File: MemoryOps.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (751 lines) | stat: -rw-r--r-- 27,657 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
//===- MemoryOps.cpp - MLIR SPIR-V Memory Ops  ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Defines the memory operations in the SPIR-V dialect.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"

#include "SPIRVOpUtils.h"
#include "SPIRVParsingUtils.h"

#include "llvm/ADT/StringExtras.h"

using namespace mlir::spirv::AttrNames;

namespace mlir::spirv {

// TODO Make sure to merge this and the previous function into one template
// parameterized by memory access attribute name and alignment. Doing so now
// results in VS2017 in producing an internal error (at the call site) that's
// not detailed enough to understand what is happening.
static ParseResult parseSourceMemoryAccessAttributes(OpAsmParser &parser,
                                                     OperationState &state) {
  // Parse an optional list of attributes staring with '['
  if (parser.parseOptionalLSquare()) {
    // Nothing to do
    return success();
  }

  spirv::MemoryAccess memoryAccessAttr;
  if (spirv::parseEnumStrAttr<spirv::MemoryAccessAttr>(
          memoryAccessAttr, parser, state, kSourceMemoryAccessAttrName))
    return failure();

  if (spirv::bitEnumContainsAll(memoryAccessAttr,
                                spirv::MemoryAccess::Aligned)) {
    // Parse integer attribute for alignment.
    Attribute alignmentAttr;
    Type i32Type = parser.getBuilder().getIntegerType(32);
    if (parser.parseComma() ||
        parser.parseAttribute(alignmentAttr, i32Type, kSourceAlignmentAttrName,
                              state.attributes)) {
      return failure();
    }
  }
  return parser.parseRSquare();
}

// TODO Make sure to merge this and the previous function into one template
// parameterized by memory access attribute name and alignment. Doing so now
// results in VS2017 in producing an internal error (at the call site) that's
// not detailed enough to understand what is happening.
template <typename MemoryOpTy>
static void printSourceMemoryAccessAttribute(
    MemoryOpTy memoryOp, OpAsmPrinter &printer,
    SmallVectorImpl<StringRef> &elidedAttrs,
    std::optional<spirv::MemoryAccess> memoryAccessAtrrValue = std::nullopt,
    std::optional<uint32_t> alignmentAttrValue = std::nullopt) {

  printer << ", ";

  // Print optional memory access attribute.
  if (auto memAccess = (memoryAccessAtrrValue ? memoryAccessAtrrValue
                                              : memoryOp.getMemoryAccess())) {
    elidedAttrs.push_back(kSourceMemoryAccessAttrName);

    printer << " [\"" << stringifyMemoryAccess(*memAccess) << "\"";

    if (spirv::bitEnumContainsAll(*memAccess, spirv::MemoryAccess::Aligned)) {
      // Print integer alignment attribute.
      if (auto alignment = (alignmentAttrValue ? alignmentAttrValue
                                               : memoryOp.getAlignment())) {
        elidedAttrs.push_back(kSourceAlignmentAttrName);
        printer << ", " << *alignment;
      }
    }
    printer << "]";
  }
  elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
}

template <typename MemoryOpTy>
static void printMemoryAccessAttribute(
    MemoryOpTy memoryOp, OpAsmPrinter &printer,
    SmallVectorImpl<StringRef> &elidedAttrs,
    std::optional<spirv::MemoryAccess> memoryAccessAtrrValue = std::nullopt,
    std::optional<uint32_t> alignmentAttrValue = std::nullopt) {
  // Print optional memory access attribute.
  if (auto memAccess = (memoryAccessAtrrValue ? memoryAccessAtrrValue
                                              : memoryOp.getMemoryAccess())) {
    elidedAttrs.push_back(kMemoryAccessAttrName);

    printer << " [\"" << stringifyMemoryAccess(*memAccess) << "\"";

    if (spirv::bitEnumContainsAll(*memAccess, spirv::MemoryAccess::Aligned)) {
      // Print integer alignment attribute.
      if (auto alignment = (alignmentAttrValue ? alignmentAttrValue
                                               : memoryOp.getAlignment())) {
        elidedAttrs.push_back(kAlignmentAttrName);
        printer << ", " << *alignment;
      }
    }
    printer << "]";
  }
  elidedAttrs.push_back(spirv::attributeName<spirv::StorageClass>());
}

template <typename LoadStoreOpTy>
static LogicalResult verifyLoadStorePtrAndValTypes(LoadStoreOpTy op, Value ptr,
                                                   Value val) {
  // ODS already checks ptr is spirv::PointerType. Just check that the pointee
  // type of the pointer and the type of the value are the same
  //
  // TODO: Check that the value type satisfies restrictions of
  // SPIR-V OpLoad/OpStore operations
  if (val.getType() !=
      llvm::cast<spirv::PointerType>(ptr.getType()).getPointeeType()) {
    return op.emitOpError("mismatch in result type and pointer type");
  }
  return success();
}

template <typename MemoryOpTy>
static LogicalResult verifyMemoryAccessAttribute(MemoryOpTy memoryOp) {
  // ODS checks for attributes values. Just need to verify that if the
  // memory-access attribute is Aligned, then the alignment attribute must be
  // present.
  auto *op = memoryOp.getOperation();
  auto memAccessAttr = op->getAttr(kMemoryAccessAttrName);
  if (!memAccessAttr) {
    // Alignment attribute shouldn't be present if memory access attribute is
    // not present.
    if (op->getAttr(kAlignmentAttrName)) {
      return memoryOp.emitOpError(
          "invalid alignment specification without aligned memory access "
          "specification");
    }
    return success();
  }

  auto memAccess = llvm::cast<spirv::MemoryAccessAttr>(memAccessAttr);

  if (!memAccess) {
    return memoryOp.emitOpError("invalid memory access specifier: ")
           << memAccessAttr;
  }

  if (spirv::bitEnumContainsAll(memAccess.getValue(),
                                spirv::MemoryAccess::Aligned)) {
    if (!op->getAttr(kAlignmentAttrName)) {
      return memoryOp.emitOpError("missing alignment value");
    }
  } else {
    if (op->getAttr(kAlignmentAttrName)) {
      return memoryOp.emitOpError(
          "invalid alignment specification with non-aligned memory access "
          "specification");
    }
  }
  return success();
}

// TODO Make sure to merge this and the previous function into one template
// parameterized by memory access attribute name and alignment. Doing so now
// results in VS2017 in producing an internal error (at the call site) that's
// not detailed enough to understand what is happening.
template <typename MemoryOpTy>
static LogicalResult verifySourceMemoryAccessAttribute(MemoryOpTy memoryOp) {
  // ODS checks for attributes values. Just need to verify that if the
  // memory-access attribute is Aligned, then the alignment attribute must be
  // present.
  auto *op = memoryOp.getOperation();
  auto memAccessAttr = op->getAttr(kSourceMemoryAccessAttrName);
  if (!memAccessAttr) {
    // Alignment attribute shouldn't be present if memory access attribute is
    // not present.
    if (op->getAttr(kSourceAlignmentAttrName)) {
      return memoryOp.emitOpError(
          "invalid alignment specification without aligned memory access "
          "specification");
    }
    return success();
  }

  auto memAccess = llvm::cast<spirv::MemoryAccessAttr>(memAccessAttr);

  if (!memAccess) {
    return memoryOp.emitOpError("invalid memory access specifier: ")
           << memAccess;
  }

  if (spirv::bitEnumContainsAll(memAccess.getValue(),
                                spirv::MemoryAccess::Aligned)) {
    if (!op->getAttr(kSourceAlignmentAttrName)) {
      return memoryOp.emitOpError("missing alignment value");
    }
  } else {
    if (op->getAttr(kSourceAlignmentAttrName)) {
      return memoryOp.emitOpError(
          "invalid alignment specification with non-aligned memory access "
          "specification");
    }
  }
  return success();
}

//===----------------------------------------------------------------------===//
// spirv.AccessChainOp
//===----------------------------------------------------------------------===//

static Type getElementPtrType(Type type, ValueRange indices, Location baseLoc) {
  auto ptrType = llvm::dyn_cast<spirv::PointerType>(type);
  if (!ptrType) {
    emitError(baseLoc, "'spirv.AccessChain' op expected a pointer "
                       "to composite type, but provided ")
        << type;
    return nullptr;
  }

  auto resultType = ptrType.getPointeeType();
  auto resultStorageClass = ptrType.getStorageClass();
  int32_t index = 0;

  for (auto indexSSA : indices) {
    auto cType = llvm::dyn_cast<spirv::CompositeType>(resultType);
    if (!cType) {
      emitError(
          baseLoc,
          "'spirv.AccessChain' op cannot extract from non-composite type ")
          << resultType << " with index " << index;
      return nullptr;
    }
    index = 0;
    if (llvm::isa<spirv::StructType>(resultType)) {
      Operation *op = indexSSA.getDefiningOp();
      if (!op) {
        emitError(baseLoc, "'spirv.AccessChain' op index must be an "
                           "integer spirv.Constant to access "
                           "element of spirv.struct");
        return nullptr;
      }

      // TODO: this should be relaxed to allow
      // integer literals of other bitwidths.
      if (failed(spirv::extractValueFromConstOp(op, index))) {
        emitError(
            baseLoc,
            "'spirv.AccessChain' index must be an integer spirv.Constant to "
            "access element of spirv.struct, but provided ")
            << op->getName();
        return nullptr;
      }
      if (index < 0 || static_cast<uint64_t>(index) >= cType.getNumElements()) {
        emitError(baseLoc, "'spirv.AccessChain' op index ")
            << index << " out of bounds for " << resultType;
        return nullptr;
      }
    }
    resultType = cType.getElementType(index);
  }
  return spirv::PointerType::get(resultType, resultStorageClass);
}

void AccessChainOp::build(OpBuilder &builder, OperationState &state,
                          Value basePtr, ValueRange indices) {
  auto type = getElementPtrType(basePtr.getType(), indices, state.location);
  assert(type && "Unable to deduce return type based on basePtr and indices");
  build(builder, state, type, basePtr, indices);
}

ParseResult AccessChainOp::parse(OpAsmParser &parser, OperationState &result) {
  OpAsmParser::UnresolvedOperand ptrInfo;
  SmallVector<OpAsmParser::UnresolvedOperand, 4> indicesInfo;
  Type type;
  auto loc = parser.getCurrentLocation();
  SmallVector<Type, 4> indicesTypes;

  if (parser.parseOperand(ptrInfo) ||
      parser.parseOperandList(indicesInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(ptrInfo, type, result.operands)) {
    return failure();
  }

  // Check that the provided indices list is not empty before parsing their
  // type list.
  if (indicesInfo.empty()) {
    return mlir::emitError(result.location,
                           "'spirv.AccessChain' op expected at "
                           "least one index ");
  }

  if (parser.parseComma() || parser.parseTypeList(indicesTypes))
    return failure();

  // Check that the indices types list is not empty and that it has a one-to-one
  // mapping to the provided indices.
  if (indicesTypes.size() != indicesInfo.size()) {
    return mlir::emitError(
        result.location, "'spirv.AccessChain' op indices types' count must be "
                         "equal to indices info count");
  }

  if (parser.resolveOperands(indicesInfo, indicesTypes, loc, result.operands))
    return failure();

  auto resultType = getElementPtrType(
      type, llvm::ArrayRef(result.operands).drop_front(), result.location);
  if (!resultType) {
    return failure();
  }

  result.addTypes(resultType);
  return success();
}

template <typename Op>
static void printAccessChain(Op op, ValueRange indices, OpAsmPrinter &printer) {
  printer << ' ' << op.getBasePtr() << '[' << indices
          << "] : " << op.getBasePtr().getType() << ", " << indices.getTypes();
}

void spirv::AccessChainOp::print(OpAsmPrinter &printer) {
  printAccessChain(*this, getIndices(), printer);
}

template <typename Op>
static LogicalResult verifyAccessChain(Op accessChainOp, ValueRange indices) {
  auto resultType = getElementPtrType(accessChainOp.getBasePtr().getType(),
                                      indices, accessChainOp.getLoc());
  if (!resultType)
    return failure();

  auto providedResultType =
      llvm::dyn_cast<spirv::PointerType>(accessChainOp.getType());
  if (!providedResultType)
    return accessChainOp.emitOpError(
               "result type must be a pointer, but provided")
           << providedResultType;

  if (resultType != providedResultType)
    return accessChainOp.emitOpError("invalid result type: expected ")
           << resultType << ", but provided " << providedResultType;

  return success();
}

LogicalResult AccessChainOp::verify() {
  return verifyAccessChain(*this, getIndices());
}

//===----------------------------------------------------------------------===//
// spirv.LoadOp
//===----------------------------------------------------------------------===//

void LoadOp::build(OpBuilder &builder, OperationState &state, Value basePtr,
                   MemoryAccessAttr memoryAccess, IntegerAttr alignment) {
  auto ptrType = llvm::cast<spirv::PointerType>(basePtr.getType());
  build(builder, state, ptrType.getPointeeType(), basePtr, memoryAccess,
        alignment);
}

ParseResult LoadOp::parse(OpAsmParser &parser, OperationState &result) {
  // Parse the storage class specification
  spirv::StorageClass storageClass;
  OpAsmParser::UnresolvedOperand ptrInfo;
  Type elementType;
  if (parseEnumStrAttr(storageClass, parser) || parser.parseOperand(ptrInfo) ||
      parseMemoryAccessAttributes(parser, result) ||
      parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
      parser.parseType(elementType)) {
    return failure();
  }

  auto ptrType = spirv::PointerType::get(elementType, storageClass);
  if (parser.resolveOperand(ptrInfo, ptrType, result.operands)) {
    return failure();
  }

  result.addTypes(elementType);
  return success();
}

void LoadOp::print(OpAsmPrinter &printer) {
  SmallVector<StringRef, 4> elidedAttrs;
  StringRef sc = stringifyStorageClass(
      llvm::cast<spirv::PointerType>(getPtr().getType()).getStorageClass());
  printer << " \"" << sc << "\" " << getPtr();

  printMemoryAccessAttribute(*this, printer, elidedAttrs);

  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
  printer << " : " << getType();
}

LogicalResult LoadOp::verify() {
  // SPIR-V spec : "Result Type is the type of the loaded object. It must be a
  // type with fixed size; i.e., it cannot be, nor include, any
  // OpTypeRuntimeArray types."
  if (failed(verifyLoadStorePtrAndValTypes(*this, getPtr(), getValue()))) {
    return failure();
  }
  return verifyMemoryAccessAttribute(*this);
}

//===----------------------------------------------------------------------===//
// spirv.StoreOp
//===----------------------------------------------------------------------===//

ParseResult StoreOp::parse(OpAsmParser &parser, OperationState &result) {
  // Parse the storage class specification
  spirv::StorageClass storageClass;
  SmallVector<OpAsmParser::UnresolvedOperand, 2> operandInfo;
  auto loc = parser.getCurrentLocation();
  Type elementType;
  if (parseEnumStrAttr(storageClass, parser) ||
      parser.parseOperandList(operandInfo, 2) ||
      parseMemoryAccessAttributes(parser, result) || parser.parseColon() ||
      parser.parseType(elementType)) {
    return failure();
  }

  auto ptrType = spirv::PointerType::get(elementType, storageClass);
  if (parser.resolveOperands(operandInfo, {ptrType, elementType}, loc,
                             result.operands)) {
    return failure();
  }
  return success();
}

void StoreOp::print(OpAsmPrinter &printer) {
  SmallVector<StringRef, 4> elidedAttrs;
  StringRef sc = stringifyStorageClass(
      llvm::cast<spirv::PointerType>(getPtr().getType()).getStorageClass());
  printer << " \"" << sc << "\" " << getPtr() << ", " << getValue();

  printMemoryAccessAttribute(*this, printer, elidedAttrs);

  printer << " : " << getValue().getType();
  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);
}

LogicalResult StoreOp::verify() {
  // SPIR-V spec : "Pointer is the pointer to store through. Its type must be an
  // OpTypePointer whose Type operand is the same as the type of Object."
  if (failed(verifyLoadStorePtrAndValTypes(*this, getPtr(), getValue())))
    return failure();
  return verifyMemoryAccessAttribute(*this);
}

//===----------------------------------------------------------------------===//
// spirv.CopyMemory
//===----------------------------------------------------------------------===//

void CopyMemoryOp::print(OpAsmPrinter &printer) {
  printer << ' ';

  StringRef targetStorageClass = stringifyStorageClass(
      llvm::cast<spirv::PointerType>(getTarget().getType()).getStorageClass());
  printer << " \"" << targetStorageClass << "\" " << getTarget() << ", ";

  StringRef sourceStorageClass = stringifyStorageClass(
      llvm::cast<spirv::PointerType>(getSource().getType()).getStorageClass());
  printer << " \"" << sourceStorageClass << "\" " << getSource();

  SmallVector<StringRef, 4> elidedAttrs;
  printMemoryAccessAttribute(*this, printer, elidedAttrs);
  printSourceMemoryAccessAttribute(*this, printer, elidedAttrs,
                                   getSourceMemoryAccess(),
                                   getSourceAlignment());

  printer.printOptionalAttrDict((*this)->getAttrs(), elidedAttrs);

  Type pointeeType =
      llvm::cast<spirv::PointerType>(getTarget().getType()).getPointeeType();
  printer << " : " << pointeeType;
}

ParseResult CopyMemoryOp::parse(OpAsmParser &parser, OperationState &result) {
  spirv::StorageClass targetStorageClass;
  OpAsmParser::UnresolvedOperand targetPtrInfo;

  spirv::StorageClass sourceStorageClass;
  OpAsmParser::UnresolvedOperand sourcePtrInfo;

  Type elementType;

  if (parseEnumStrAttr(targetStorageClass, parser) ||
      parser.parseOperand(targetPtrInfo) || parser.parseComma() ||
      parseEnumStrAttr(sourceStorageClass, parser) ||
      parser.parseOperand(sourcePtrInfo) ||
      parseMemoryAccessAttributes(parser, result)) {
    return failure();
  }

  if (!parser.parseOptionalComma()) {
    // Parse 2nd memory access attributes.
    if (parseSourceMemoryAccessAttributes(parser, result)) {
      return failure();
    }
  }

  if (parser.parseColon() || parser.parseType(elementType))
    return failure();

  if (parser.parseOptionalAttrDict(result.attributes))
    return failure();

  auto targetPtrType = spirv::PointerType::get(elementType, targetStorageClass);
  auto sourcePtrType = spirv::PointerType::get(elementType, sourceStorageClass);

  if (parser.resolveOperand(targetPtrInfo, targetPtrType, result.operands) ||
      parser.resolveOperand(sourcePtrInfo, sourcePtrType, result.operands)) {
    return failure();
  }

  return success();
}

LogicalResult CopyMemoryOp::verify() {
  Type targetType =
      llvm::cast<spirv::PointerType>(getTarget().getType()).getPointeeType();

  Type sourceType =
      llvm::cast<spirv::PointerType>(getSource().getType()).getPointeeType();

  if (targetType != sourceType)
    return emitOpError("both operands must be pointers to the same type");

  if (failed(verifyMemoryAccessAttribute(*this)))
    return failure();

  // TODO - According to the spec:
  //
  // If two masks are present, the first applies to Target and cannot include
  // MakePointerVisible, and the second applies to Source and cannot include
  // MakePointerAvailable.
  //
  // Add such verification here.

  return verifySourceMemoryAccessAttribute(*this);
}

static ParseResult parsePtrAccessChainOpImpl(StringRef opName,
                                             OpAsmParser &parser,
                                             OperationState &state) {
  OpAsmParser::UnresolvedOperand ptrInfo;
  SmallVector<OpAsmParser::UnresolvedOperand, 4> indicesInfo;
  Type type;
  auto loc = parser.getCurrentLocation();
  SmallVector<Type, 4> indicesTypes;

  if (parser.parseOperand(ptrInfo) ||
      parser.parseOperandList(indicesInfo, OpAsmParser::Delimiter::Square) ||
      parser.parseColonType(type) ||
      parser.resolveOperand(ptrInfo, type, state.operands))
    return failure();

  // Check that the provided indices list is not empty before parsing their
  // type list.
  if (indicesInfo.empty())
    return emitError(state.location) << opName << " expected element";

  if (parser.parseComma() || parser.parseTypeList(indicesTypes))
    return failure();

  // Check that the indices types list is not empty and that it has a one-to-one
  // mapping to the provided indices.
  if (indicesTypes.size() != indicesInfo.size())
    return emitError(state.location)
           << opName
           << " indices types' count must be equal to indices info count";

  if (parser.resolveOperands(indicesInfo, indicesTypes, loc, state.operands))
    return failure();

  auto resultType = getElementPtrType(
      type, llvm::ArrayRef(state.operands).drop_front(2), state.location);
  if (!resultType)
    return failure();

  state.addTypes(resultType);
  return success();
}

template <typename Op>
static auto concatElemAndIndices(Op op) {
  SmallVector<Value> ret(op.getIndices().size() + 1);
  ret[0] = op.getElement();
  llvm::copy(op.getIndices(), ret.begin() + 1);
  return ret;
}

//===----------------------------------------------------------------------===//
// spirv.InBoundsPtrAccessChainOp
//===----------------------------------------------------------------------===//

void InBoundsPtrAccessChainOp::build(OpBuilder &builder, OperationState &state,
                                     Value basePtr, Value element,
                                     ValueRange indices) {
  auto type = getElementPtrType(basePtr.getType(), indices, state.location);
  assert(type && "Unable to deduce return type based on basePtr and indices");
  build(builder, state, type, basePtr, element, indices);
}

ParseResult InBoundsPtrAccessChainOp::parse(OpAsmParser &parser,
                                            OperationState &result) {
  return parsePtrAccessChainOpImpl(
      spirv::InBoundsPtrAccessChainOp::getOperationName(), parser, result);
}

void InBoundsPtrAccessChainOp::print(OpAsmPrinter &printer) {
  printAccessChain(*this, concatElemAndIndices(*this), printer);
}

LogicalResult InBoundsPtrAccessChainOp::verify() {
  return verifyAccessChain(*this, getIndices());
}

//===----------------------------------------------------------------------===//
// spirv.PtrAccessChainOp
//===----------------------------------------------------------------------===//

void PtrAccessChainOp::build(OpBuilder &builder, OperationState &state,
                             Value basePtr, Value element, ValueRange indices) {
  auto type = getElementPtrType(basePtr.getType(), indices, state.location);
  assert(type && "Unable to deduce return type based on basePtr and indices");
  build(builder, state, type, basePtr, element, indices);
}

ParseResult PtrAccessChainOp::parse(OpAsmParser &parser,
                                    OperationState &result) {
  return parsePtrAccessChainOpImpl(spirv::PtrAccessChainOp::getOperationName(),
                                   parser, result);
}

void PtrAccessChainOp::print(OpAsmPrinter &printer) {
  printAccessChain(*this, concatElemAndIndices(*this), printer);
}

LogicalResult PtrAccessChainOp::verify() {
  return verifyAccessChain(*this, getIndices());
}

//===----------------------------------------------------------------------===//
// spirv.Variable
//===----------------------------------------------------------------------===//

ParseResult VariableOp::parse(OpAsmParser &parser, OperationState &result) {
  // Parse optional initializer
  std::optional<OpAsmParser::UnresolvedOperand> initInfo;
  if (succeeded(parser.parseOptionalKeyword("init"))) {
    initInfo = OpAsmParser::UnresolvedOperand();
    if (parser.parseLParen() || parser.parseOperand(*initInfo) ||
        parser.parseRParen())
      return failure();
  }

  if (parseVariableDecorations(parser, result)) {
    return failure();
  }

  // Parse result pointer type
  Type type;
  if (parser.parseColon())
    return failure();
  auto loc = parser.getCurrentLocation();
  if (parser.parseType(type))
    return failure();

  auto ptrType = llvm::dyn_cast<spirv::PointerType>(type);
  if (!ptrType)
    return parser.emitError(loc, "expected spirv.ptr type");
  result.addTypes(ptrType);

  // Resolve the initializer operand
  if (initInfo) {
    if (parser.resolveOperand(*initInfo, ptrType.getPointeeType(),
                              result.operands))
      return failure();
  }

  auto attr = parser.getBuilder().getAttr<spirv::StorageClassAttr>(
      ptrType.getStorageClass());
  result.addAttribute(spirv::attributeName<spirv::StorageClass>(), attr);

  return success();
}

void VariableOp::print(OpAsmPrinter &printer) {
  SmallVector<StringRef, 4> elidedAttrs{
      spirv::attributeName<spirv::StorageClass>()};
  // Print optional initializer
  if (getNumOperands() != 0)
    printer << " init(" << getInitializer() << ")";

  printVariableDecorations(*this, printer, elidedAttrs);
  printer << " : " << getType();
}

LogicalResult VariableOp::verify() {
  // SPIR-V spec: "Storage Class is the Storage Class of the memory holding the
  // object. It cannot be Generic. It must be the same as the Storage Class
  // operand of the Result Type."
  if (getStorageClass() != spirv::StorageClass::Function) {
    return emitOpError(
        "can only be used to model function-level variables. Use "
        "spirv.GlobalVariable for module-level variables.");
  }

  auto pointerType = llvm::cast<spirv::PointerType>(getPointer().getType());
  if (getStorageClass() != pointerType.getStorageClass())
    return emitOpError(
        "storage class must match result pointer's storage class");

  if (getNumOperands() != 0) {
    // SPIR-V spec: "Initializer must be an <id> from a constant instruction or
    // a global (module scope) OpVariable instruction".
    auto *initOp = getOperand(0).getDefiningOp();
    if (!initOp || !isa<spirv::ConstantOp,    // for normal constant
                        spirv::ReferenceOfOp, // for spec constant
                        spirv::AddressOfOp>(initOp))
      return emitOpError("initializer must be the result of a "
                         "constant or spirv.GlobalVariable op");
  }

  // TODO: generate these strings using ODS.
  auto *op = getOperation();
  auto descriptorSetName = llvm::convertToSnakeFromCamelCase(
      stringifyDecoration(spirv::Decoration::DescriptorSet));
  auto bindingName = llvm::convertToSnakeFromCamelCase(
      stringifyDecoration(spirv::Decoration::Binding));
  auto builtInName = llvm::convertToSnakeFromCamelCase(
      stringifyDecoration(spirv::Decoration::BuiltIn));

  for (const auto &attr : {descriptorSetName, bindingName, builtInName}) {
    if (op->getAttr(attr))
      return emitOpError("cannot have '")
             << attr << "' attribute (only allowed in spirv.GlobalVariable)";
  }

  return success();
}

} // namespace mlir::spirv