, topLevelForallOp, gridDims, gpuBlockIdBuilder);
  if (!diag.succeeded())
    return diag;

  // Set the GPU launch configuration for the grid dims late, this is subject to
  // IR inspection.
  diag = alterGpuLaunch(rewriter, gpuLaunch,
                        cast<TransformOpInterface>(getOperation()), gridDims[0],
                        gridDims[1], gridDims[2]);

  results.push_back(gpuLaunch);
  return diag;
}

//===----------------------------------------------------------------------===//
// MapNestedForallToThreads
//===----------------------------------------------------------------------===//

DiagnosedSilenceableFailure mlir::transform::gpu::mapOneForallToThreadsImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    scf::ForallOp forallOp, ArrayRef<int64_t> availableMappingSizes,
    bool syncAfterDistribute, const GpuIdBuilder &gpuIdBuilder) {
  // Ignore cases with different attributes than this builder supports.
  for (Attribute map : forallOp.getMapping()->getValue()) {
    if (!llvm::is_contained(gpuIdBuilder.mappingAttributes, map)) {
      LDBG("--skip " << map);
      LLVM_DEBUG(llvm::interleaveComma(gpuIdBuilder.mappingAttributes,
                                       DBGS() << "----not in: ");
                 llvm::dbgs() << "\n";);
      return emitSilenceableFailure(forallOp);
    }
  }

  Location loc = forallOp.getLoc();
  OpBuilder::InsertionGuard g(rewriter);
  // Insert after to allow for syncthreads after `forall` is erased.
  rewriter.setInsertionPointAfter(forallOp);
  ForallRewriteResult rewriteResult;
  DiagnosedSilenceableFailure diag =
      rewriteOneForallCommonImpl(rewriter, transformOp, forallOp, rewriteResult,
                                 availableMappingSizes, gpuIdBuilder);

  // Return if anything goes wrong, use silenceable failure as a match failure.
  if (!diag.succeeded())
    return diag;

  // Add a syncthreads if needed. TODO: warpsync
  if (syncAfterDistribute)
    rewriter.create<BarrierOp>(loc);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure mlir::transform::gpu::mapNestedForallToThreadsImpl(
    RewriterBase &rewriter, std::optional<TransformOpInterface> transformOp,
    Operation *target, ArrayRef<int64_t> blockDims, ArrayRef<int64_t> warpDims,
    bool syncAfterDistribute) {
  LDBG("Start mapNestedForallToThreadsImpl");
  MLIRContext *ctx = rewriter.getContext();
  SmallVector<OpFoldResult> blockDimsOfr =
      getAsIndexOpFoldResult(ctx, blockDims);

  if (blockDims.size() != 3)
    return definiteFailureHelper(transformOp, target,
                                 "requires size-3 thread mapping");
  if (!warpDims.empty()) {
    if (warpDims.size() != 3)
      return definiteFailureHelper(transformOp, target,
                                   "requires empty or size-3 warp mapping");
  }

  // Create an early zero index value for replacements.
  Location loc = target->getLoc();
  Value zero = rewriter.create<arith::ConstantIndexOp>(loc, 0);
  DiagnosedSilenceableFailure diag = DiagnosedSilenceableFailure::success();
  WalkResult walkResult = target->walk([&](scf::ForallOp forallOp) {
    //===--------------------------------------------------------------------===//
    // Mapping to warp ids.
    //===--------------------------------------------------------------------===//
    if (!warpDims.empty()) {
      LLVM_DEBUG(
          llvm::interleaveComma(
              warpDims, DBGS() << "+mapNestedForallToThreadsImpl warpDims: ");
          llvm::dbgs() << "\n");
      LLVM_DEBUG(llvm::interleaveComma(
                     blockDimsOfr, DBGS() << "--warpDims with blockDimsOfr:  ");
                 llvm::dbgs() << "\n");
      GpuWarpIdBuilder gpuWarpIdBuilder(ctx, blockDimsOfr, warpDims);
      diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
          rewriter, transformOp, forallOp, warpDims, syncAfterDistribute,
          gpuWarpIdBuilder);
      // Use silenceable failure to encode "failure to match" and pass
      // through.
      if (diag.isDefiniteFailure())
        return WalkResult::interrupt();
      if (diag.succeeded())
        return WalkResult::skip();
    }

    //===--------------------------------------------------------------------===//
    // Mapping to linear ids.
    //===--------------------------------------------------------------------===//
    LDBG("+mapNestedForallToThreadsImpl linearDims");
    LLVM_DEBUG(llvm::interleaveComma(
                   blockDimsOfr, DBGS() << "--linearDims with blockDimsOfr:  ");
               llvm::dbgs() << "\n");
    int64_t numThreads = 1;
    for (int64_t b : blockDims)
      numThreads *= b;
    GpuLinearIdBuilder gpuLinearIdBuilder(ctx, blockDimsOfr, numThreads);
    diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
        rewriter, transformOp, forallOp, numThreads, syncAfterDistribute,
        gpuLinearIdBuilder);
    // Use silenceable failure to encode "failure to match" and pass through.
    if (diag.isDefiniteFailure())
      return WalkResult::interrupt();
    if (diag.succeeded())
      return WalkResult::skip();

    //===--------------------------------------------------------------------===//
    // Mapping to block ids (happens last so we can replay ThreadIdOp).
    //===--------------------------------------------------------------------===//
    LLVM_DEBUG(
        llvm::interleaveComma(
            blockDimsOfr, DBGS() << "mapNestedForallToThreadsImpl blockDims: ");
        llvm::dbgs() << "\n");
    GpuThreadIdBuilder gpuThreadIdBuilder(ctx, blockDimsOfr, blockDims);
    diag = mlir::transform::gpu::mapOneForallToThreadsImpl(
        rewriter, transformOp, forallOp, blockDims, syncAfterDistribute,
        gpuThreadIdBuilder);
    // Use silenceable failure to encode "failure to match" and pass through.
    if (diag.isDefiniteFailure())
      return WalkResult::interrupt();

    return WalkResult::advance();
  });
  if (walkResult.wasInterrupted())
    return diag;

  // Replace ids of dimensions known to be 1 by 0 to simplify the IR.
  // Here, the result of mapping determines the available mapping sizes.
  replaceUnitMappingIdsHelper<ThreadIdOp>(rewriter, loc, target, zero,
                                          blockDims);

  return DiagnosedSilenceableFailure::success();
}

DiagnosedSilenceableFailure transform::MapNestedForallToThreads::applyToOne(
    transform::TransformRewriter &rewriter, Operation *target,
    ApplyToEachResultList &results, TransformState &state) {
  LaunchOp gpuLaunch = dyn_cast<LaunchOp>(target);
  auto transformOp = cast<TransformOpInterface>(getOperation());

  // Basic high-level verifications.
  if (!gpuLaunch)
    return emitSilenceableError() << "Given target is not a gpu.launch";

  // Mapping to block ids.
  SmallVector<int64_t> blockDims{getBlockDims()};

  DiagnosedSilenceableFailure diag =
      checkGpuLimits(transformOp, std::nullopt, std::nullopt, std::nullopt,
                     blockDims[0], blockDims[1], blockDims[2]);
  if (diag.isSilenceableFailure()) {
    diag.attachNote(getLoc()) << getBlockDimsAttrName() << " is too large";
    return diag;
  }

  // Set the GPU launch configuration for the block dims early, this is not
  // subject to IR inspection.
  diag = alterGpuLaunch(rewriter, gpuLaunch, transformOp, std::nullopt,
                        std::nullopt, std::nullopt, blockDims[0], blockDims[1],
                        blockDims[2]);

  rewriter.setInsertionPointToStart(&gpuLaunch.getBody().front());
  diag =
      mapNestedForallToThreadsImpl(rewriter, transformOp, gpuLaunch, blockDims,
                                   getWarpDims(), getSyncAfterDistribute());

  results.push_back(gpuLaunch.getOperation());
  return diag;
}

//===----------------------------------------------------------------------===//
// Transform op registration
//===----------------------------------------------------------------------===//

namespace {
/// Registers new ops and declares PDL as dependent dialect since the
/// additional ops are using PDL types for operands and results.
class GPUTransformDialectExtension
    : public transform::TransformDialectExtension<
          GPUTransformDialectExtension> {
public:
  GPUTransformDialectExtension() {
    declareGeneratedDialect<scf::SCFDialect>();
    declareGeneratedDialect<arith::ArithDialect>();
    declareGeneratedDialect<GPUDialect>();
    registerTransformOps<
#define GET_OP_LIST
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"
        >();
  }
};
} // namespace

#define GET_OP_CLASSES
#include "mlir/Dialect/GPU/TransformOps/GPUTransformOps.cpp.inc"

void mlir::gpu::registerTransformDialectExtension(DialectRegistry &registry) {
  registry.addExtensions<GPUTransformDialectExtension>();
}