File: TosaCanonicalizations.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1036 lines) | stat: -rw-r--r-- 35,421 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
//===- TosaCanonicalizations.cpp - Canonicalization patterns & folders ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// TOSA canonicalization patterns and folders.
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Transforms/FoldUtils.h"
#include "mlir/Transforms/InliningUtils.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"

#include <functional>

using namespace mlir;
using namespace mlir::tosa;

//===----------------------------------------------------------------------===//
// Operator Canonicalizers.
//===----------------------------------------------------------------------===//

struct ConcatOptimization : public OpRewritePattern<tosa::ConcatOp> {
  using OpRewritePattern<tosa::ConcatOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::ConcatOp op,
                                PatternRewriter &rewriter) const override {
    if (op.getInput1().size() != 1)
      return failure();
    if (op.getInput1().front().getType() != op.getType()) {
      rewriter
          .replaceOpWithNewOp<tensor::CastOp>(op, op.getType(),
                                              op.getInput1().front())
          .getResult();
      return success();
    }

    rewriter.replaceOp(op, op.getInput1().front());
    return success();
  }
};

void ConcatOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                           MLIRContext *context) {
  results.add<ConcatOptimization>(context);
}

LogicalResult SelectOp::canonicalize(SelectOp op, PatternRewriter &rewriter) {
  auto notOp = op.getPred().getDefiningOp<tosa::LogicalNotOp>();
  if (!notOp)
    return failure();
  rewriter.updateRootInPlace(op, [&]() {
    op.getOperation()->setOperands(
        {notOp.getInput1(), op.getOnFalse(), op.getOnTrue()});
  });
  return success();
}

struct ConsolidateTransposeOptimization
    : public OpRewritePattern<tosa::TransposeOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::TransposeOp transposeOp,
                                PatternRewriter &rewriter) const override {
    // Input is also TransposeOp - transpose(transpose(A)).
    auto innerTranspose =
        transposeOp.getInput1().getDefiningOp<tosa::TransposeOp>();
    if (!innerTranspose)
      return rewriter.notifyMatchFailure(transposeOp,
                                         "input must be transpose operation");

    SmallVector<int64_t> transposePerms, innerTransposePerms;
    if (transposeOp.getConstantPerms(transposePerms).failed())
      return rewriter.notifyMatchFailure(transposeOp,
                                         "transpose perms must be constant");
    if (innerTranspose.getConstantPerms(innerTransposePerms).failed())
      return rewriter.notifyMatchFailure(
          transposeOp, "inner transpose perms must be constant");
    if (transposePerms.size() != innerTransposePerms.size())
      return rewriter.notifyMatchFailure(
          transposeOp,
          "transpose and inner transpose perms sizes must be equal");
    if (transposePerms.empty())
      return rewriter.notifyMatchFailure(
          transposeOp, "transpose perms sizes must be positive");

    // Consolidate transposes into one transpose.
    SmallVector<int32_t> perms(transposePerms.size());
    for (int i = 0, s = transposePerms.size(); i < s; ++i)
      perms[i] = innerTransposePerms[transposePerms[i]];

    auto permsTy =
        RankedTensorType::get(transposePerms.size(), rewriter.getI32Type());
    auto permsAttr = DenseIntElementsAttr::get(permsTy, perms);
    Value permsValue =
        rewriter.create<arith::ConstantOp>(transposeOp.getLoc(), permsAttr);

    rewriter.replaceOpWithNewOp<tosa::TransposeOp>(
        transposeOp, transposeOp.getResult().getType(),
        innerTranspose.getInput1(), permsValue);

    return success();
  }
};

// Determines the case when tosa.transpose is a tosa.reshape operation.
struct TransposeIsReshape : public OpRewritePattern<tosa::TransposeOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::TransposeOp op,
                                PatternRewriter &rewriter) const override {
    DenseIntElementsAttr permAttr;
    if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
      return rewriter.notifyMatchFailure(op, "Non-constant permutation");

    if (op.getInput1().getDefiningOp<tosa::TransposeOp>())
      return rewriter.notifyMatchFailure(
          op, "Src is from transpose, can compose transposes");

    Value result = op.getResult();
    for (Operation *subop : result.getUsers()) {
      if (dyn_cast_or_null<tosa::TransposeOp>(subop))
        return rewriter.notifyMatchFailure(
            op, "Dest is used by transpose, can compose transposes");
    }

    auto input = op.getInput1();
    auto inputTy = llvm::cast<ShapedType>(input.getType());
    if (!inputTy.hasRank())
      return rewriter.notifyMatchFailure(op, "Unranked input.");

    int64_t numDynDims = 0;
    for (int i = 0; i < inputTy.getRank(); ++i)
      if (inputTy.isDynamicDim(i))
        numDynDims++;

    if (numDynDims > 1)
      return rewriter.notifyMatchFailure(op, "Has more than one dynamic dim.");

    SmallVector<int64_t> permValues = llvm::to_vector<6>(
        llvm::map_range(permAttr.getValues<APInt>(),
                        [](const APInt &val) { return val.getSExtValue(); }));

    SmallVector<int64_t> nonZeroPerms;
    nonZeroPerms.reserve(permValues.size());
    for (auto idx : permValues) {
      auto sz = inputTy.getDimSize(idx);
      if (sz != 1)
        nonZeroPerms.push_back(idx);
    }

    for (int i = 1, s = nonZeroPerms.size(); i < s; ++i)
      if (nonZeroPerms[i - 1] > nonZeroPerms[i])
        return rewriter.notifyMatchFailure(op,
                                           "Transpose changes memory layout.");

    SmallVector<int64_t> newShape;
    newShape.reserve(inputTy.getRank());
    for (int i = 0, s = inputTy.getRank(); i < s; ++i)
      newShape.push_back(inputTy.getDimSize(permValues[i]));

    rewriter.replaceOpWithNewOp<tosa::ReshapeOp>(
        op, op.getType(), op.getInput1(),
        rewriter.getDenseI64ArrayAttr(newShape));
    return success();
  }
};

void TransposeOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                              MLIRContext *context) {
  results.add<ConsolidateTransposeOptimization, TransposeIsReshape>(context);
}

struct MaterializePadValue : public OpRewritePattern<tosa::PadOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::PadOp op,
                                PatternRewriter &rewriter) const override {
    if (op.getPadConst())
      return failure();

    auto input = op.getInput1();
    auto padding = op.getPadding();

    ShapedType inputTy = llvm::cast<ShapedType>(input.getType());
    Type elementTy = inputTy.getElementType();

    Attribute constantAttr;
    if (llvm::isa<FloatType>(elementTy)) {
      constantAttr = rewriter.getFloatAttr(elementTy, 0.0);
    } else if (llvm::isa<IntegerType>(elementTy) && !op.getQuantizationInfo()) {
      constantAttr = rewriter.getIntegerAttr(elementTy, 0);
    } else if (llvm::isa<IntegerType>(elementTy) && op.getQuantizationInfo()) {
      auto value = op.getQuantizationInfo()->getInputZp();
      constantAttr = rewriter.getIntegerAttr(elementTy, value);
    }

    if (!constantAttr) {
      return rewriter.notifyMatchFailure(
          op,
          "tosa.pad to linalg lowering encountered an unknown element type");
    }

    auto denseAttr = DenseElementsAttr::get(
        RankedTensorType::get({}, elementTy), constantAttr);
    auto constantVal = rewriter.create<tosa::ConstOp>(
        op.getLoc(), denseAttr.getType(), denseAttr);

    rewriter.replaceOpWithNewOp<tosa::PadOp>(
        op, op.getType(), ValueRange{input, padding, constantVal},
        op->getAttrs());
    return success();
  }
};

void PadOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                        MLIRContext *context) {
  results.add<MaterializePadValue>(context);
}

struct MaxPool2dIsNoOp : public OpRewritePattern<tosa::MaxPool2dOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::MaxPool2dOp op,
                                PatternRewriter &rewriter) const override {
    Value input = op.getInput();
    Value output = op.getOutput();
    ShapedType inputType = llvm::cast<ShapedType>(input.getType());
    ShapedType outputType = llvm::cast<ShapedType>(output.getType());

    if (!inputType.hasStaticShape() || !outputType.hasStaticShape()) {
      return failure();
    }

    // If the output and input shapes are 1x1, then this is a no op.
    ArrayRef<int64_t> outputShape = outputType.getShape();
    if (outputShape[1] != 1 || outputShape[2] != 1) {
      return failure();
    }

    ArrayRef<int64_t> inputShape = inputType.getShape();
    if (inputShape[1] != 1 || inputShape[2] != 1) {
      return failure();
    }

    rewriter.replaceOp(op, input);
    return success();
  }
};

void MaxPool2dOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                              MLIRContext *context) {
  results.add<MaxPool2dIsNoOp>(context);
}

struct ClampIsNoOp : public OpRewritePattern<tosa::ClampOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::ClampOp op,
                                PatternRewriter &rewriter) const override {
    Value input = op.getInput();
    auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
    auto inputElementType = inputType.getElementType();

    if (!inputType.hasStaticShape()) {
      return failure();
    }

    if (inputElementType.isa<FloatType>()) {
      // Unlike integer types, floating point types can represent infinity.
      auto minClamp = op.getMinFp();
      auto maxClamp = op.getMaxFp();
      bool isMin = minClamp.isInfinity() && minClamp.isNegative();
      bool isMax = maxClamp.isInfinity() && !maxClamp.isNegative();

      if (isMin && isMax) {
        rewriter.replaceOp(op, input);
        return success();
      }
      return failure();
    }

    if (inputElementType.isUnsignedInteger()) {
      int64_t minClamp = op.getMinInt();
      int64_t maxClamp = op.getMaxInt();

      int64_t intMin =
          APInt::getMinValue(inputElementType.getIntOrFloatBitWidth())
              .getZExtValue();
      int64_t intMax =
          APInt::getMaxValue(inputElementType.getIntOrFloatBitWidth())
              .getZExtValue();

      if (minClamp <= intMin && maxClamp >= intMax) {
        rewriter.replaceOp(op, input);
        return success();
      }
      return failure();
    }

    if (llvm::isa<IntegerType>(inputElementType)) {
      int64_t minClamp = op.getMinInt();
      int64_t maxClamp = op.getMaxInt();

      int64_t intMin =
          APInt::getSignedMinValue(inputElementType.getIntOrFloatBitWidth())
              .getSExtValue();
      int64_t intMax =
          APInt::getSignedMaxValue(inputElementType.getIntOrFloatBitWidth())
              .getSExtValue();

      if (minClamp <= intMin && maxClamp >= intMax) {
        rewriter.replaceOp(op, input);
        return success();
      }
      return failure();
    }

    return failure();
  }
};

struct ClampClampOptimization : public OpRewritePattern<tosa::ClampOp> {
  using OpRewritePattern<tosa::ClampOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::ClampOp op,
                                PatternRewriter &rewriter) const override {
    Value input = op.getInput();

    Operation *definingOp = input.getDefiningOp();
    if (!definingOp)
      return failure();

    if (tosa::ClampOp clampOp = dyn_cast<tosa::ClampOp>(definingOp)) {
      auto minFp = std::max(op.getMinFp(), clampOp.getMinFp()).convertToFloat();
      auto maxFp = std::min(op.getMaxFp(), clampOp.getMaxFp()).convertToFloat();

      auto minInt = std::max(op.getMinInt(), clampOp.getMinInt());
      auto maxInt = std::min(op.getMaxInt(), clampOp.getMaxInt());

      rewriter.replaceOpWithNewOp<tosa::ClampOp>(
          op, op.getType(), clampOp.getInput(),
          rewriter.getI64IntegerAttr(minInt),
          rewriter.getI64IntegerAttr(maxInt), rewriter.getF32FloatAttr(minFp),
          rewriter.getF32FloatAttr(maxFp));
      return success();
    }

    return failure();
  }
};

void ClampOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                          MLIRContext *context) {
  results.add<ClampIsNoOp>(context);
  results.add<ClampClampOptimization>(context);
}

struct ConcatSliceOptimization : public OpRewritePattern<tosa::SliceOp> {
  using OpRewritePattern<tosa::SliceOp>::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::SliceOp sliceOp,
                                PatternRewriter &rewriter) const override {
    Value sliceInput = sliceOp.getInput();
    auto concatOp = sliceInput.getDefiningOp<tosa::ConcatOp>();
    if (!concatOp)
      return rewriter.notifyMatchFailure(
          sliceOp, "slice input must be concat operation");

    OperandRange inputs = concatOp.getInput1();
    auto concatType = dyn_cast<RankedTensorType>(concatOp.getType());
    if (!concatType || !concatType.hasStaticShape())
      return rewriter.notifyMatchFailure(
          sliceOp, "slice input must be a static ranked tensor");
    int32_t axis = concatOp.getAxis();

    llvm::SmallVector<int64_t> sliceStart(sliceOp.getStart());
    llvm::ArrayRef<int64_t> sliceSize = sliceOp.getSize();

    // Validate slice on the concatenated axis. Slicing along this
    // axis should span only one of the inputs to the concatenate
    // operation.
    std::optional<Value> replaceWithSlice;
    for (auto input : inputs) {
      auto inputType = dyn_cast<RankedTensorType>(input.getType());
      if (!inputType || !inputType.hasStaticShape())
        return rewriter.notifyMatchFailure(
            sliceOp, "concat input must be a static ranked tensor");

      if (sliceStart[axis] >= 0 &&
          (sliceStart[axis] + sliceSize[axis]) <= inputType.getDimSize(axis)) {
        replaceWithSlice =
            rewriter
                .create<tosa::SliceOp>(
                    sliceOp.getLoc(), sliceOp.getType(), input,
                    rewriter.getDenseI64ArrayAttr(sliceOp.getStart()),
                    rewriter.getDenseI64ArrayAttr(sliceSize))
                .getResult();
        break;
      }
      sliceStart[axis] -= inputType.getDimSize(axis);
    }

    if (!replaceWithSlice)
      return rewriter.notifyMatchFailure(
          sliceOp, "corresponding concat input not found for slice");

    rewriter.replaceOp(sliceOp, replaceWithSlice.value());
    return success();
  }
};

void SliceOp::getCanonicalizationPatterns(RewritePatternSet &results,
                                          MLIRContext *context) {
  results.add<ConcatSliceOptimization>(context);
}

//===----------------------------------------------------------------------===//
// Operator Folders.
//===----------------------------------------------------------------------===//

template <typename IntFolder, typename FloatFolder>
DenseElementsAttr binaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs,
                               RankedTensorType returnTy) {
  if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) {
    auto lETy = llvm::cast<ShapedType>(lhs.getType()).getElementType();
    auto rETy = llvm::cast<ShapedType>(rhs.getType()).getElementType();
    if (lETy != rETy)
      return {};

    if (llvm::isa<IntegerType>(lETy)) {
      APInt l = lhs.getSplatValue<APInt>();
      APInt r = rhs.getSplatValue<APInt>();
      auto result = IntFolder()(l, r);
      return DenseElementsAttr::get(returnTy, result);
    }

    if (llvm::isa<FloatType>(lETy)) {
      APFloat l = lhs.getSplatValue<APFloat>();
      APFloat r = rhs.getSplatValue<APFloat>();
      auto result = FloatFolder()(l, r);
      return DenseElementsAttr::get(returnTy, result);
    }
  }

  return {};
}

static bool isSplatZero(Type elemType, DenseElementsAttr val) {
  if (llvm::isa<FloatType>(elemType))
    return val && val.isSplat() && val.getSplatValue<APFloat>().isZero();
  if (llvm::isa<IntegerType>(elemType))
    return val && val.isSplat() && val.getSplatValue<APInt>().isZero();
  return false;
}

static bool isSplatOne(Type elemType, DenseElementsAttr val, int64_t shift) {
  if (llvm::isa<FloatType>(elemType))
    return val && val.isSplat() &&
           val.getSplatValue<APFloat>().isExactlyValue(1.0);
  if (llvm::isa<IntegerType>(elemType)) {
    const int64_t shifted = 1LL << shift;
    return val && val.isSplat() &&
           val.getSplatValue<APInt>().getSExtValue() == shifted;
  }
  return false;
}

OpFoldResult AddOp::fold(FoldAdaptor adaptor) {
  auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
  auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  if (!lhsTy || !rhsTy || !resultTy)
    return {};

  auto resultETy = resultTy.getElementType();
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());

  if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr))
    return getInput1();
  if (rhsTy == resultTy && isSplatZero(resultETy, lhsAttr))
    return getInput2();

  if (!lhsAttr || !rhsAttr)
    return {};

  return binaryFolder<std::plus<APInt>, std::plus<APFloat>>(lhsAttr, rhsAttr,
                                                            resultTy);
}

OpFoldResult DivOp::fold(FoldAdaptor adaptor) {
  auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
  auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  if (!lhsTy || !rhsTy || !resultTy)
    return {};
  if (lhsTy != rhsTy)
    return {};

  auto resultETy = resultTy.getElementType();
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
  if (lhsAttr && lhsAttr.isSplat()) {
    if (llvm::isa<IntegerType>(resultETy) &&
        lhsAttr.getSplatValue<APInt>().isZero())
      return lhsAttr;
  }

  if (rhsAttr && rhsAttr.isSplat()) {
    if (llvm::isa<IntegerType>(resultETy) &&
        rhsAttr.getSplatValue<APInt>().isOne())
      return getInput1();
  }

  if (rhsAttr && lhsAttr && rhsAttr.isSplat() && lhsAttr.isSplat()) {
    if (llvm::isa<IntegerType>(resultETy)) {
      APInt l = lhsAttr.getSplatValue<APInt>();
      APInt r = rhsAttr.getSplatValue<APInt>();
      APInt result = l.sdiv(r);
      return DenseElementsAttr::get(resultTy, result);
    }
  }

  return {};
}

namespace {
DenseElementsAttr mulBinaryFolder(DenseElementsAttr lhs, DenseElementsAttr rhs,
                                  RankedTensorType ty, int32_t shift) {
  if (rhs && lhs && rhs.isSplat() && lhs.isSplat()) {
    if (llvm::isa<IntegerType>(ty.getElementType())) {
      APInt l = lhs.getSplatValue<APInt>();
      APInt r = rhs.getSplatValue<APInt>();

      if (shift == 0) {
        return DenseElementsAttr::get(ty, l * r);
      }

      auto bitwidth = ty.getElementType().getIntOrFloatBitWidth();
      l = l.sext(bitwidth * 2);
      r = r.sext(bitwidth * 2);
      auto result = l * r;
      result.lshrInPlace(shift);
      result = result.trunc(bitwidth);
      return DenseElementsAttr::get(ty, result);
    }

    if (llvm::isa<FloatType>(ty.getElementType())) {
      APFloat l = lhs.getSplatValue<APFloat>();
      APFloat r = rhs.getSplatValue<APFloat>();
      APFloat result = l * r;
      return DenseElementsAttr::get(ty, result);
    }
  }

  return {};
}
} // namespace

OpFoldResult MulOp::fold(FoldAdaptor adaptor) {
  auto lhs = getInput1();
  auto rhs = getInput2();
  auto lhsTy = llvm::dyn_cast<RankedTensorType>(lhs.getType());
  auto rhsTy = llvm::dyn_cast<RankedTensorType>(rhs.getType());
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  if (!lhsTy || !rhsTy || !resultTy)
    return {};

  auto resultETy = resultTy.getElementType();
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());

  const int64_t shift = llvm::isa<IntegerType>(resultETy) ? getShift() : 0;
  if (rhsTy == resultTy) {
    if (isSplatZero(resultETy, lhsAttr))
      return lhsAttr.resizeSplat(resultTy);
    if (isSplatOne(resultETy, lhsAttr, shift))
      return rhs;
  }
  if (lhsTy == resultTy) {
    if (isSplatZero(resultETy, rhsAttr))
      return rhsAttr.resizeSplat(resultTy);
    if (isSplatOne(resultETy, rhsAttr, shift))
      return lhs;
  }

  return mulBinaryFolder(lhsAttr, rhsAttr, resultTy, getShift());
}

OpFoldResult SubOp::fold(FoldAdaptor adaptor) {
  auto lhsTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
  auto rhsTy = llvm::dyn_cast<RankedTensorType>(getInput2().getType());
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  if (!lhsTy || !rhsTy || !resultTy)
    return {};

  auto resultETy = resultTy.getElementType();
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());

  if (lhsTy == resultTy && isSplatZero(resultETy, rhsAttr))
    return getInput1();

  if (!lhsAttr || !rhsAttr)
    return {};

  return binaryFolder<std::minus<APInt>, std::minus<APFloat>>(lhsAttr, rhsAttr,
                                                              resultTy);
}

namespace {
template <typename Cmp>
struct ComparisonFold {
  ComparisonFold() = default;
  APInt operator()(const APInt &l, const APInt &r) {
    return APInt(1, Cmp()(l, r));
  }

  APInt operator()(const APFloat &l, const APFloat &r) {
    return APInt(1, Cmp()(l, r));
  }
};

struct APIntFoldGreater {
  APIntFoldGreater() = default;
  APInt operator()(const APInt &l, const APInt &r) {
    return APInt(1, l.sgt(r));
  }
};

struct APIntFoldGreaterEqual {
  APIntFoldGreaterEqual() = default;
  APInt operator()(const APInt &l, const APInt &r) {
    return APInt(1, l.sge(r));
  }
};
} // namespace

OpFoldResult GreaterOp::fold(FoldAdaptor adaptor) {
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());

  if (!lhsAttr || !rhsAttr)
    return {};

  return binaryFolder<APIntFoldGreater, ComparisonFold<std::greater<APFloat>>>(
      lhsAttr, rhsAttr, resultTy);
}

OpFoldResult GreaterEqualOp::fold(FoldAdaptor adaptor) {
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());

  if (!lhsAttr || !rhsAttr)
    return {};

  return binaryFolder<APIntFoldGreaterEqual,
                      ComparisonFold<std::greater_equal<APFloat>>>(
      lhsAttr, rhsAttr, resultTy);
}

OpFoldResult EqualOp::fold(FoldAdaptor adaptor) {
  auto resultTy = llvm::dyn_cast<RankedTensorType>(getType());
  auto lhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1());
  auto rhsAttr = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput2());
  Value lhs = getInput1();
  Value rhs = getInput2();
  auto lhsTy = llvm::cast<ShapedType>(lhs.getType());

  // If we are comparing an integer value to itself it is always true. We can
  // not do this with float due to float values.
  if (llvm::isa<IntegerType>(lhsTy.getElementType()) && resultTy &&
      resultTy.hasStaticShape() && lhs == rhs) {
    return DenseElementsAttr::get(resultTy, true);
  }

  if (!lhsAttr || !rhsAttr)
    return {};

  return binaryFolder<ComparisonFold<std::equal_to<APInt>>,
                      ComparisonFold<std::equal_to<APFloat>>>(lhsAttr, rhsAttr,
                                                              resultTy);
}

OpFoldResult CastOp::fold(FoldAdaptor adaptor) {
  if (getInput().getType() == getType())
    return getInput();

  auto operand = llvm::dyn_cast_if_present<ElementsAttr>(adaptor.getInput());
  if (!operand)
    return {};

  auto inTy = llvm::cast<ShapedType>(getInput().getType());
  auto outTy = llvm::cast<ShapedType>(getType());
  auto inETy = inTy.getElementType();
  auto outETy = outTy.getElementType();

  if (operand.isSplat()) {
    if (llvm::isa<FloatType>(inETy) && llvm::isa<FloatType>(outETy)) {
      bool overflow;
      auto splatVal = operand.getSplatValue<APFloat>();
      auto &semantics = llvm::cast<FloatType>(outETy).getFloatSemantics();
      splatVal.convert(semantics, llvm::RoundingMode::NearestTiesToEven,
                       &overflow);
      return SplatElementsAttr::get(outTy, splatVal);
    }

    if (llvm::isa<IntegerType>(inETy) && llvm::isa<FloatType>(outETy)) {
      auto unsign = llvm::cast<IntegerType>(inETy).isUnsignedInteger();
      APFloat splatVal(llvm::cast<FloatType>(outETy).getFloatSemantics());
      splatVal.convertFromAPInt(operand.getSplatValue<APInt>(), !unsign,
                                llvm::RoundingMode::NearestTiesToEven);
      return SplatElementsAttr::get(outTy, splatVal);
    }

    if (llvm::isa<FloatType>(inETy) && llvm::isa<IntegerType>(outETy)) {
      auto unsign = llvm::cast<IntegerType>(outETy).isUnsignedInteger();
      auto intVal = APSInt(
          llvm::cast<IntegerType>(outETy).getIntOrFloatBitWidth(), unsign);
      auto floatVal = operand.getSplatValue<APFloat>();
      bool exact;
      floatVal.convertToInteger(intVal, llvm::RoundingMode::TowardZero, &exact);
      return SplatElementsAttr::get(outTy, intVal);
    }

    if (llvm::isa<IntegerType>(inETy) && llvm::isa<IntegerType>(outETy)) {
      auto unsignIn = llvm::cast<IntegerType>(inETy).isUnsignedInteger();
      bool trunc =
          inETy.getIntOrFloatBitWidth() > outETy.getIntOrFloatBitWidth();
      auto intVal = operand.getSplatValue<APInt>();
      auto bitwidth = outETy.getIntOrFloatBitWidth();

      if (trunc) {
        intVal = intVal.trunc(bitwidth);
      } else if (unsignIn) {
        intVal = intVal.zext(bitwidth);
      } else {
        intVal = intVal.sext(bitwidth);
      }

      return SplatElementsAttr::get(outTy, intVal);
    }
  }

  return {};
}

OpFoldResult ConstOp::fold(FoldAdaptor adaptor) { return getValueAttr(); }

#define REDUCE_FOLDER(OP)                                                      \
  OpFoldResult OP::fold(FoldAdaptor adaptor) {                                 \
    ShapedType inputTy = llvm::cast<ShapedType>(getInput().getType());         \
    if (!inputTy.hasRank())                                                    \
      return {};                                                               \
    if (inputTy.getDimSize(getAxis()) == 1)                                    \
      return getInput();                                                       \
    return {};                                                                 \
  }

REDUCE_FOLDER(ReduceAllOp)
REDUCE_FOLDER(ReduceAnyOp)
REDUCE_FOLDER(ReduceMaxOp)
REDUCE_FOLDER(ReduceMinOp)
REDUCE_FOLDER(ReduceProdOp)
REDUCE_FOLDER(ReduceSumOp)
#undef REDUCE_FOLDER

OpFoldResult ReshapeOp::fold(FoldAdaptor adaptor) {
  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput1().getType());
  auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());

  if (!inputTy || !outputTy)
    return {};

  if (inputTy == outputTy)
    return getInput1();

  // reshape(reshape(x)) -> reshape(x)
  if (auto reshapeOp = llvm::dyn_cast_if_present<tosa::ReshapeOp>(
          getInput1().getDefiningOp())) {
    getInput1Mutable().assign(reshapeOp.getInput1());
    return getResult();
  }

  // reshape(const(x)) -> const(reshape-attr(x))
  if (auto operand = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) {
    // Constants must have static shape.
    if (!outputTy.hasStaticShape())
      return {};

    // Okay to duplicate splat constants.
    if (operand.isSplat())
      return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());

    // Don't duplicate other constants.
    if (!getInput1().hasOneUse())
      return {};

    return operand.reshape(
        llvm::cast<ShapedType>(operand.getType()).clone(getNewShape()));
  }

  return {};
}

OpFoldResult PadOp::fold(FoldAdaptor adaptor) {
  // If the pad is all zeros we can fold this operation away.
  if (adaptor.getPadding()) {
    auto densePad = llvm::cast<DenseElementsAttr>(adaptor.getPadding());
    if (densePad.isSplat() && densePad.getSplatValue<APInt>().isZero()) {
      return getInput1();
    }
  }

  return {};
}

// Fold away cases where a tosa.resize operation returns a copy
// of the input image.
OpFoldResult ResizeOp::fold(FoldAdaptor adaptor) {
  ArrayRef<int64_t> offset = getOffset();
  ArrayRef<int64_t> border = getBorder();
  ArrayRef<int64_t> scale = getScale();

  // Check unit scaling.
  if (scale[0] != scale[1] || scale[2] != scale[3]) {
    return {};
  }

  // There should be no offset.
  if (offset[0] != 0 || offset[1] != 0) {
    return {};
  }

  // There should be no border.
  if (border[0] != 0 || border[1] != 0) {
    return {};
  }

  auto input = getInput();
  auto inputTy = llvm::cast<RankedTensorType>(input.getType());
  auto resultTy = llvm::cast<RankedTensorType>(getType());
  if (inputTy != resultTy)
    return {};

  return input;
}

OpFoldResult ReverseOp::fold(FoldAdaptor adaptor) {
  auto operand = getInput();
  auto operandTy = llvm::cast<ShapedType>(operand.getType());
  auto axis = getAxis();
  auto operandAttr = llvm::dyn_cast_if_present<SplatElementsAttr>(adaptor.getInput());
  if (operandAttr)
    return operandAttr;

  // If the dim-length is 1, tosa.reverse is a no-op.
  if (operandTy.hasRank() && operandTy.getDimSize(axis) == 1)
    return operand;

  return {};
}

OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
  auto inputTy = llvm::dyn_cast<RankedTensorType>(getInput().getType());
  auto outputTy = llvm::dyn_cast<RankedTensorType>(getType());

  if (!inputTy || !outputTy)
    return {};

  if (inputTy == outputTy && inputTy.hasStaticShape())
    return getInput();

  if (!adaptor.getInput())
    return {};

  // Cannot create an ElementsAttr from non-int/float/index types
  if (!inputTy.getElementType().isIntOrIndexOrFloat() ||
      !outputTy.getElementType().isIntOrIndexOrFloat())
    return {};

  auto operand = llvm::cast<ElementsAttr>(adaptor.getInput());
  if (operand.isSplat() && outputTy.hasStaticShape()) {
    return SplatElementsAttr::get(outputTy, operand.getSplatValue<Attribute>());
  }

  if (inputTy.hasStaticShape() && outputTy.hasStaticShape() &&
      outputTy.getNumElements() == 1) {
    llvm::SmallVector<uint64_t> indices(getStart());
    auto value = operand.getValues<Attribute>()[indices];
    return SplatElementsAttr::get(outputTy, value);
  }

  return {};
}

OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) {
  if (getOnTrue() == getOnFalse())
    return getOnTrue();

  auto predicate = llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getPred());
  if (!predicate)
    return {};

  if (!predicate.isSplat())
    return {};
  return predicate.getSplatValue<APInt>().getBoolValue() ? getOnTrue()
                                                         : getOnFalse();
}

OpFoldResult TileOp::fold(FoldAdaptor adaptor) {
  bool allOnes = llvm::all_of(getMultiples(), [](int64_t v) { return v == 1; });
  if (allOnes && getInput1().getType() == getType())
    return getInput1();
  return {};
}

OpFoldResult TransposeOp::fold(FoldAdaptor adaptor) {
  auto inputTy = llvm::cast<ShapedType>(getInput1().getType());
  auto resultTy = llvm::cast<ShapedType>(getType());

  // Transposing splat values just means reshaping.
  if (auto input = llvm::dyn_cast_if_present<DenseElementsAttr>(adaptor.getInput1())) {
    if (input.isSplat() && resultTy.hasStaticShape() &&
        inputTy.getElementType() == resultTy.getElementType())
      return input.reshape(resultTy);
  }

  // Transpose does not change the input type.
  if (getInput1().getType() != getType())
    return {};

  // Transpose is not the identity transpose.
  SmallVector<int64_t> perms;
  if (getConstantPerms(perms).failed())
    return {};

  if (!llvm::equal(llvm::seq<int64_t>(0, perms.size()), perms))
    return {};

  return getInput1();
}

OpFoldResult tosa::LogOp::fold(FoldAdaptor adaptor) {
  auto input = getInput1();
  // Element-wise log(exp(x)) = x
  if (auto op = input.getDefiningOp<tosa::ExpOp>()) {
    return op.getInput1();
  }

  return {};
}

OpFoldResult tosa::ExpOp::fold(FoldAdaptor adaptor) {
  auto input = getInput1();
  // Element-wise exp(log(x)) = x
  if (auto op = input.getDefiningOp<tosa::LogOp>()) {
    return op.getInput1();
  }

  return {};
}

OpFoldResult tosa::NegateOp::fold(FoldAdaptor adaptor) {
  auto input = getInput1();
  // Element-wise negate(negate(x)) = x
  if (auto op = input.getDefiningOp<tosa::NegateOp>()) {
    return op.getInput1();
  }

  return {};
}

OpFoldResult tosa::AbsOp::fold(FoldAdaptor adaptor) {
  auto input = getInput1();
  // Element-wise abs(abs(x)) = abs(x)
  if (auto op = input.getDefiningOp<tosa::AbsOp>()) {
    return input;
  }

  return {};
}

OpFoldResult ConcatOp::fold(FoldAdaptor adaptor) {
  // Fold consecutive concats on the same axis into a single op.
  // Keep track of the operands so we are able to construct a new concat
  // later. Conservatively assume that we double the number of operands when
  // folding
  SmallVector<Value, 8> concatOperands;
  concatOperands.reserve(2 * getNumOperands());

  // Find all operands that are foldable concats
  bool foundFoldableConcat = false;
  for (Value operand : getOperands()) {
    concatOperands.emplace_back(operand);

    auto producer = dyn_cast_or_null<ConcatOp>(operand.getDefiningOp());
    if (!producer)
      continue;

    // Not foldable if axes are not the same
    if (getAxis() != producer.getAxis())
      continue;

    // Replace the original operand with all incoming operands
    foundFoldableConcat = true;
    concatOperands.pop_back();
    llvm::append_range(concatOperands, producer->getOperands());
  }

  if (!foundFoldableConcat)
    return {};

  getOperation()->setOperands(concatOperands);
  return getResult();
}