1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
|
//===- NVGPUDialect.cpp - MLIR NVGPU ops implementation -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the NVGPU dialect and its operations.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/IR/Verifier.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::nvgpu;
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.cpp.inc"
void nvgpu::NVGPUDialect::initialize() {
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
>();
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
>();
}
bool nvgpu::NVGPUDialect::isSharedMemoryAddressSpace(Attribute memorySpace) {
if (!memorySpace)
return false;
if (auto intAttr = llvm::dyn_cast<IntegerAttr>(memorySpace))
return intAttr.getInt() == NVGPUDialect::kSharedMemoryAddressSpace;
if (auto gpuAttr = llvm::dyn_cast<gpu::AddressSpaceAttr>(memorySpace))
return gpuAttr.getValue() == gpu::AddressSpace::Workgroup;
return false;
}
bool nvgpu::NVGPUDialect::hasSharedMemoryAddressSpace(MemRefType type) {
Attribute memorySpace = type.getMemorySpace();
return isSharedMemoryAddressSpace(memorySpace);
}
//===----------------------------------------------------------------------===//
// NVGPU_DeviceAsyncCopyOp
//===----------------------------------------------------------------------===//
LogicalResult DeviceAsyncCopyOp::verify() {
auto srcMemref = llvm::cast<MemRefType>(getSrc().getType());
auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
if (!isLastMemrefDimUnitStride(srcMemref))
return emitError("source memref most minor dim must have unit stride");
if (!isLastMemrefDimUnitStride(dstMemref))
return emitError("destination memref most minor dim must have unit stride");
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref))
return emitError()
<< "destination memref must have a memory space attribute of "
"IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (dstMemref.getElementType() != srcMemref.getElementType())
return emitError("source and destination must have the same element type");
if (size_t(srcMemref.getRank()) != getSrcIndices().size())
return emitOpError() << "expected " << srcMemref.getRank()
<< " source indices, got " << getSrcIndices().size();
if (size_t(dstMemref.getRank()) != getDstIndices().size())
return emitOpError() << "expected " << dstMemref.getRank()
<< " destination indices, got "
<< getDstIndices().size();
int64_t dstElements = getDstElements().getZExtValue();
int64_t sizeInBytes = (dstMemref.getElementTypeBitWidth() * dstElements) / 8;
if (sizeInBytes != 4 && sizeInBytes != 8 && sizeInBytes != 16) {
unsigned dstWidth = dstMemref.getElementTypeBitWidth();
InFlightDiagnostic diag = emitError();
diag << "Requested copy elements is " << dstElements << " with width "
<< dstMemref.getElementTypeBitWidth()
<< ". But copy elements could be one of ";
if ((32 / dstWidth) > 0)
diag << (32 / dstWidth) << ", ";
if ((64 / dstWidth) > 0)
diag << (64 / dstWidth) << ", ";
if ((128 / dstWidth) > 0)
diag << (128 / dstWidth) << ".";
return diag;
}
if (getBypassL1().has_value()) {
int64_t req = 16 * 8 / dstMemref.getElementTypeBitWidth();
if (getBypassL1().value() && sizeInBytes != 16) {
return emitOpError() << "bypassL1 does not satify alignment for "
<< dstMemref << " with destination element "
<< dstElements
<< ". Unset bypassL1, or set "
"destination element to "
<< req;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSyncOp
//===----------------------------------------------------------------------===//
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayAttr mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
mmaShape, UnitAttr());
}
void MmaSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, ArrayRef<int64_t> mmaShape,
bool tf32Enabled) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
odsBuilder.getI64ArrayAttr(mmaShape),
tf32Enabled ? odsBuilder.getUnitAttr() : UnitAttr());
}
/// Performs verification for MmaSyncOp and MmaSparseSyncOp.
static LogicalResult verifyMmaSyncOp(Operation *op,
TypedValue<VectorType> matrixA,
TypedValue<VectorType> matrixB,
TypedValue<VectorType> matrixC,
const std::array<int64_t, 3> &mmaShape,
bool tf32Enabled, bool sparse = false) {
// The verification for mma.sync covering various shapes and data types is
// based on the fundamental tensor core shape.
// "Fundamental" tensor core shapes:
// - For F32 (TF32), F16, S8, and S4 data
// types the fundamental tensor core operation is of shape 8-by-8-by-128b.
// - F64 is an exception and is of shape 8-by-8-by-256b.
constexpr int kThreads = 32; // 32 threads per warp
int64_t shapeM = 8;
int64_t shapeN = 8;
int64_t shapeK; // set based on data type (128b for all data types except F64)
// Number of elements A, B, and C per thread per fundamental tensor core tile
int64_t numElementA; // set based on data type (32b except F64)
int64_t numElementB; // set based on data type (32b except F64)
int64_t numElementC{2}; // two accumulator elements per fundamental tile
// nvgpu.mma.sync vector operands (per thread)
auto aVector = matrixA.getType();
auto bVector = matrixB.getType();
auto cVector = matrixC.getType();
// vector shapes
ArrayRef<int64_t> aShape = aVector.getShape();
ArrayRef<int64_t> bShape = bVector.getShape();
ArrayRef<int64_t> cShape = cVector.getShape();
// vector element type
Type aType = aVector.getElementType();
// Certain data types are not allowed in sparse mode.
if (sparse && aType.isF64())
return op->emitError() << "f64 is not supported for sparse mode";
if (aType.isF64()) {
// exception to 8-by-8-128b fundamental tensor core tile size
shapeK = 4;
numElementA = 1;
numElementB = 1;
} else if (aType.isF32() || aType.isBF16() || aType.isF16() ||
aType.isInteger(8) || aType.isInteger(4)) {
// 8-by-8-128b fundamental tensor core tile size
int operandBitwidth = aType.getIntOrFloatBitWidth();
shapeK = 128 / operandBitwidth; // 128b wide shapeK
numElementA = 32 / operandBitwidth; // 32b wide operand A
numElementB = 32 / operandBitwidth; // 32b wide operand B
} else {
return op->emitError()
<< "expected input data type (i4,i8,f16,bf16,tf32,f64) "
"supported by "
<< op->getName();
}
//
// Basic verification
//
auto [m, n, k] = mmaShape;
// verify warp-wide size for vector a
int64_t sparseFactor = sparse ? 2 : 1;
if (aShape[0] * aShape[1] * kThreads != m * k / sparseFactor)
return op->emitOpError()
<< "expected " << m * k << " warp-wide matrix A elements";
// verify warp-wide size for vector b
if (bShape[0] * bShape[1] * kThreads != k * n)
return op->emitOpError()
<< "expected " << k * n << " warp-wide matrix B elements";
// verify warp-wide size for vector c
if (cShape[0] * cShape[1] * kThreads != m * n)
return op->emitOpError()
<< "expected " << m * n << " warp-wide matrix C elements";
// verify tf32 tensor cores are enabled for only F32 datatype
if (tf32Enabled && !(aType.isF32()))
return op->emitOpError()
<< "expected tf32 tensor cores only for F32 operands";
//
// Extended verification
//
// tiles of fundamental tensor core operations
int64_t mTile = m / shapeM;
int64_t nTile = n / shapeN;
int64_t kTile = k / shapeK;
// verify shape of aVector
if ((aShape[0] != mTile * kTile / (sparse ? 2 : 1)) ||
(aShape[1] != numElementA))
return op->emitOpError() << "expected matrix A to be shaped ("
<< mTile * kTile << " x " << numElementA << ")";
// verify shape of bVector
if ((bShape[0] != kTile * nTile) || (bShape[1] != numElementB))
return op->emitOpError() << "expected matrix B to be shaped ("
<< kTile * nTile << " x " << numElementB << ")";
// verify shape of cVector
if ((cShape[0] != mTile * nTile) || (cShape[1] != numElementC))
return op->emitOpError() << "expected matrix C to be shaped ("
<< mTile * nTile << " x " << numElementC << ")";
return success();
}
LogicalResult MmaSyncOp::verify() {
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()));
}
//===----------------------------------------------------------------------===//
// NVGPU_MmaSparseSyncOp
//===----------------------------------------------------------------------===//
void MmaSparseSyncOp::build(::mlir::OpBuilder &odsBuilder,
::mlir::OperationState &odsState, Value matrixA,
Value matrixB, Value matrixC, Value sparseMetadata,
ArrayRef<int64_t> mmaShape) {
build(odsBuilder, odsState, matrixC.getType(), matrixA, matrixB, matrixC,
sparseMetadata, odsBuilder.getI64ArrayAttr(mmaShape), 0, UnitAttr());
}
LogicalResult MmaSparseSyncOp::verify() {
unsigned sparsitySelector = getSparsitySelector();
if (sparsitySelector > 1)
return emitOpError() << "sparsity selector should be 0 or 1";
return verifyMmaSyncOp(this->getOperation(), getMatrixA(), getMatrixB(),
getMatrixC(), getMmaShapeAsArray(),
getOperation()->hasAttr(getTf32EnabledAttrName()),
true);
}
//===----------------------------------------------------------------------===//
// NVGPU_LdMatrixOp
//===----------------------------------------------------------------------===//
LogicalResult LdMatrixOp::verify() {
// ldmatrix reads data from source in shared memory
auto srcMemref = llvm::cast<MemRefType>(getSrcMemref().getType());
// ldmatrix writes data to result/destination in vector registers
auto resVector = llvm::cast<VectorType>(getRes().getType());
// vector register shape, element type, and bitwidth
ArrayRef<int64_t> resShape = resVector.getShape();
Type resType = resVector.getElementType();
int64_t elementBitWidth = resType.getIntOrFloatBitWidth();
// ldmatrix loads 32 bits into vector registers per 8-by-8 tile per thread
int64_t numElementsPer32b = 32 / elementBitWidth;
// number of 8-by-8 tiles
int64_t numTiles = getNumTiles();
// transpose elements in vector registers at 16b granularity when true
bool isTranspose = getTranspose();
//
// verification
//
if (!NVGPUDialect::hasSharedMemoryAddressSpace(srcMemref))
return emitError()
<< "expected nvgpu.ldmatrix srcMemref must have a memory space "
"attribute of IntegerAttr("
<< NVGPUDialect::kSharedMemoryAddressSpace
<< ") or gpu::AddressSpaceAttr(Workgroup)";
if (elementBitWidth > 32)
return emitError() << "nvgpu.ldmatrix works for 32b or lower";
if (isTranspose && !(elementBitWidth == 16))
return emitError()
<< "nvgpu.ldmatrix transpose works only at 16b granularity";
if (!(resShape[1] == numElementsPer32b))
return emitError() << "expected vector register shape[1] = "
<< numElementsPer32b;
if (!(resShape[0] == numTiles))
return emitError()
<< "expected vector register shape[0] and numTiles to match";
return success();
}
//===----------------------------------------------------------------------===//
// NVGPU_TmaAsyncLoadOp
//===----------------------------------------------------------------------===//
LogicalResult TmaAsyncLoadOp::verify() {
// Destination memref
auto dstMemref = llvm::cast<MemRefType>(getDst().getType());
if (!NVGPUDialect::hasSharedMemoryAddressSpace(dstMemref)) {
return emitError()
<< "The operation stores data to shared memory, but "
"the destination memref does not have a memory space of "
<< NVGPUDialect::kSharedMemoryAddressSpace;
}
if (getCoordinates().size() > 5) {
return emitError() << "Maximum 5 coordinates are supported.";
}
if (getCoordinates().size() != size_t(dstMemref.getRank())) {
return emitError() << "Destination memref rank is "
<< size_t(dstMemref.getRank()) << " but there are "
<< getCoordinates().size()
<< " coordinates. They must match.";
}
return success();
}
LogicalResult TmaCreateDescriptorOp::verify() {
if (getBoxDimensions().size() > 5) {
return emitError() << "Maximum 5 dimensional box is supported.";
}
nvgpu::TensorMapDescriptorType desc = getTensorMap().getType();
if (desc.getInterleave() != TensorMapInterleaveKind::INTERLEAVE_NONE)
return emitError() << "Interleave options are not supported yet.";
return success();
}
//===----------------------------------------------------------------------===//
// TableGen'd dialect, type, and op definitions
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUAttrDefs.cpp.inc"
#include "mlir/Dialect/NVGPU/IR/NVGPUEnums.cpp.inc"
#define GET_OP_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPU.cpp.inc"
#define GET_TYPEDEF_CLASSES
#include "mlir/Dialect/NVGPU/IR/NVGPUTypes.cpp.inc"
|