1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
|
//===- TosaCanonicalizations.cpp - Canonicalization patterns & folders ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// TOSA canonicalization patterns and folders.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
#include <functional>
using namespace mlir;
using namespace mlir::tosa;
//===----------------------------------------------------------------------===//
// Operator Canonicalizers.
//===----------------------------------------------------------------------===//
struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> {
using OpRewritePattern<tosa::ConcatOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ConcatOp op,
PatternRewriter &rewriter) const override {
if (op.getInput1().size() != 1)
return failure();
if (op.getInput1().front().getType() != op.getType()) {
rewriter
.replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
op.getInput1().front())
.getResult();
return success();
}
rewriter.replaceOp(op, op.getInput1().front());
return success();
}
};
void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ConcatOptimization>(context);
}
LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) {
auto notOp = op.getPred().getDefiningOp<tosa::LogicalNotOp>();
if (!notOp)
return failure();
rewriter.updateRootInPlace(op, [&]() {
op.getOperation()->setOperands(
{notOp.getInput1(), op.getOnFalse(), op.getOnTrue()});
});
return success();
}
struct ConsolidateTransposeOptimization
: public OpRewritePattern<tosa::TransposeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::TransposeOp transposeOp,
PatternRewriter &rewriter) const override {
// Input is also TransposeOp - transpose(transpose(A)).
auto innerTranspose =
transposeOp.getInput1().getDefiningOp<tosa::TransposeOp>();
if (!innerTranspose)
return rewriter.notifyMatchFailure(transposeOp,
"input must be transpose operation");
SmallVector<int64_t> transposePerms, innerTransposePerms;
if (transposeOp.getConstantPerms(transposePerms).failed())
return rewriter.notifyMatchFailure(transposeOp,
"transpose perms must be constant");
if (innerTranspose.getConstantPerms(innerTransposePerms).failed())
return rewriter.notifyMatchFailure(
transposeOp, "inner transpose perms must be constant");
if (transposePerms.size() != innerTransposePerms.size())
return rewriter.notifyMatchFailure(
transposeOp,
"transpose and inner transpose perms sizes must be equal");
if (transposePerms.empty())
return rewriter.notifyMatchFailure(
transposeOp, "transpose perms sizes must be positive");
// Consolidate transposes into one transpose.
SmallVector<int32_t> perms(transposePerms.size());
for (int i = 0, s = transposePerms.size(); i < s; ++i)
perms[i] = innerTransposePerms[transposePerms[i]];
auto permsTy =
RankedTensorType::get(transposePerms.size(), rewriter.getI32Type());
auto permsAttr = DenseIntElementsAttr::get(permsTy, perms);
Value permsValue =
rewriter.create<arith::ConstantOp>(transposeOp.getLoc(), permsAttr);
rewriter.replaceOpWithNewOp<tosa::TransposeOp>(
transposeOp, transposeOp.getResult().getType(),
innerTranspose.getInput1(), permsValue);
return success();
}
};
// Determines the case when tosa.transpose is a tosa.reshape operation.
struct TransposeIsReshape : public OpRewritePattern<tosa::TransposeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::TransposeOp op,
PatternRewriter &rewriter) const override {
DenseIntElementsAttr permAttr;
if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
return rewriter.notifyMatchFailure(op, "Non-constant permutation");
if (op.getInput1().getDefiningOp<tosa::TransposeOp>())
return rewriter.notifyMatchFailure(
op, "Src is from transpose, can compose transposes");
Value result = op.getResult();
for (Operation *subop : result.getUsers()) {
if (dyn_cast_or_null<tosa::TransposeOp>(subop))
return rewriter.notifyMatchFailure(
op, "Dest is used by transpose, can compose transposes");
}
auto input = op.getInput1();
auto inputTy = llvm::cast<ShapedType>(input.getType());
if (!inputTy.hasRank())
return rewriter.notifyMatchFailure(op, "Unranked input.");
int64_t numDynDims = 0;
for (int i = 0; i < inputTy.getRank(); ++i)
if (inputTy.isDynamicDim(i))
numDynDims++;
if (numDynDims > 1)
return rewriter.notifyMatchFailure(op, "Has more than one dynamic dim.");
SmallVector<int64_t> permValues = llvm::to_vector<6>(
llvm::map_range(permAttr.getValues<APInt>(),
[](const APInt &val) { return val.getSExtValue(); }));
SmallVector<int64_t> nonZeroPerms;
nonZeroPerms.reserve(permValues.size());
for (auto idx : permValues) {
auto sz = inputTy.getDimSize(idx);
if (sz != 1)
nonZeroPerms.push_back(idx);
}
for (int i = 1, s = nonZeroPerms.size(); i < s; ++i)
if (nonZeroPerms[i - 1] > nonZeroPerms[i])
return rewriter.notifyMatchFailure(op,
"Transpose changes memory layout.");
SmallVector<int64_t> newShape;
newShape.reserve(inputTy.getRank());
for (int i = 0, s = inputTy.getRank(); i < s; ++i)
newShape.push_back(inputTy.getDimSize(permValues[i]));
rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
op, op.getType(), op.getInput1(),
rewriter.getDenseI64ArrayAttr(newShape));
return success();
}
};
void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context);
}
struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::PadOp op,
PatternRewriter &rewriter) const override {
if (op.getPadConst())
return failure();
auto input = op.getInput1();
auto padding = op.getPadding();
ShapedType inputTy = llvm::cast<ShapedType>(input.getType());
Type elementTy = inputTy.getElementType();
Attribute constantAttr;
if (llvm::isa<FloatType>(elementTy)) {
constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
} else if (llvm::isa<IntegerType>(elementTy) && !op.getQuantizationInfo()) {
constantAttr = rewriter.getIntegerAttr(elementTy, 0);
} else if (llvm::isa<IntegerType>(elementTy) && op.getQuantizationInfo()) {
auto value = op.getQuantizationInfo()->getInputZp();
constantAttr = rewriter.getIntegerAttr(elementTy, value);
}
if (!constantAttr) {
return rewriter.notifyMatchFailure(
op,
"tosa.pad to linalg lowering encountered an unknown element type");
}
auto denseAttr = DenseElementsAttr::get(
RankedTensorType::get({}, elementTy), constantAttr);
auto constantVal = rewriter.create<tosa::ConstOp>(
op.getLoc(), denseAttr.getType(), denseAttr);
rewriter.replaceOpWithNewOp<tosa::PadOp>(
op, op.getType(), ValueRange{input, padding, constantVal},
op->getAttrs());
return success();
}
};
void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<MaterializePadValue>(context);
}
struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
PatternRewriter &rewriter) const override {
Value input = op.getInput();
Value output = op.getOutput();
ShapedType inputType = llvm::cast<ShapedType>(input.getType());
ShapedType outputType = llvm::cast<ShapedType>(output.getType());
if (!inputType.hasStaticShape() || !outputType.hasStaticShape()) {
return failure();
}
// If the output and input shapes are 1x1, then this is a no op.
ArrayRef<int64_t> outputShape = outputType.getShape();
if (outputShape[1] != 1 || outputShape[2] != 1) {
return failure();
}
ArrayRef<int64_t> inputShape = inputType.getShape();
if (inputShape[1] != 1 || inputShape[2] != 1) {
return failure();
}
rewriter.replaceOp(op, input);
return success();
}
};
void MaxPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<MaxPool2dIsNoOp>(context);
}
struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ClampOp op,
PatternRewriter &rewriter) const override {
Value input = op.getInput();
auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
auto inputElementType = inputType.getElementType();
if (!inputType.hasStaticShape()) {
return failure();
}
if (inputElementType.isa<FloatType>()) {
// Unlike integer types, floating point types can represent infinity.
auto minClamp = op.getMinFp();
auto maxClamp = op.getMaxFp();
bool isMin = minClamp.isInfinity() && minClamp.isNegative();
bool isMax = maxClamp.isInfinity() && !maxClamp.isNegative();
if (isMin && isMax) {
rewriter.replaceOp(op, input);
return success();
}
return failure();
}
if (inputElementType.isUnsignedInteger()) {
int64_t minClamp = op.getMinInt();
int64_t maxClamp = op.getMaxInt();
int64_t intMin =
APInt::getMinValue(inputElementType.getIntOrFloatBitWidth())
.getZExtValue();
int64_t intMax =
APInt::getMaxValue(inputElementType.getIntOrFloatBitWidth())
.getZExtValue();
if (minClamp <= intMin && maxClamp >= intMax) {
rewriter.replaceOp(op, input);
return success();
}
return failure();
}
if (llvm::isa<IntegerType>(inputElementType)) {
int64_t minClamp = op.getMinInt();
int64_t maxClamp = op.getMaxInt();
int64_t intMin =
APInt::getSignedMinValue(inputElementType.getIntOrFloatBitWidth())
.getSExtValue();
int64_t intMax =
APInt::getSignedMaxValue(inputElementType.getIntOrFloatBitWidth())
.getSExtValue();
if (minClamp <= intMin && maxClamp >= intMax) {
rewriter.replaceOp(op, input);
return success();
}
return failure();
}
return failure();
}
};
struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> {
using OpRewritePattern<tosa::ClampOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::ClampOp op,
PatternRewriter &rewriter) const override {
Value input = op.getInput();
Operation *definingOp = input.getDefiningOp();
if (!definingOp)
return failure();
if (tosa::ClampOp clampOp = dyn_cast<tosa::ClampOp>(definingOp)) {
auto minFp = std::max(op.getMinFp(), clampOp.getMinFp()).convertToFloat();
auto maxFp = std::min(op.getMaxFp(), clampOp.getMaxFp()).convertToFloat();
auto minInt = std::max(op.getMinInt(), clampOp.getMinInt());
auto maxInt = std::min(op.getMaxInt(), clampOp.getMaxInt());
rewriter.replaceOpWithNewOp<tosa::ClampOp>(
op, op.getType(), clampOp.getInput(),
rewriter.getI64IntegerAttr(minInt),
rewriter.getI64IntegerAttr(maxInt), rewriter.getF32FloatAttr(minFp),
rewriter.getF32FloatAttr(maxFp));
return success();
}
return failure();
}
};
void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ClampIsNoOp>(context);
results.add<ClampClampOptimization>(context);
}
struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
PatternRewriter &rewriter) const override {
Value sliceInput = sliceOp.getInput();
auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>();
if (!concatOp)
return rewriter.notifyMatchFailure(
sliceOp, "slice input must be concat operation");
OperandRange inputs = concatOp.getInput1();
auto concatType = dyn_cast<RankedTensorType>(concatOp.getType());
if (!concatType || !concatType.hasStaticShape())
return rewriter.notifyMatchFailure(
sliceOp, "slice input must be a static ranked tensor");
int32_t axis = concatOp.getAxis();
llvm::SmallVector<int64_t> sliceStart(sliceOp.getStart());
llvm::ArrayRef<int64_t> sliceSize = sliceOp.getSize();
// Validate slice on the concatenated axis. Slicing along this
// axis should span only one of the inputs to the concatenate
// operation.
std::optional<Value> replaceWithSlice;
for (auto input : inputs) {
auto inputType = dyn_cast<RankedTensorType>(input.getType());
if (!inputType || !inputType.hasStaticShape())
return rewriter.notifyMatchFailure(
sliceOp, "concat input must be a static ranked tensor");
if (sliceStart[axis] >= 0 &&
(sliceStart[axis] + sliceSize[axis]) <= inputType.getDimSize(axis)) {
replaceWithSlice =
rewriter
.create<tosa::SliceOp>(
sliceOp.getLoc(), sliceOp.getType(), input,
rewriter.getDenseI64ArrayAttr(sliceOp.getStart()),
rewriter.getDenseI64ArrayAttr(sliceSize))
.getResult();
break;
}
sliceStart[axis] -= inputType.getDimSize(axis);
}
if (!replaceWithSlice)
return rewriter.notifyMatchFailure(
sliceOp, "corresponding concat input not found for slice");
rewriter.replaceOp(sliceOp, replaceWithSlice.value());
return success();
}
};
void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
MLIRContext *context) {
results.add<ConcatSliceOptimization>(context);
}
//===----------------------------------------------------------------------===//
// Operator Folders.
//===----------------------------------------------------------------------===//
template <typename IntFolder, typename FloatFolder>
DenseElementsAttr binaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs,
RankedTensorType returnTy) {
if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) {
auto lETy = llvm::cast<ShapedType>(lhs.getType()).getElementType();
auto rETy = llvm::cast<ShapedType>(rhs.getType()).getElementType();
if (lETy != rETy)
return {};
if (llvm::isa<IntegerType>(lETy)) {
APInt l = lhs.getSplatValue<APInt>();
APInt r = rhs.getSplatValue<APInt>();
auto result = IntFolder()(l, r);
return DenseElementsAttr::get(returnTy, result);
}
if (llvm::isa<FloatType>(lETy)) {
APFloat l = lhs.getSplatValue<APFloat>();
APFloat r = rhs.getSplatValue<APFloat>();
auto result = FloatFolder()(l, r);
return DenseElementsAttr::get(returnTy, result);
}
}
return {};
}
static bool isSplatZero(Type elemType, DenseElementsAttr val) {
if (llvm::isa<FloatType>(elemType))
return val && val.isSplat() && val.getSplatValue<APFloat>().isZero();
if (llvm::isa<IntegerType>(elemType))
return val && val.isSplat() && val.getSplatValue<APInt>().isZero();
return false;
}
static bool isSplatOne(Type elemType, DenseElementsAttr val, int64_t shift) {
if (llvm::isa<FloatType>(elemType))
return val && val.isSplat() &&
val.getSplatValue<APFloat>().isExactlyValue(1.0);
if (llvm::isa<IntegerType>(elemType)) {
const int64_t shifted = 1LL << shift;
return val && val.isSplat() &&
val.getSplatValue<APInt>().getSExtValue() == shifted;
}
return false;
}
OpFoldResult AddOp::fold(FoldAdaptor adaptor) {
auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!lhsTy || !rhsTy || !resultTy)
return {};
auto resultETy = resultTy.getElementType();
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr))
return getInput1();
if (rhsTy == resultTy && isSplatZero(resultETy, lhsAttr))
return getInput2();
if (!lhsAttr || !rhsAttr)
return {};
return binaryFolder<std::plus<APInt>, std::plus<APFloat>>(lhsAttr, rhsAttr,
resultTy);
}
OpFoldResult DivOp::fold(FoldAdaptor adaptor) {
auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!lhsTy || !rhsTy || !resultTy)
return {};
if (lhsTy != rhsTy)
return {};
auto resultETy = resultTy.getElementType();
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
if (lhsAttr && lhsAttr.isSplat()) {
if (llvm::isa<IntegerType>(resultETy) &&
lhsAttr.getSplatValue<APInt>().isZero())
return lhsAttr;
}
if (rhsAttr && rhsAttr.isSplat()) {
if (llvm::isa<IntegerType>(resultETy) &&
rhsAttr.getSplatValue<APInt>().isOne())
return getInput1();
}
if (rhsAttr && lhsAttr && rhsAttr.isSplat() && lhsAttr.isSplat()) {
if (llvm::isa<IntegerType>(resultETy)) {
APInt l = lhsAttr.getSplatValue<APInt>();
APInt r = rhsAttr.getSplatValue<APInt>();
APInt result = l.sdiv(r);
return DenseElementsAttr::get(resultTy, result);
}
}
return {};
}
namespace {
DenseElementsAttr mulBinaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs,
RankedTensorType ty, int32_t shift) {
if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) {
if (llvm::isa<IntegerType>(ty.getElementType())) {
APInt l = lhs.getSplatValue<APInt>();
APInt r = rhs.getSplatValue<APInt>();
if (shift == 0) {
return DenseElementsAttr::get(ty, l * r);
}
auto bitwidth = ty.getElementType().getIntOrFloatBitWidth();
l = l.sext(bitwidth * 2);
r = r.sext(bitwidth * 2);
auto result = l * r;
result.lshrInPlace(shift);
result = result.trunc(bitwidth);
return DenseElementsAttr::get(ty, result);
}
if (llvm::isa<FloatType>(ty.getElementType())) {
APFloat l = lhs.getSplatValue<APFloat>();
APFloat r = rhs.getSplatValue<APFloat>();
APFloat result = l * r;
return DenseElementsAttr::get(ty, result);
}
}
return {};
}
} // namespace
OpFoldResult MulOp::fold(FoldAdaptor adaptor) {
auto lhs = getInput1();
auto rhs = getInput2();
auto lhsTy = llvm::dyn_cast<RankedTensorType>(lhs.getType());
auto rhsTy = llvm::dyn_cast<RankedTensorType>(rhs.getType());
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!lhsTy || !rhsTy || !resultTy)
return {};
auto resultETy = resultTy.getElementType();
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
const int64_t shift = llvm::isa<IntegerType>(resultETy) ? getShift() : 0;
if (rhsTy == resultTy) {
if (isSplatZero(resultETy, lhsAttr))
return lhsAttr.resizeSplat(resultTy);
if (isSplatOne(resultETy, lhsAttr, shift))
return rhs;
}
if (lhsTy == resultTy) {
if (isSplatZero(resultETy, rhsAttr))
return rhsAttr.resizeSplat(resultTy);
if (isSplatOne(resultETy, rhsAttr, shift))
return lhs;
}
return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, getShift());
}
OpFoldResult SubOp::fold(FoldAdaptor adaptor) {
auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!lhsTy || !rhsTy || !resultTy)
return {};
auto resultETy = resultTy.getElementType();
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr))
return getInput1();
if (!lhsAttr || !rhsAttr)
return {};
return binaryFolder<std::minus<APInt>, std::minus<APFloat>>(lhsAttr, rhsAttr,
resultTy);
}
namespace {
template <typename Cmp>
struct ComparisonFold {
ComparisonFold() = default;
APInt operator()(const APInt &l, const APInt &r) {
return APInt(1, Cmp()(l, r));
}
APInt operator()(const APFloat &l, const APFloat &r) {
return APInt(1, Cmp()(l, r));
}
};
struct APIntFoldGreater {
APIntFoldGreater() = default;
APInt operator()(const APInt &l, const APInt &r) {
return APInt(1, l.sgt(r));
}
};
struct APIntFoldGreaterEqual {
APIntFoldGreaterEqual() = default;
APInt operator()(const APInt &l, const APInt &r) {
return APInt(1, l.sge(r));
}
};
} // namespace
OpFoldResult GreaterOp::fold(FoldAdaptor adaptor) {
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
if (!lhsAttr || !rhsAttr)
return {};
return binaryFolder<APIntFoldGreater, ComparisonFold<std::greater<APFloat>>>(
lhsAttr, rhsAttr, resultTy);
}
OpFoldResult GreaterEqualOp::fold(FoldAdaptor adaptor) {
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
if (!lhsAttr || !rhsAttr)
return {};
return binaryFolder<APIntFoldGreaterEqual,
ComparisonFold<std::greater_equal<APFloat>>>(
lhsAttr, rhsAttr, resultTy);
}
OpFoldResult EqualOp::fold(FoldAdaptor adaptor) {
auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
Value lhs = getInput1();
Value rhs = getInput2();
auto lhsTy = llvm::cast<ShapedType>(lhs.getType());
// If we are comparing an integer value to itself it is always true. We can
// not do this with float due to float values.
if (llvm::isa<IntegerType>(lhsTy.getElementType()) && resultTy &&
resultTy.hasStaticShape() && lhs == rhs) {
return DenseElementsAttr::get(resultTy, true);
}
if (!lhsAttr || !rhsAttr)
return {};
return binaryFolder<ComparisonFold<std::equal_to<APInt>>,
ComparisonFold<std::equal_to<APFloat>>>(lhsAttr, rhsAttr,
resultTy);
}
OpFoldResult CastOp::fold(FoldAdaptor adaptor) {
if (getInput().getType() == getType())
return getInput();
auto operand = llvm::dyn_cast_if_present<ElementsAttr>(adaptor.getInput());
if (!operand)
return {};
auto inTy = llvm::cast<ShapedType>(getInput().getType());
auto outTy = llvm::cast<ShapedType>(getType());
auto inETy = inTy.getElementType();
auto outETy = outTy.getElementType();
if (operand.isSplat()) {
if (llvm::isa<FloatType>(inETy) && llvm::isa<FloatType>(outETy)) {
bool overflow;
auto splatVal = operand.getSplatValue<APFloat>();
auto &semantics = llvm::cast<FloatType>(outETy).getFloatSemantics();
splatVal.convert(semantics, llvm::RoundingMode::NearestTiesToEven,
&overflow);
return SplatElementsAttr::get(outTy, splatVal);
}
if (llvm::isa<IntegerType>(inETy) && llvm::isa<FloatType>(outETy)) {
auto unsign = llvm::cast<IntegerType>(inETy).isUnsignedInteger();
APFloat splatVal(llvm::cast<FloatType>(outETy).getFloatSemantics());
splatVal.convertFromAPInt(operand.getSplatValue<APInt>(), !unsign,
llvm::RoundingMode::NearestTiesToEven);
return SplatElementsAttr::get(outTy, splatVal);
}
if (llvm::isa<FloatType>(inETy) && llvm::isa<IntegerType>(outETy)) {
auto unsign = llvm::cast<IntegerType>(outETy).isUnsignedInteger();
auto intVal = APSInt(
llvm::cast<IntegerType>(outETy).getIntOrFloatBitWidth(), unsign);
auto floatVal = operand.getSplatValue<APFloat>();
bool exact;
floatVal.convertToInteger(intVal, llvm::RoundingMode::TowardZero, &exact);
return SplatElementsAttr::get(outTy, intVal);
}
if (llvm::isa<IntegerType>(inETy) && llvm::isa<IntegerType>(outETy)) {
auto unsignIn = llvm::cast<IntegerType>(inETy).isUnsignedInteger();
bool trunc =
inETy.getIntOrFloatBitWidth() > outETy.getIntOrFloatBitWidth();
auto intVal = operand.getSplatValue<APInt>();
auto bitwidth = outETy.getIntOrFloatBitWidth();
if (trunc) {
intVal = intVal.trunc(bitwidth);
} else if (unsignIn) {
intVal = intVal.zext(bitwidth);
} else {
intVal = intVal.sext(bitwidth);
}
return SplatElementsAttr::get(outTy, intVal);
}
}
return {};
}
OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }
#define REDUCE_FOLDER(OP) \
OpFoldResult OP::fold(FoldAdaptor adaptor) { \
ShapedType inputTy = llvm::cast<ShapedType>(getInput().getType()); \
if (!inputTy.hasRank()) \
return {}; \
if (inputTy.getDimSize(getAxis()) == 1) \
return getInput(); \
return {}; \
}
REDUCE_FOLDER(ReduceAllOp)
REDUCE_FOLDER(ReduceAnyOp)
REDUCE_FOLDER(ReduceMaxOp)
REDUCE_FOLDER(ReduceMinOp)
REDUCE_FOLDER(ReduceProdOp)
REDUCE_FOLDER(ReduceSumOp)
#undef REDUCE_FOLDER
OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) {
auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!inputTy || !outputTy)
return {};
if (inputTy == outputTy)
return getInput1();
// reshape(reshape(x)) -> reshape(x)
if (auto reshapeOp = llvm::dyn_cast_if_present<tosa::ReshapeOp>(
getInput1().getDefiningOp())) {
getInput1Mutable().assign(reshapeOp.getInput1());
return getResult();
}
// reshape(const(x)) -> const(reshape-attr(x))
if (auto operand = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) {
// Constants must have static shape.
if (!outputTy.hasStaticShape())
return {};
// Okay to duplicate splat constants.
if (operand.isSplat())
return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
// Don't duplicate other constants.
if (!getInput1().hasOneUse())
return {};
return operand.reshape(
llvm::cast<ShapedType>(operand.getType()).clone(getNewShape()));
}
return {};
}
OpFoldResult PadOp::fold(FoldAdaptor adaptor) {
// If the pad is all zeros we can fold this operation away.
if (adaptor.getPadding()) {
auto densePad = llvm::cast<DenseElementsAttr>(adaptor.getPadding());
if (densePad.isSplat() && densePad.getSplatValue<APInt>().isZero()) {
return getInput1();
}
}
return {};
}
// Fold away cases where a tosa.resize operation returns a copy
// of the input image.
OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) {
ArrayRef<int64_t> offset = getOffset();
ArrayRef<int64_t> border = getBorder();
ArrayRef<int64_t> scale = getScale();
// Check unit scaling.
if (scale[0] != scale[1] || scale[2] != scale[3]) {
return {};
}
// There should be no offset.
if (offset[0] != 0 || offset[1] != 0) {
return {};
}
// There should be no border.
if (border[0] != 0 || border[1] != 0) {
return {};
}
auto input = getInput();
auto inputTy = llvm::cast<RankedTensorType>(input.getType());
auto resultTy = llvm::cast<RankedTensorType>(getType());
if (inputTy != resultTy)
return {};
return input;
}
OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
auto operand = getInput();
auto operandTy = llvm::cast<ShapedType>(operand.getType());
auto axis = getAxis();
auto operandAttr = llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput());
if (operandAttr)
return operandAttr;
// If the dim-length is 1, tosa.reverse is a no-op.
if (operandTy.hasRank() && operandTy.getDimSize(axis) == 1)
return operand;
return {};
}
OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType());
auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());
if (!inputTy || !outputTy)
return {};
if (inputTy == outputTy && inputTy.hasStaticShape())
return getInput();
if (!adaptor.getInput())
return {};
// Cannot create an ElementsAttr from non-int/float/index types
if (!inputTy.getElementType().isIntOrIndexOrFloat() ||
!outputTy.getElementType().isIntOrIndexOrFloat())
return {};
auto operand = llvm::cast<ElementsAttr>(adaptor.getInput());
if (operand.isSplat() && outputTy.hasStaticShape()) {
return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
}
if (inputTy.hasStaticShape() && outputTy.hasStaticShape() &&
outputTy.getNumElements() == 1) {
llvm::SmallVector<uint64_t> indices(getStart());
auto value = operand.getValues<Attribute>()[indices];
return SplatElementsAttr::get(outputTy, value);
}
return {};
}
OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) {
if (getOnTrue() == getOnFalse())
return getOnTrue();
auto predicate = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getPred());
if (!predicate)
return {};
if (!predicate.isSplat())
return {};
return predicate.getSplatValue<APInt>().getBoolValue() ? getOnTrue()
: getOnFalse();
}
OpFoldResult TileOp::fold(FoldAdaptor adaptor) {
bool allOnes = llvm::all_of(getMultiples(), [](int64_t v) { return v == 1; });
if (allOnes && getInput1().getType() == getType())
return getInput1();
return {};
}
OpFoldResult TransposeOp::fold(FoldAdaptor adaptor) {
auto inputTy = llvm::cast<ShapedType>(getInput1().getType());
auto resultTy = llvm::cast<ShapedType>(getType());
// Transposing splat values just means reshaping.
if (auto input = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) {
if (input.isSplat() && resultTy.hasStaticShape() &&
inputTy.getElementType() == resultTy.getElementType())
return input.reshape(resultTy);
}
// Transpose does not change the input type.
if (getInput1().getType() != getType())
return {};
// Transpose is not the identity transpose.
SmallVector<int64_t> perms;
if (getConstantPerms(perms).failed())
return {};
if (!llvm::equal(llvm::seq<int64_t>(0, perms.size()), perms))
return {};
return getInput1();
}
OpFoldResult tosa::LogOp::fold(FoldAdaptor adaptor) {
auto input = getInput1();
// Element-wise log(exp(x)) = x
if (auto op = input.getDefiningOp<tosa::ExpOp>()) {
return op.getInput1();
}
return {};
}
OpFoldResult tosa::ExpOp::fold(FoldAdaptor adaptor) {
auto input = getInput1();
// Element-wise exp(log(x)) = x
if (auto op = input.getDefiningOp<tosa::LogOp>()) {
return op.getInput1();
}
return {};
}
OpFoldResult tosa::NegateOp::fold(FoldAdaptor adaptor) {
auto input = getInput1();
// Element-wise negate(negate(x)) = x
if (auto op = input.getDefiningOp<tosa::NegateOp>()) {
return op.getInput1();
}
return {};
}
OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) {
auto input = getInput1();
// Element-wise abs(abs(x)) = abs(x)
if (auto op = input.getDefiningOp<tosa::AbsOp>()) {
return input;
}
return {};
}
OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) {
// Fold consecutive concats on the same axis into a single op.
// Keep track of the operands so we are able to construct a new concat
// later. Conservatively assume that we double the number of operands when
// folding
SmallVector<Value, 8> concatOperands;
concatOperands.reserve(2 * getNumOperands());
// Find all operands that are foldable concats
bool foundFoldableConcat = false;
for (Value operand : getOperands()) {
concatOperands.emplace_back(operand);
auto producer = dyn_cast_or_null<ConcatOp>(operand.getDefiningOp());
if (!producer)
continue;
// Not foldable if axes are not the same
if (getAxis() != producer.getAxis())
continue;
// Replace the original operand with all incoming operands
foundFoldableConcat = true;
concatOperands.pop_back();
llvm::append_range(concatOperands, producer->getOperands());
}
if (!foundFoldableConcat)
return {};
getOperation()->setOperands(concatOperands);
return getResult();
}
|