1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
|
//===- TosaOps.cpp - MLIR Dialect for TOSA --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
// This file implements the TOSA Specification:
// https://developer.mlplatform.org/w/tosa/
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Quant/QuantOps.h"
#include "mlir/Dialect/Tensor/IR/Tensor.h"
#include "mlir/Dialect/Tosa/Utils/QuantUtils.h"
#include "mlir/Dialect/Tosa/Utils/ShapeUtils.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/Matchers.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/IR/TypeUtilities.h"
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/Transforms/InliningUtils.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::tosa;
#include "mlir/Dialect/Tosa/IR/TosaOpsDialect.cpp.inc"
//===----------------------------------------------------------------------===//
// Tosa dialect interface includes.
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Tosa/IR/TosaInterfaces.cpp.inc"
namespace {
//===----------------------------------------------------------------------===//
// Dialect Function Inliner Interface.
//===----------------------------------------------------------------------===//
struct TosaInlinerInterface : public DialectInlinerInterface {
using DialectInlinerInterface::DialectInlinerInterface;
//===--------------------------------------------------------------------===//
// Analysis Hooks.
//===--------------------------------------------------------------------===//
/// All operations can be inlined by default.
bool isLegalToInline(Operation *op, Region *region, bool wouldBeCloned,
IRMapping &map) const final {
return true;
}
/// All regions with If and While parent operators can be inlined.
bool isLegalToInline(Region *dest, Region *src, bool wouldBeCloned,
IRMapping &map) const final {
return (isa<tosa::IfOp>(dest->getParentOp()) ||
isa<tosa::WhileOp>(dest->getParentOp()));
}
};
} // namespace
//===----------------------------------------------------------------------===//
// TOSA control flow support.
//===----------------------------------------------------------------------===//
/// Returns the while loop body.
Region &tosa::WhileOp::getLoopBody() { return getBody(); }
//===----------------------------------------------------------------------===//
// Tosa dialect initialization.
//===----------------------------------------------------------------------===//
void TosaDialect::initialize() {
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"
>();
addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
>();
addInterfaces<TosaInlinerInterface>();
}
Operation *TosaDialect::materializeConstant(OpBuilder &builder, Attribute value,
Type type, Location loc) {
// Tosa dialect constants only support ElementsAttr unlike standard dialect
// constant which supports all attributes.
if (llvm::isa<ElementsAttr>(value))
return builder.create<tosa::ConstOp>(loc, type,
llvm::cast<ElementsAttr>(value));
return nullptr;
}
//===----------------------------------------------------------------------===//
// TOSA Operator Verifiers.
//===----------------------------------------------------------------------===//
static bool hasZeroDimension(ShapedType shapedType) {
if (!shapedType.hasRank())
return false;
auto rank = shapedType.getRank();
for (int i = 0; i < rank; i++) {
if (shapedType.isDynamicDim(i))
continue;
if (shapedType.getDimSize(i) == 0)
return true;
}
return false;
}
template <typename T> static LogicalResult verifyConvOp(T op) {
// All TOSA conv ops have an input() and weight().
auto inputType = llvm::dyn_cast<RankedTensorType>(op.getInput().getType());
auto weightType = llvm::dyn_cast<RankedTensorType>(op.getWeight().getType());
// Must be ranked tensor types
if (!inputType) {
op.emitOpError("expect a ranked tensor for input, got ") << op.getInput();
return failure();
}
if (!weightType) {
op.emitOpError("expect a ranked tensor for weight, got ") << op.getWeight();
return failure();
}
if (hasZeroDimension(inputType))
return op.emitOpError() << "tensor has a dimension with size zero. Each "
"dimension of a tensor must have size >= 1";
auto inputEType = inputType.getElementType();
auto weightEType = weightType.getElementType();
bool inputIsQuant = !llvm::isa<FloatType>(inputEType);
bool weightIsQuant = !llvm::isa<FloatType>(weightEType);
// Either both must be quantized or both unquantized.
if (inputIsQuant != weightIsQuant) {
op.emitOpError(
"expect both input and weight to be float or not together, got ")
<< inputEType << " and " << weightEType;
return failure();
}
// Quantized type must have constructed the quantizationattr, and unquantized
// types should not have a quantizationattr.
if ((inputIsQuant && !op.getQuantizationInfo()) ||
(!inputIsQuant && op.getQuantizationInfo())) {
op.emitOpError("quantizationattr is required for quantized type, and not "
"allowed for float type");
return failure();
}
return success();
}
LogicalResult tosa::AvgPool2dOp::verify() {
auto inputType = llvm::cast<ShapedType>(getInput().getType());
if (hasZeroDimension(inputType))
return emitOpError() << "tensor has a dimension with size zero. Each "
"dimension of a tensor must have size >= 1";
auto inputETy = inputType.getElementType();
auto resultETy = llvm::cast<ShapedType>(getType()).getElementType();
if (auto quantType =
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(inputETy))
inputETy = quantType.getStorageType();
if (auto quantType =
llvm::dyn_cast<mlir::quant::UniformQuantizedType>(resultETy))
resultETy = quantType.getStorageType();
auto accType = getAccType();
if (llvm::isa<IntegerType>(inputETy) && !accType.isInteger(32))
return emitOpError("accumulator type for integer tensor is not i32");
if ((inputETy.isBF16() || inputETy.isF16()) &&
!(accType.isF16() || accType.isF32()))
return emitOpError("accumulator type for f16/bf16 tensor is not f16/f32");
if (inputETy.isF32() && !accType.isF32())
return emitOpError("accumulator type for f32 tensor is not f32");
if (inputETy.isF32() && resultETy.isF32())
return success();
if (inputETy.isInteger(8) && resultETy.isInteger(8))
return success();
if (inputETy.isInteger(16) && resultETy.isInteger(16))
return success();
return emitOpError("input/output element types are incompatible.");
}
//===----------------------------------------------------------------------===//
// TOSA Operator Quantization Builders.
//===----------------------------------------------------------------------===//
/// This builder is called on all convolution operators except TransposeConv,
/// which has specialized output shape semantics. The builder also defines the
/// bitwidth of the output given the bit width of the input & weight content.
static void buildConvOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input, Value weight,
Value bias, DenseI64ArrayAttr pad,
DenseI64ArrayAttr stride,
DenseI64ArrayAttr dilation) {
result.addOperands({input, weight, bias});
result.addAttribute("pad", pad);
result.addAttribute("stride", stride);
result.addAttribute("dilation", dilation);
auto quantAttr = buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// Handles tosa.transpose_conv2d which has outpad and output shape attributes.
static void buildTransConvOpWithQuantInfo(
OpBuilder &builder, OperationState &result, Type outputType, Value input,
Value weight, Value bias, DenseI64ArrayAttr outpad,
DenseI64ArrayAttr stride, DenseI64ArrayAttr outputShape) {
result.addOperands({input, weight, bias});
result.addAttribute("out_pad", outpad);
result.addAttribute("stride", stride);
result.addAttribute("out_shape", outputShape);
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// The tosa.fully_connected op has its own builder as it does not have
/// strides/dilation/padding.
static void buildFCOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input, Value weight,
Value bias) {
result.addOperands({input, weight, bias});
auto quantAttr = ::buildConvOpQuantizationAttr(builder, input, weight);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
result.addTypes(
buildConvOpResultTypeInfo(builder, outputType, input, weight));
} else {
result.addTypes(outputType);
}
}
/// The tosa.matmul op is also intended to be generated where a fully_connected
/// op must be constructed where the weight is not a constant. In this case,
/// the fully_connected op must be expressed using matmul.
/// TODO: Add link to the leglization document explaining this.
static void buildMatMulOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
Value a, Value b) {
result.addOperands({a, b});
auto quantAttr = ::buildMatMulOpQuantizationAttr(builder, a, b);
if (quantAttr) {
result.addAttribute("quantization_info", quantAttr);
auto inputType = llvm::dyn_cast<ShapedType>(a.getType());
assert(inputType && "Input must be a shaped tensor type!");
auto inputQType = llvm::dyn_cast<mlir::quant::UniformQuantizedType>(
inputType.getElementType());
assert(inputQType && "Tensor must have quantized datatype!");
unsigned inputBits = inputQType.getStorageTypeIntegralWidth();
auto outputShapedType = llvm::dyn_cast<ShapedType>(outputType);
assert(outputShapedType && "Output must be a shaped type");
IntegerType accElementType;
if (inputBits == 16)
accElementType = builder.getIntegerType(48);
else
accElementType = builder.getI32Type();
auto accType = outputShapedType.clone(accElementType);
result.addTypes(accType);
} else {
result.addTypes(outputType);
}
}
/// Both the tosa.avg_pool2d and unary ops use the same UnaruOpQuantizationAttr
/// but avg_pool operator has its own builder as it has additional parameters
/// not part of the unary ops.
static void
buildAvgPool2dOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input,
DenseArrayAttr kernel, DenseArrayAttr stride,
DenseArrayAttr pad, TypeAttr acc_type) {
result.addOperands(input);
result.addAttribute("kernel", kernel);
result.addAttribute("stride", stride);
result.addAttribute("pad", pad);
result.addAttribute("acc_type", acc_type);
auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on single-parameter unary operators that have scale
/// relationship between their input and output, expressed by the
/// UnaryOpQuantizationAttr.
static void buildUnaryOpWithQuantInfo(OpBuilder &builder,
OperationState &result, Type outputType,
Value input) {
result.addOperands(input);
auto quantAttr = buildUnaryOpQuantizationAttr(builder, input, outputType);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on TOSA pad operator that needs to create its own
/// OptionalAttr quantization_attr parameter to scale the padding values
/// correctly. No pad_const is interpreted as zero-padding.
static void buildPadOpWithQuantInfo(OpBuilder &builder, OperationState &result,
Type outputType, Value input,
Value paddings) {
result.addOperands({input, paddings});
auto quantAttr = buildPadOpQuantizationAttr(builder, input);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
/// This builder is called on TOSA pad operator when an explicit pad_const
/// value is passed in. It also optionally constructs quantization_attr.
static void buildExplicitValuePadOpWithQuantInfo(OpBuilder &builder,
OperationState &result,
Type outputType, Value input,
Value paddings,
Value padConst) {
result.addOperands({input, paddings, padConst});
auto quantAttr = buildPadOpQuantizationAttr(builder, input);
if (quantAttr)
result.addAttribute("quantization_info", quantAttr);
result.types.push_back(outputType);
}
//===----------------------------------------------------------------------===//
// TOSA Operator Return Type Inference.
//===----------------------------------------------------------------------===//
static LogicalResult resolveBroadcastShape(const ValueShapeRange &operands,
SmallVector<int64_t> &outShape) {
int64_t outRank = 0;
for (int i = 0, e = operands.size(); i != e; ++i) {
auto shape = operands.getShape(i);
if (!shape.hasRank()) {
// TODO(jennik): Update function to have better case handling for invalid
// operands and for ranked tensors.
return failure();
}
outRank = std::max<int64_t>(outRank, shape.getRank());
}
outShape.resize(outRank, 1);
for (int i = 0, e = operands.size(); i != e; ++i) {
auto shape = operands.getShape(i);
auto rankDiff = outShape.size() - shape.getRank();
for (size_t i = 0, e = shape.getRank(); i < e; ++i) {
auto dim1 = outShape[i + rankDiff];
auto dim2 = shape.getDimSize(i);
auto resolvedDim = dim1;
if (dim1 == 1) {
resolvedDim = dim2;
} else if (dim2 == 1) {
resolvedDim = dim1;
} else if (dim1 != dim2) {
return failure();
}
outShape[i + rankDiff] = resolvedDim;
}
}
return success();
}
LogicalResult tosa::ArgMaxOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ArgMaxOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
IntegerAttr axis = adaptor.getProperties().axis;
int32_t axisVal = axis.getValue().getSExtValue();
if (!inputShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
SmallVector<int64_t> outShape;
outShape.reserve(inputShape.getRank() - 1);
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
if (i == axisVal)
continue;
outShape.push_back(inputShape.getDimSize(i));
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult tosa::RFFT2dOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
RFFT2dOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (!inputShape.hasRank())
return failure();
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(3, ShapedType::kDynamic);
outputShape[0] = inputShape.getDimSize(0);
outputShape[1] = inputShape.getDimSize(1);
int64_t inWidth = inputShape.getDimSize(2);
// Note that we can support this calculation symbolically
// in the future e.g. [x, y, z] -> [x, y, z / 2 - 1]
if (inWidth != ShapedType::kDynamic)
outputShape[2] = inWidth / 2 + 1;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::FFT2dOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
FFT2dOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
inferredReturnShapes.push_back(
ShapedTypeComponents(ShapeAdaptor(adaptor.getInputReal().getType())));
inferredReturnShapes.push_back(
ShapedTypeComponents(ShapeAdaptor(adaptor.getInputImag().getType())));
return success();
}
LogicalResult tosa::ConcatOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ConcatOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
// Infer all dimension sizes by reducing based on inputs.
const Properties &prop = adaptor.getProperties();
int32_t axis = prop.axis.getValue().getSExtValue();
llvm::SmallVector<int64_t> outputShape;
bool hasRankedInput = false;
for (auto operand : adaptor.getOperands()) {
ShapeAdaptor operandShape(operand.getType());
if (!operandShape.hasRank())
continue;
// Copy the Operand's rank.
if (!hasRankedInput)
outputShape.resize(operandShape.getRank(), ShapedType::kDynamic);
// Copy shapes until the dim is non-dynamic.
for (int i = 0, s = operandShape.getRank(); i < s; i++) {
if (i == axis || operandShape.isDynamicDim(i))
continue;
if (outputShape[i] == ShapedType::kDynamic)
outputShape[i] = operandShape.getDimSize(i);
if (outputShape[i] != operandShape.getDimSize(i))
return emitOptionalError(location,
"Cannot concat tensors with different sizes"
" on the non-axis dimension ",
i);
}
hasRankedInput = true;
}
Type inputType =
llvm::cast<TensorType>(adaptor.getInput1().getType()[0]).getElementType();
if (!hasRankedInput) {
inferredReturnShapes.push_back(ShapedTypeComponents(inputType));
return success();
}
// Determine the dimension size along the concatenation axis.
int64_t concatDimSize = 0;
for (auto operand : adaptor.getOperands()) {
ShapeAdaptor operandShape(operand.getType());
// We need to know the length of the concatenation axis of all inputs to
// determine the dimension size of the output shape.
if (!operandShape.hasRank() || operandShape.isDynamicDim(axis)) {
concatDimSize = ShapedType::kDynamic;
break;
}
concatDimSize += operandShape.getDimSize(axis);
}
outputShape[axis] = concatDimSize;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType));
return success();
}
LogicalResult tosa::EqualOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ValueShapeRange operands, DictionaryAttr attributes,
OpaqueProperties properties, RegionRange regions,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
auto elementType = IntegerType::get(context, /*width=*/1);
llvm::SmallVector<int64_t> outShape;
if (resolveBroadcastShape(operands, outShape).failed()) {
inferredReturnShapes.push_back(ShapedTypeComponents(elementType));
return success();
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape, elementType));
return success();
}
bool tosa::EqualOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != r.size() || l.size() != 1)
return false;
return succeeded(verifyCompatibleShape(l[0], r[0]));
}
LogicalResult tosa::FullyConnectedOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
FullyConnectedOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
ShapeAdaptor weightShape(adaptor.getWeight().getType());
ShapeAdaptor biasShape(adaptor.getBias().getType());
// All shapes are dynamic.
SmallVector<int64_t> outShape;
outShape.resize(2, ShapedType::kDynamic);
if (inputShape.hasRank()) {
outShape[0] = inputShape.getDimSize(0);
}
if (weightShape.hasRank()) {
outShape[1] = weightShape.getDimSize(0);
}
if (biasShape.hasRank()) {
outShape[1] = outShape[1] == ShapedType::kDynamic ? biasShape.getDimSize(0)
: outShape[1];
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult FullyConnectedOp::verify() { return verifyConvOp(*this); }
LogicalResult tosa::MatMulOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
MatMulOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor lhsShape(adaptor.getA().getType());
ShapeAdaptor rhsShape(adaptor.getB().getType());
// All shapes are dynamic.
SmallVector<int64_t> outShape;
outShape.resize(3, ShapedType::kDynamic);
if (lhsShape.hasRank()) {
outShape[0] = lhsShape.getDimSize(0);
outShape[1] = lhsShape.getDimSize(1);
}
if (rhsShape.hasRank()) {
outShape[0] = outShape[0] == ShapedType::kDynamic ? rhsShape.getDimSize(0)
: outShape[0];
outShape[2] = rhsShape.getDimSize(2);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
return success();
}
LogicalResult tosa::PadOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
PadOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput1().getType());
ShapeAdaptor paddingShape(adaptor.getPadding().getType());
SmallVector<int64_t> outputShape;
// If both inputs have unknown shape, we cannot determine the shape of the
// output.
if (!inputShape.hasRank() && !paddingShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
// If the input rank is unknown we can info the output rank using the padding
// shape's first dim.
if (!inputShape.hasRank()) {
if (paddingShape.isDynamicDim(0)) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
outputShape.resize(paddingShape.getDimSize(0), ShapedType::kDynamic);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
DenseIntElementsAttr paddings;
// If the paddings value is not a constant, all dimensions must be dynamic.
if (!matchPattern(adaptor.getPadding(), m_Constant(&paddings))) {
outputShape.resize(inputShape.getRank(), ShapedType::kDynamic);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
SmallVector<int64_t> paddingValues;
for (auto val : paddings) {
paddingValues.push_back(val.getSExtValue());
}
outputShape.reserve(inputShape.getRank());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
if (inputShape.isDynamicDim(i)) {
outputShape.push_back(ShapedType::kDynamic);
continue;
}
outputShape.push_back(inputShape.getDimSize(i) + paddingValues[i * 2] +
paddingValues[i * 2 + 1]);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
static SmallVector<int64_t> convertToMlirShape(ArrayRef<int64_t> shape) {
return to_vector(llvm::map_range(shape, [](int64_t dim) {
return dim == -1 ? ShapedType::kDynamic : dim;
}));
}
LogicalResult tosa::SliceOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
SliceOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
inferredReturnShapes.push_back(
ShapedTypeComponents(convertToMlirShape(adaptor.getSize())));
return success();
}
LogicalResult tosa::TableOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
TableOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (!inputShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
inferredReturnShapes.resize(1);
inputShape.getDims(inferredReturnShapes[0]);
return success();
}
LogicalResult tosa::TileOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
TileOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ArrayRef<int64_t> multiples = adaptor.getMultiples();
ShapeAdaptor inputShape(adaptor.getInput1().getType());
SmallVector<int64_t> outputShape;
if (!inputShape.hasRank()) {
outputShape.resize(multiples.size(), ShapedType::kDynamic);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Any non dynamic dimension can be multiplied to a known size.
outputShape.reserve(multiples.size());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
int64_t dim = inputShape.getDimSize(i);
if (dim != ShapedType::kDynamic)
dim *= multiples[i];
outputShape.push_back(dim);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
bool tosa::ReshapeOp::isCompatibleReturnTypes(TypeRange l, TypeRange r) {
if (l.size() != r.size() || l.size() != 1)
return false;
return getElementTypeOrSelf(l[0]) == getElementTypeOrSelf(r[0]);
}
LogicalResult tosa::ReshapeOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ReshapeOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput1().getType());
Type inputType = getElementTypeOrSelf(adaptor.getInput1().getType());
llvm::SmallVector<int64_t> newShapeValue =
convertToMlirShape(adaptor.getNewShape());
// We cannot infer from the total number of elements so we must take the
// shape attribute as exact.
if (!inputShape.hasRank() || !inputShape.hasStaticShape()) {
inferredReturnShapes.push_back(
ShapedTypeComponents(newShapeValue, inputType));
return success();
}
// Determine the number of elements covered by the slice of all static
// dimensions. This allows us to infer the length of the remaining dynamic
// dimension.
int64_t numElements = inputShape.getNumElements();
int64_t staticMul = 1;
for (auto val : newShapeValue) {
if (!ShapedType::isDynamic(val)) {
staticMul *= val;
}
}
// Determine the length of the dynamic dimension.
for (auto &val : newShapeValue) {
if (ShapedType::isDynamic(val))
val = numElements / staticMul;
}
inferredReturnShapes.push_back(
ShapedTypeComponents(newShapeValue, inputType));
return success();
}
mlir::LogicalResult tosa::ReshapeOp::verify() {
ShapedType inputType = llvm::cast<ShapedType>(getInput1().getType());
ShapedType outputType = llvm::cast<ShapedType>(getType());
if (hasZeroDimension(inputType) || hasZeroDimension(outputType))
return emitOpError() << "tensor has a dimension with size zero. Each "
"dimension of a tensor must have size >= 1";
if (inputType.hasStaticShape() && outputType.hasStaticShape()) {
int64_t inputElementsNum = inputType.getNumElements();
int64_t outputElementsNum = outputType.getNumElements();
if (inputElementsNum != outputElementsNum) {
return emitOpError() << "Cannot reshape " << inputElementsNum
<< " elements into " << outputElementsNum;
}
}
return mlir::success();
}
LogicalResult tosa::TransposeOp::getConstantPerms(SmallVector<int64_t> &perms) {
// Perms must be constants.
DenseIntElementsAttr permsAttr;
if (!matchPattern(getPerms(), m_Constant(&permsAttr)))
return failure();
// Transpose is not the identity transpose.
perms = llvm::to_vector(
llvm::map_range(permsAttr.getValues<APInt>(),
[](const APInt &val) { return val.getSExtValue(); }));
return success();
}
LogicalResult tosa::TransposeOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
TransposeOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput1().getType());
ShapeAdaptor permsShape(adaptor.getPerms().getType());
// If input rank and permutation length is unknown, the output rank is
// unknown.
if (!inputShape.hasRank() || !permsShape.hasRank() ||
permsShape.isDynamicDim(0)) {
inferredReturnShapes.push_back(ShapedTypeComponents());
return success();
}
// This would imply the number of permutations does not match the rank of the
// input which is illegal.
if (permsShape.getDimSize(0) != inputShape.getRank()) {
return failure();
}
// Without the input dims we cannot determine the output dim sizes but we
// can determine the output rank.
SmallVector<int64_t> outputShape;
if (!inputShape.hasRank()) {
outputShape.resize(permsShape.getDimSize(0), ShapedType::kDynamic);
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Rank-0 means no permutations matter.
if (inputShape.getRank() == 0) {
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Check whether the input dimensions are all the same.
bool allTheSame = true;
for (int i = 1, s = inputShape.getRank(); i < s; i++) {
if (inputShape.getDimSize(0) != inputShape.getDimSize(i)) {
allTheSame = false;
break;
}
}
// If all of the input dimensions are the same we don't care about the
// permutation.
if (allTheSame) {
outputShape.resize(inputShape.getRank(), inputShape.getDimSize(0));
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
outputShape.resize(inputShape.getRank(), ShapedType::kDynamic);
// If the permuations are a constant we can directly determine the output
// shape.
DenseIntElementsAttr attr;
if (matchPattern(adaptor.getPerms(), m_Constant(&attr)) &&
attr.getType().getRank() == 1) {
ShapeAdaptor permShape = attr;
outputShape.reserve(inputShape.getRank());
for (int i = 0, s = inputShape.getRank(); i < s; i++) {
outputShape[i] = inputShape.getDimSize(permShape.getDimSize(i));
}
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::GatherOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
GatherOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(3, ShapedType::kDynamic);
ShapeAdaptor valuesShape(adaptor.getValues().getType());
if (valuesShape.hasRank()) {
outputShape[0] = valuesShape.getDimSize(0);
outputShape[2] = valuesShape.getDimSize(2);
}
ShapeAdaptor indicesShape(adaptor.getIndices().getType());
if (indicesShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamic)
outputShape[0] = indicesShape.getDimSize(0);
if (outputShape[1] == ShapedType::kDynamic)
outputShape[1] = indicesShape.getDimSize(1);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::ResizeOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ResizeOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t, 4> outputShape;
outputShape.resize(4, ShapedType::kDynamic);
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (!inputShape.hasRank())
return failure();
outputShape[0] = inputShape.getDimSize(0);
outputShape[3] = inputShape.getDimSize(3);
int64_t inputHeight = inputShape.getDimSize(1);
int64_t inputWidth = inputShape.getDimSize(2);
if ((inputHeight == ShapedType::kDynamic) ||
(inputWidth == ShapedType::kDynamic))
return failure();
llvm::ArrayRef<int64_t> scaleInt = adaptor.getScale();
llvm::ArrayRef<int64_t> offsetInt = adaptor.getOffset();
llvm::ArrayRef<int64_t> borderInt = adaptor.getBorder();
// Compute the output shape based on attributes: scale, offset, and border.
outputShape[1] =
(((inputHeight - 1) * scaleInt[0] - offsetInt[0] + borderInt[0]) /
scaleInt[1]) +
1;
outputShape[2] =
(((inputWidth - 1) * scaleInt[2] - offsetInt[1] + borderInt[1]) /
scaleInt[3]) +
1;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult tosa::ScatterOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
ScatterOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(3, ShapedType::kDynamic);
ShapeAdaptor valuesInShape(adaptor.getValuesIn().getType());
if (valuesInShape.hasRank()) {
outputShape[0] = valuesInShape.getDimSize(0);
outputShape[1] = valuesInShape.getDimSize(1);
outputShape[2] = valuesInShape.getDimSize(2);
}
ShapeAdaptor indicesShape(adaptor.getIndices().getType());
if (indicesShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamic)
outputShape[0] = indicesShape.getDimSize(0);
}
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (inputShape.hasRank()) {
if (outputShape[0] == ShapedType::kDynamic)
outputShape[0] = inputShape.getDimSize(0);
if (outputShape[2] == ShapedType::kDynamic)
outputShape[2] = inputShape.getDimSize(2);
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
static LogicalResult ReduceInferReturnTypes(
ShapeAdaptor operandShape, Type inputType, IntegerAttr axis,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
if (!operandShape.hasRank()) {
inferredReturnShapes.push_back(ShapedTypeComponents(inputType));
return success();
}
SmallVector<int64_t> outputShape;
operandShape.getDims(outputShape);
int64_t axisVal = axis.getValue().getSExtValue();
outputShape[axisVal] = 1;
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape, inputType));
return success();
}
#define COMPATIBLE_RETURN_TYPES(OP) \
bool OP::isCompatibleReturnTypes(TypeRange l, TypeRange r) { \
if (l.size() != r.size() || l.size() != 1) \
return false; \
if (getElementTypeOrSelf(l[0]) != getElementTypeOrSelf(r[0])) \
return false; \
return succeeded(verifyCompatibleShape(l[0], r[0])); \
}
#define REDUCE_SHAPE_INFER(OP) \
LogicalResult OP::inferReturnTypeComponents( \
MLIRContext *context, ::std::optional<Location> location, \
OP::Adaptor adaptor, \
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
Type inputType = \
llvm::cast<TensorType>(adaptor.getInput().getType()).getElementType(); \
ShapeAdaptor inputShape(adaptor.getInput().getType()); \
const Properties &prop = adaptor.getProperties(); \
return ReduceInferReturnTypes(inputShape, inputType, prop.axis, \
inferredReturnShapes); \
} \
COMPATIBLE_RETURN_TYPES(OP)
REDUCE_SHAPE_INFER(tosa::ReduceAllOp)
REDUCE_SHAPE_INFER(tosa::ReduceAnyOp)
REDUCE_SHAPE_INFER(tosa::ReduceMaxOp)
REDUCE_SHAPE_INFER(tosa::ReduceMinOp)
REDUCE_SHAPE_INFER(tosa::ReduceProdOp)
REDUCE_SHAPE_INFER(tosa::ReduceSumOp)
#undef REDUCE_SHAPE_INFER
COMPATIBLE_RETURN_TYPES(tosa::ConcatOp)
#undef COMPATIBLE_RETURN_TYPES
static LogicalResult NAryInferReturnTypes(
const ValueShapeRange &operands,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outShape;
if (resolveBroadcastShape(operands, outShape).failed()) {
inferredReturnShapes.push_back(ShapedTypeComponents());
} else {
inferredReturnShapes.push_back(ShapedTypeComponents(outShape));
}
return success();
}
#define NARY_SHAPE_INFER(OP) \
LogicalResult OP::inferReturnTypeComponents( \
MLIRContext *context, ::std::optional<Location> location, \
ValueShapeRange operands, DictionaryAttr attributes, \
OpaqueProperties properties, RegionRange regions, \
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) { \
return NAryInferReturnTypes(operands, inferredReturnShapes); \
}
NARY_SHAPE_INFER(tosa::AbsOp)
NARY_SHAPE_INFER(tosa::AddOp)
NARY_SHAPE_INFER(tosa::ArithmeticRightShiftOp)
NARY_SHAPE_INFER(tosa::BitwiseAndOp)
NARY_SHAPE_INFER(tosa::BitwiseOrOp)
NARY_SHAPE_INFER(tosa::BitwiseXorOp)
NARY_SHAPE_INFER(tosa::BitwiseNotOp)
NARY_SHAPE_INFER(tosa::CastOp)
NARY_SHAPE_INFER(tosa::CeilOp)
NARY_SHAPE_INFER(tosa::ClampOp)
NARY_SHAPE_INFER(tosa::ClzOp)
NARY_SHAPE_INFER(tosa::DivOp)
NARY_SHAPE_INFER(tosa::ExpOp)
NARY_SHAPE_INFER(tosa::FloorOp)
NARY_SHAPE_INFER(tosa::GreaterEqualOp)
NARY_SHAPE_INFER(tosa::GreaterOp)
NARY_SHAPE_INFER(tosa::IdentityOp)
NARY_SHAPE_INFER(tosa::LogOp)
NARY_SHAPE_INFER(tosa::LogicalAndOp)
NARY_SHAPE_INFER(tosa::LogicalLeftShiftOp)
NARY_SHAPE_INFER(tosa::LogicalNotOp)
NARY_SHAPE_INFER(tosa::LogicalOrOp)
NARY_SHAPE_INFER(tosa::LogicalRightShiftOp)
NARY_SHAPE_INFER(tosa::LogicalXorOp)
NARY_SHAPE_INFER(tosa::MaximumOp)
NARY_SHAPE_INFER(tosa::MinimumOp)
NARY_SHAPE_INFER(tosa::MulOp)
NARY_SHAPE_INFER(tosa::NegateOp)
NARY_SHAPE_INFER(tosa::PowOp)
NARY_SHAPE_INFER(tosa::ReciprocalOp)
NARY_SHAPE_INFER(tosa::RescaleOp)
NARY_SHAPE_INFER(tosa::ReverseOp)
NARY_SHAPE_INFER(tosa::RsqrtOp)
NARY_SHAPE_INFER(tosa::SelectOp)
NARY_SHAPE_INFER(tosa::SubOp)
NARY_SHAPE_INFER(tosa::TanhOp)
NARY_SHAPE_INFER(tosa::ErfOp)
NARY_SHAPE_INFER(tosa::SigmoidOp)
#undef PRED_SHAPE_INFER
static LogicalResult poolingInferReturnTypes(
ShapeAdaptor inputShape, ArrayRef<int64_t> kernel, ArrayRef<int64_t> stride,
ArrayRef<int64_t> pad,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape;
outputShape.resize(4, ShapedType::kDynamic);
// We only know the rank if the input type is unranked.
if (!inputShape) {
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
// Batch and number of channels are identical for pooling layer.
outputShape[0] = inputShape.getDimSize(0);
outputShape[3] = inputShape.getDimSize(3);
int64_t height = inputShape.getDimSize(1);
int64_t width = inputShape.getDimSize(2);
if (!ShapedType::isDynamic(height)) {
int64_t padded = height + pad[0] + pad[1] - kernel[0];
outputShape[1] = padded / stride[0] + 1;
}
if (!ShapedType::isDynamic(width)) {
int64_t padded = width + pad[2] + pad[3] - kernel[1];
outputShape[2] = padded / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
Conv2DOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
int64_t inputWidth = ShapedType::kDynamic;
int64_t inputHeight = ShapedType::kDynamic;
int64_t weightWidth = ShapedType::kDynamic;
int64_t weightHeight = ShapedType::kDynamic;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape(adaptor.getWeight().getType());
if (weightShape.hasRank()) {
outputShape[3] = weightShape.getDimSize(0);
weightHeight = weightShape.getDimSize(1);
weightWidth = weightShape.getDimSize(2);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape(adaptor.getBias().getType());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
llvm::ArrayRef<int64_t> padding = adaptor.getPad();
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int64_t inputSize = inputHeight + padding[0] + padding[1];
int64_t filterSize = (weightHeight - 1) * dilation[0] + 1;
int64_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int64_t inputSize = inputWidth + padding[2] + padding[3];
int64_t filterSize = (weightWidth - 1) * dilation[1] + 1;
int64_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv2DOp::verify() { return verifyConvOp(*this); }
LogicalResult Conv3DOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
Conv3DOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(5, ShapedType::kDynamic);
int64_t inputWidth = ShapedType::kDynamic;
int64_t inputHeight = ShapedType::kDynamic;
int64_t inputDepth = ShapedType::kDynamic;
int64_t weightWidth = ShapedType::kDynamic;
int64_t weightHeight = ShapedType::kDynamic;
int64_t weightDepth = ShapedType::kDynamic;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputDepth = inputShape.getDimSize(1);
inputHeight = inputShape.getDimSize(2);
inputWidth = inputShape.getDimSize(3);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape(adaptor.getWeight().getType());
if (weightShape.hasRank()) {
outputShape[4] = weightShape.getDimSize(0);
weightDepth = weightShape.getDimSize(1);
weightHeight = weightShape.getDimSize(2);
weightWidth = weightShape.getDimSize(3);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape(adaptor.getBias().getType());
if (biasShape.hasRank() && ShapedType::isDynamic(outputShape[4])) {
outputShape[4] = biasShape.getDimSize(0);
}
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
llvm::ArrayRef<int64_t> pad = adaptor.getPad();
if (!ShapedType::isDynamic(inputDepth) &&
!ShapedType::isDynamic(weightDepth)) {
int32_t inputSize = inputDepth + pad[0] + pad[1];
int32_t filterSize = (weightDepth - 1) * dilation[0] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int32_t inputSize = inputHeight + pad[2] + pad[3];
int32_t filterSize = (weightHeight - 1) * dilation[1] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int32_t inputSize = inputWidth + pad[4] + pad[5];
int32_t filterSize = (weightWidth - 1) * dilation[2] + 1;
int32_t unstridedResult = inputSize - filterSize + 1;
outputShape[3] = (unstridedResult - 1) / stride[2] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult Conv3DOp::verify() { return verifyConvOp(*this); }
LogicalResult AvgPool2dOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
AvgPool2dOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
const Properties &prop = adaptor.getProperties();
return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad,
inferredReturnShapes);
}
LogicalResult MaxPool2dOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
MaxPool2dOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
ShapeAdaptor inputShape(adaptor.getInput().getType());
const Properties &prop = adaptor.getProperties();
return poolingInferReturnTypes(inputShape, prop.kernel, prop.stride, prop.pad,
inferredReturnShapes);
}
LogicalResult DepthwiseConv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
DepthwiseConv2DOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<int64_t> outputShape(4, ShapedType::kDynamic);
int64_t inputWidth = ShapedType::kDynamic;
int64_t inputHeight = ShapedType::kDynamic;
int64_t inputChannels = ShapedType::kDynamic;
int64_t weightWidth = ShapedType::kDynamic;
int64_t weightHeight = ShapedType::kDynamic;
int64_t depthChannels = ShapedType::kDynamic;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (inputShape.hasRank()) {
outputShape[0] = inputShape.getDimSize(0);
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
inputChannels = inputShape.getDimSize(3);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape(adaptor.getWeight().getType());
if (weightShape.hasRank()) {
weightHeight = weightShape.getDimSize(0);
weightWidth = weightShape.getDimSize(1);
inputChannels = ShapedType::isDynamic(inputChannels)
? weightShape.getDimSize(2)
: inputChannels;
depthChannels = weightShape.getDimSize(3);
}
// If both inputChannels and depthChannels are available we can determine
// the output channels.
if (!ShapedType::isDynamic(inputChannels) &&
!ShapedType::isDynamic(depthChannels)) {
outputShape[3] = inputChannels * depthChannels;
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape(adaptor.getBias().getType());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::ArrayRef<int64_t> dilation = adaptor.getDilation();
llvm::ArrayRef<int64_t> padding = adaptor.getPad();
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int64_t inputSize = inputHeight + padding[0] + padding[1];
int64_t filterSize = (weightHeight - 1) * dilation[0] + 1;
int64_t unstridedResult = inputSize - filterSize + 1;
outputShape[1] = (unstridedResult - 1) / stride[0] + 1;
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int64_t inputSize = inputWidth + padding[2] + padding[3];
int64_t filterSize = (weightWidth - 1) * dilation[1] + 1;
int64_t unstridedResult = inputSize - filterSize + 1;
outputShape[2] = (unstridedResult - 1) / stride[1] + 1;
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult DepthwiseConv2DOp::verify() { return verifyConvOp(*this); }
LogicalResult TransposeConv2DOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
TransposeConv2DOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
// outputShape is mutable.
llvm::SmallVector<int64_t> outputShape =
convertToMlirShape(adaptor.getOutShape());
int64_t inputWidth = ShapedType::kDynamic;
int64_t inputHeight = ShapedType::kDynamic;
int64_t weightWidth = ShapedType::kDynamic;
int64_t weightHeight = ShapedType::kDynamic;
// Input shape describes input width/height and batch.
ShapeAdaptor inputShape(adaptor.getInput().getType());
if (inputShape.hasRank()) {
outputShape[0] = ShapedType::isDynamic(outputShape[0])
? inputShape.getDimSize(0)
: outputShape[0];
inputHeight = inputShape.getDimSize(1);
inputWidth = inputShape.getDimSize(2);
}
// Weight shapes describes the filter width/height and the output channels.
ShapeAdaptor weightShape(adaptor.getFilter().getType());
if (weightShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? weightShape.getDimSize(0)
: outputShape[3];
weightHeight = weightShape.getDimSize(1);
weightWidth = weightShape.getDimSize(2);
}
// Bias shape can describe the output channels.
ShapeAdaptor biasShape(adaptor.getInput().getType());
if (biasShape.hasRank()) {
outputShape[3] = ShapedType::isDynamic(outputShape[3])
? biasShape.getDimSize(0)
: outputShape[3];
}
llvm::ArrayRef<int64_t> padding = adaptor.getOutPad();
llvm::ArrayRef<int64_t> stride = adaptor.getStride();
if (!ShapedType::isDynamic(inputHeight) &&
!ShapedType::isDynamic(weightHeight)) {
int64_t calculateSize =
(inputHeight - 1) * stride[0] + padding[0] + padding[1] + weightHeight;
outputShape[1] =
ShapedType::isDynamic(outputShape[1]) ? calculateSize : outputShape[1];
}
if (!ShapedType::isDynamic(inputWidth) &&
!ShapedType::isDynamic(weightWidth)) {
int64_t calculateSize =
(inputWidth - 1) * stride[1] + padding[2] + padding[3] + weightWidth;
outputShape[2] =
ShapedType::isDynamic(outputShape[2]) ? calculateSize : outputShape[2];
}
inferredReturnShapes.push_back(ShapedTypeComponents(outputShape));
return success();
}
LogicalResult IfOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
IfOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<tosa::YieldOp> yieldOps;
for (Region *region : adaptor.getRegions()) {
for (auto &block : *region)
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
yieldOps.push_back(returnOp);
}
if (yieldOps.empty())
return failure();
// Get the initial type information for the yield op.
llvm::SmallVector<ValueKnowledge> resultKnowledge;
resultKnowledge.reserve(yieldOps.front().getNumOperands());
for (auto operand : yieldOps.front().getOperands()) {
resultKnowledge.push_back(
ValueKnowledge::getKnowledgeFromType(operand.getType()));
}
for (auto yieldOp : yieldOps) {
if (resultKnowledge.size() != yieldOp.getNumOperands())
return failure();
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
int32_t index = it.index();
auto meet = ValueKnowledge::meet(
resultKnowledge[index],
ValueKnowledge::getKnowledgeFromType(it.value().getType()));
if (!meet)
continue;
resultKnowledge[index] = meet;
}
}
for (const ValueKnowledge &result : resultKnowledge) {
inferredReturnShapes.push_back(result.getShapedTypeComponents());
}
return success();
}
LogicalResult WhileOp::inferReturnTypeComponents(
MLIRContext *context, ::std::optional<Location> location,
WhileOp::Adaptor adaptor,
SmallVectorImpl<ShapedTypeComponents> &inferredReturnShapes) {
llvm::SmallVector<tosa::YieldOp> yieldOps;
for (auto &block : adaptor.getBody())
if (auto returnOp = dyn_cast<tosa::YieldOp>(block.getTerminator()))
yieldOps.push_back(returnOp);
// TOSA's while must have a tosa.yield as its terminator. If not found this
// tosa.while is invalid.
if (yieldOps.empty())
return failure();
// Get the initial type information from the operand types.
llvm::SmallVector<ValueKnowledge> resultKnowledge;
resultKnowledge.reserve(yieldOps.front().getNumOperands());
for (auto operand : yieldOps.front().getOperands()) {
resultKnowledge.push_back(
ValueKnowledge::getKnowledgeFromType(operand.getType()));
}
for (auto yieldOp : yieldOps) {
if (resultKnowledge.size() != yieldOp.getNumOperands())
return failure();
for (const auto &it : llvm::enumerate(yieldOp.getOperands())) {
int32_t index = it.index();
if (auto meet = ValueKnowledge::meet(
resultKnowledge[index],
ValueKnowledge::getKnowledgeFromType(it.value().getType()))) {
resultKnowledge[index] = meet;
}
}
}
for (const ValueKnowledge &result : resultKnowledge) {
inferredReturnShapes.push_back(result.getShapedTypeComponents());
}
return success();
}
std::optional<SmallVector<int64_t, 4>> ApplyScaleOp::getShapeForUnroll() {
if (auto vt = llvm::dyn_cast<VectorType>(getType()))
return llvm::to_vector<4>(vt.getShape());
return std::nullopt;
}
//===----------------------------------------------------------------------===//
// TOSA Attribute Definitions.
//===----------------------------------------------------------------------===//
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/Tosa/IR/TosaAttributes.cpp.inc"
//===----------------------------------------------------------------------===//
// TOSA Operator Definitions.
//===----------------------------------------------------------------------===//
#define GET_OP_CLASSES
#include "mlir/Dialect/Tosa/IR/TosaOps.cpp.inc"
|