File: NVGPUDialect.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (382 lines) | stat: -rw-r--r-- 15,227 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
//===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the NVGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Verifier.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"

using namespace mlir;
using namespace mlir::nvgpu;

#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"

void nvgpu::NVGPUDialect::initialize() {
  addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
      >();
  addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
      >();
  addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
      >();
}

bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
  if (!memorySpace)
    return false;
  if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
    return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
  if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
    return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
  return false;
}

bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
  Attribute memorySpace = type.getMemorySpace();
  return isSharedMemoryAddressSpace(memorySpace);
}

//===----------------------------------------------------------------------===//
// NVGPU_DeviceAsyncCopyOp
//===----------------------------------------------------------------------===//

LogicalResult DeviceAsyncCopyOp::verify() {
  auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
  auto dstMemref = llvm::cast<MemRefType>(getDst().getType());

  if (!isLastMemrefDimUnitStride(srcMemref))
    return emitError("source memref most minor dim must have unit stride");
  if (!isLastMemrefDimUnitStride(dstMemref))
    return emitError("destination memref most minor dim must have unit stride");
  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
    return emitError()
           << "destination memref must have a memory space attribute of "
              "IntegerAttr("
           << NVGPUDialect::kSharedMemoryAddressSpace
           << ") or gpu::AddressSpaceAttr(Workgroup)";
  if (dstMemref.getElementType() != srcMemref.getElementType())
    return emitError("source and destination must have the same element type");
  if (size_t(srcMemref.getRank()) != getSrcIndices().size())
    return emitOpError() << "expected " << srcMemref.getRank()
                         << " source indices, got " << getSrcIndices().size();
  if (size_t(dstMemref.getRank()) != getDstIndices().size())
    return emitOpError() << "expected " << dstMemref.getRank()
                         << " destination indices, got "
                         << getDstIndices().size();
  int64_t dstElements = getDstElements().getZExtValue();
  int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
  if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
    unsigned dstWidth = dstMemref.getElementTypeBitWidth();
    InFlightDiagnostic diag = emitError();
    diag << "Requested copy elements is " << dstElements << " with width "
         << dstMemref.getElementTypeBitWidth()
         << ". But copy elements could be one of ";
    if ((32 / dstWidth) > 0)
      diag << (32 / dstWidth) << ", ";
    if ((64 / dstWidth) > 0)
      diag << (64 / dstWidth) << ", ";
    if ((128 / dstWidth) > 0)
      diag << (128 / dstWidth) << ".";
    return diag;
  }
  if (getBypassL1().has_value()) {
    int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
    if (getBypassL1().value() && sizeInBytes != 16) {
      return emitOpError() << "bypassL1 does not satify alignment for "
                           << dstMemref << " with destination element "
                           << dstElements
                           << ". Unset bypassL1, or set "
                              "destination element to "
                           << req;
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// NVGPU_MmaSyncOp
//===----------------------------------------------------------------------===//
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
                      ::mlir::OperationState &odsState, Value matrixA,
                      Value matrixB, Value matrixC, ArrayAttr mmaShape) {
  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
        mmaShape, UnitAttr());
}

void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
                      ::mlir::OperationState &odsState, Value matrixA,
                      Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
                      bool tf32Enabled) {
  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
        odsBuilder.getI64ArrayAttr(mmaShape),
        tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
}

/// Performs verification for MmaSyncOp and MmaSparseSyncOp.
static LogicalResult verifyMmaSyncOp(Operation *op,
                                     TypedValue<VectorType> matrixA,
                                     TypedValue<VectorType> matrixB,
                                     TypedValue<VectorType> matrixC,
                                     const std::array<int64_t, 3> &mmaShape,
                                     bool tf32Enabled, bool sparse = false) {

  // The verification for mma.sync covering various shapes and data types is
  // based on the fundamental tensor core shape.

  // "Fundamental" tensor core shapes:
  //  - For F32 (TF32), F16, S8, and S4 data
  //    types the fundamental tensor core operation is of shape 8-by-8-by-128b.
  //  - F64 is an exception and is of shape 8-by-8-by-256b.
  constexpr int kThreads = 32; // 32 threads per warp
  int64_t shapeM = 8;
  int64_t shapeN = 8;
  int64_t shapeK; // set based on data type (128b for all data types except F64)

  // Number of elements A, B, and C per thread per fundamental tensor core tile
  int64_t numElementA;    // set based on data type (32b except F64)
  int64_t numElementB;    // set based on data type (32b except F64)
  int64_t numElementC{2}; // two accumulator elements per fundamental tile

  // nvgpu.mma.sync vector operands (per thread)
  auto aVector = matrixA.getType();
  auto bVector = matrixB.getType();
  auto cVector = matrixC.getType();

  // vector shapes
  ArrayRef<int64_t> aShape = aVector.getShape();
  ArrayRef<int64_t> bShape = bVector.getShape();
  ArrayRef<int64_t> cShape = cVector.getShape();

  // vector element type
  Type aType = aVector.getElementType();

  // Certain data types are not allowed in sparse mode.
  if (sparse && aType.isF64())
    return op->emitError() << "f64 is not supported for sparse mode";

  if (aType.isF64()) {
    // exception to 8-by-8-128b fundamental tensor core tile size
    shapeK = 4;
    numElementA = 1;
    numElementB = 1;
  } else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
             aType.isInteger(8) || aType.isInteger(4)) {
    // 8-by-8-128b fundamental tensor core tile size
    int operandBitwidth = aType.getIntOrFloatBitWidth();
    shapeK = 128 / operandBitwidth; // 128b wide shapeK

    numElementA = 32 / operandBitwidth; // 32b wide operand A
    numElementB = 32 / operandBitwidth; // 32b wide operand B
  } else {
    return op->emitError()
           << "expected input data type (i4,i8,f16,bf16,tf32,f64) "
              "supported by "
           << op->getName();
  }

  //
  // Basic verification
  //

  auto [m, n, k] = mmaShape;

  // verify warp-wide size for vector a
  int64_t sparseFactor = sparse ? 2 : 1;
  if (aShape[0] * aShape[1] * kThreads != m * k / sparseFactor)
    return op->emitOpError()
           << "expected " << m * k << " warp-wide matrix A elements";

  // verify warp-wide size for vector b
  if (bShape[0] * bShape[1] * kThreads != k * n)
    return op->emitOpError()
           << "expected " << k * n << " warp-wide matrix B elements";

  // verify warp-wide size for vector c
  if (cShape[0] * cShape[1] * kThreads != m * n)
    return op->emitOpError()
           << "expected " << m * n << " warp-wide matrix C elements";

  // verify tf32 tensor cores are enabled for only F32 datatype
  if (tf32Enabled && !(aType.isF32()))
    return op->emitOpError()
           << "expected tf32 tensor cores only for F32 operands";

  //
  // Extended verification
  //

  // tiles of fundamental tensor core operations
  int64_t mTile = m / shapeM;
  int64_t nTile = n / shapeN;
  int64_t kTile = k / shapeK;

  // verify shape of aVector
  if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
      (aShape[1] != numElementA))
    return op->emitOpError() << "expected matrix A to be shaped ("
                             << mTile * kTile << " x " << numElementA << ")";

  // verify shape of bVector
  if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
    return op->emitOpError() << "expected matrix B to be shaped ("
                             << kTile * nTile << " x " << numElementB << ")";

  // verify shape of cVector
  if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
    return op->emitOpError() << "expected matrix C to be shaped ("
                             << mTile * nTile << " x " << numElementC << ")";

  return success();
}

LogicalResult MmaSyncOp::verify() {
  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
                         getMatrixC(), getMmaShapeAsArray(),
                         getOperation()->hasAttr(getTf32EnabledAttrName()));
}

//===----------------------------------------------------------------------===//
// NVGPU_MmaSparseSyncOp
//===----------------------------------------------------------------------===//
void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
                            ::mlir::OperationState &odsState, Value matrixA,
                            Value matrixB, Value matrixC, Value sparseMetadata,
                            ArrayRef<int64_t> mmaShape) {
  build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
        sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
}

LogicalResult MmaSparseSyncOp::verify() {
  unsigned sparsitySelector = getSparsitySelector();
  if (sparsitySelector > 1)
    return emitOpError() << "sparsity selector should be 0 or 1";
  return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
                         getMatrixC(), getMmaShapeAsArray(),
                         getOperation()->hasAttr(getTf32EnabledAttrName()),
                         true);
}

//===----------------------------------------------------------------------===//
// NVGPU_LdMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult LdMatrixOp::verify() {

  // ldmatrix reads data from source in shared memory
  auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());

  // ldmatrix writes data to result/destination in vector registers
  auto resVector = llvm::cast<VectorType>(getRes().getType());

  // vector register shape, element type, and bitwidth
  ArrayRef<int64_t> resShape = resVector.getShape();
  Type resType = resVector.getElementType();
  int64_t elementBitWidth = resType.getIntOrFloatBitWidth();

  // ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
  int64_t numElementsPer32b = 32 / elementBitWidth;

  // number of 8-by-8 tiles
  int64_t numTiles = getNumTiles();

  // transpose elements in vector registers at 16b granularity when true
  bool isTranspose = getTranspose();

  //
  // verification
  //

  if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
    return emitError()
           << "expected nvgpu.ldmatrix srcMemref must have a memory space "
              "attribute of IntegerAttr("
           << NVGPUDialect::kSharedMemoryAddressSpace
           << ") or gpu::AddressSpaceAttr(Workgroup)";
  if (elementBitWidth > 32)
    return emitError() << "nvgpu.ldmatrix works for 32b or lower";
  if (isTranspose && !(elementBitWidth == 16))
    return emitError()
           << "nvgpu.ldmatrix transpose works only at 16b granularity";
  if (!(resShape[1] == numElementsPer32b))
    return emitError() << "expected vector register shape[1] = "
                       << numElementsPer32b;
  if (!(resShape[0] == numTiles))
    return emitError()
           << "expected vector register shape[0] and numTiles to match";

  return success();
}

//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncLoadOp
//===----------------------------------------------------------------------===//

LogicalResult TmaAsyncLoadOp::verify() {
  // Destination memref
  auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
  if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
    return emitError()
           << "The operation stores data to shared memory, but "
              "the destination memref does not have a memory space of "
           << NVGPUDialect::kSharedMemoryAddressSpace;
  }
  if (getCoordinates().size() > 5) {
    return emitError() << "Maximum 5 coordinates are supported.";
  }
  if (getCoordinates().size() != size_t(dstMemref.getRank())) {
    return emitError() << "Destination memref rank is "
                       << size_t(dstMemref.getRank()) << " but there are  "
                       << getCoordinates().size()
                       << " coordinates. They must match.";
  }
  return success();
}

LogicalResult TmaCreateDescriptorOp::verify() {
  if (getBoxDimensions().size() > 5) {
    return emitError() << "Maximum 5 dimensional box is supported.";
  }
  nvgpu::TensorMapDescriptorType desc = getTensorMap().getType();
  if (desc.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
    return emitError() << "Interleave options are not supported yet.";

  return success();
}

//===----------------------------------------------------------------------===//
// TableGen'd dialect, type, and op definitions
//===----------------------------------------------------------------------===//

#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"

#include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"

#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"

#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"