File: TosaFolders.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (302 lines) | stat: -rw-r--r-- 11,716 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
//===- TosaFolders.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Fold TOSA operations
//
//===----------------------------------------------------------------------===//

#include <functional>

#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/SmallVector.h"

using namespace mlir;
using namespace mlir::tosa;

namespace {

/// Rounding mode to be used on floating point operations that require rounding.
static constexpr llvm::RoundingMode tosaRoundingMode =
    llvm::APFloat::rmNearestTiesToEven;

/// Apply the given transformation \p toApply to every element of the tensor to
/// be transformed \p toTransform.
///
/// Elements of \p toTransform are extracted as \p SrcValueType.
///
/// \returns A tensor with the same size as \p toTransform, containing
/// \p TargetValueType values of type \p TargetType.
template <class SrcValType, class TargetValType, class TargetType>
DenseElementsAttr applyElementWise(
    const DenseElementsAttr &toTransform,
    const std::function<TargetValType(const SrcValType &, TargetType)> &toApply,
    TargetType targetType) {
  SmallVector<TargetValType> transformedValues;
  // We already know the amount of values we will insert, reserve space for
  // all of them to avoid dynamic resizing
  transformedValues.reserve(toTransform.getNumElements());
  for (auto val : toTransform.getValues<SrcValType>()) {
    auto transformedVal = toApply(val, targetType);
    transformedValues.push_back(transformedVal);
  }

  // Make sure that the output tensor has the expected output type
  auto inShape = toTransform.getType();
  auto outTy = inShape.cloneWith({}, targetType);

  return DenseElementsAttr::get(outTy, transformedValues);
}

template DenseElementsAttr applyElementWise<APFloat, APFloat, FloatType>(
    const DenseElementsAttr &toTransform,
    const std::function<APFloat(const APFloat &, FloatType)> &toApply,
    FloatType targetType);

/// Function that checks if the type contained in \p toCheck is float.
LogicalResult notifyIfNotFloat(TypedValue<TensorType> toCheck, TosaOp location,
                               PatternRewriter &rewriter) {
  if (isa<FloatType>(toCheck.getType().getElementType())) {
    return success();
  }
  return rewriter.notifyMatchFailure(location,
                                     "Unexpected input tensor type: the "
                                     "TOSA spec only allows floats");
}

/// Function that checks if \p toCheck is a dense TOSA constant tensor.
LogicalResult notifyIfNoTosaDenseConstantTensor(TypedValue<TensorType> toCheck,
                                                TosaOp location,
                                                PatternRewriter &rewriter) {
  // Check whether the tensor is constant and dense
  // TODO We currently ensure the tensor is dense by using the correct type for
  // the bind_value, however we do not actually need this value. It would be
  // nicer to only have a check here.
  DenseElementsAttr tmp;
  if (!matchPattern(toCheck, m_Constant(&tmp))) {
    return rewriter.notifyMatchFailure(location,
                                       "Non-const or non-dense input tensor");
  }

  // Make sure it actually is a TOSA constant (the match allows for other
  // constants as well)
  if (isa<ConstOp>(toCheck.getDefiningOp())) {
    return success();
  }

  return rewriter.notifyMatchFailure(location,
                                     "The reciprocal can only be folded if "
                                     "it operates on a TOSA constant");
}

/// Function that checks if \p toCheck is a dense TOSA constant float tensor.
LogicalResult notifyIfNotConstantFloatTosaTensor(TypedValue<TensorType> toCheck,
                                                 TosaOp location,
                                                 PatternRewriter &rewriter) {
  auto floatCheck = notifyIfNotFloat(toCheck, location, rewriter);
  if (failed(floatCheck)) {
    return floatCheck;
  }
  return notifyIfNoTosaDenseConstantTensor(toCheck, location, rewriter);
}

/// Heuristic to decide when to replace a unary operation on a constant with the
/// folded value.
/// Folding operations on constants can lead to an increased memory usage
/// whenever the input cannot be replaced but a new constant is inserted. Hence,
/// this will currently only suggest folding when the memory impact is
/// negligible.
/// Takes the \p unaryOp and the constant input \p values.
/// \returns Whether folding should be applied.
bool constantUnaryOpShouldBeFolded(TosaOp unaryOp, DenseElementsAttr values) {
  assert(unaryOp->getNumOperands() == 1);
  auto inputOp = unaryOp->getOperand(0);

  // If the input is a splat, we don't care for the number of users
  if (isa<SplatElementsAttr>(values)) {
    return true;
  }

  // If this is the only use of the tensor it should be replaced as no
  // additional memory is required
  return inputOp.hasOneUse();
}

template <typename BaseType>
DenseElementsAttr transposeType(ElementsAttr attr, ShapedType inputType,
                                ShapedType outputType,
                                llvm::ArrayRef<int64_t> permValues) {
  if (inputType.getNumElements() == 0)
    return DenseElementsAttr::get(outputType, llvm::ArrayRef<BaseType>{});

  auto attrValues = attr.getValues<BaseType>();
  auto inputShape = inputType.getShape();

  // The inverted permutation map and strides of the output are used to compute
  // the contribution of a given dimension to the destination linear index in
  // an order-independent way.
  auto outputStrides = computeStrides(outputType.getShape());
  auto invertedPermValues = invertPermutationVector(permValues);

  auto initialValue = *std::begin(attrValues);
  SmallVector<BaseType> outputValues(inputType.getNumElements(), initialValue);

  for (const auto &it : llvm::enumerate(attrValues)) {
    auto srcLinearIndex = it.index();

    uint64_t dstLinearIndex = 0;
    for (int64_t dim = inputShape.size() - 1; dim >= 0; --dim) {
      // Compute the index into the current dimension of the source vector.
      auto sourceIndexForDim = srcLinearIndex % inputShape[dim];
      srcLinearIndex /= inputShape[dim];

      // Add the contribution of the current dimension to the output using the
      // permutation map.
      dstLinearIndex +=
          outputStrides[invertedPermValues[dim]] * sourceIndexForDim;
    }

    outputValues[dstLinearIndex] = it.value();
  }

  return DenseElementsAttr::get(outputType,
                                llvm::ArrayRef<BaseType>(outputValues));
}

// A type specialized transposition of an ElementsAttr.
// This implementation tries to operate on the underlying data in its raw
// representation when possible to avoid allocating a large number of Attribute
// objects.
DenseElementsAttr transpose(ElementsAttr attr, ShapedType inputType,
                            ShapedType outputType,
                            llvm::ArrayRef<int64_t> permValues) {
  auto baseType = inputType.getElementType();

  // Handle possible integer types
  if (auto intType = dyn_cast<IntegerType>(baseType)) {
    switch (intType.getWidth()) {
    case 1:
      return transposeType<bool>(attr, inputType, outputType, permValues);
    case 8:
      return transposeType<int8_t>(attr, inputType, outputType, permValues);
    case 16:
      return transposeType<int16_t>(attr, inputType, outputType, permValues);
    case 32:
      return transposeType<int32_t>(attr, inputType, outputType, permValues);
    case 64:
      return transposeType<int64_t>(attr, inputType, outputType, permValues);
    default:
      return transposeType<APInt>(attr, inputType, outputType, permValues);
    }
  }

  // Handle possible float types
  if (baseType.isF32()) {
    return transposeType<float>(attr, inputType, outputType, permValues);
  }

  return transposeType<APFloat>(attr, inputType, outputType, permValues);
}

struct TosaFoldConstantTranspose : public OpRewritePattern<tosa::TransposeOp> {
  using OpRewritePattern::OpRewritePattern;

  LogicalResult matchAndRewrite(tosa::TransposeOp op,
                                PatternRewriter &rewriter) const override {
    auto outputType = cast<ShapedType>(op.getType());
    // TOSA supports quantized types.
    if (!outputType.getElementType().isIntOrIndexOrFloat())
      return failure();

    ElementsAttr inputValues;
    if (!matchPattern(op.getInput1(), m_Constant(&inputValues)))
      return failure();
    // Make sure the input is a constant that has a single user.
    if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers()))
      return failure();

    DenseIntElementsAttr permAttr;
    if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
      return failure();
    auto permValues = llvm::to_vector<6>(llvm::map_range(
        // TOSA allows both 32- and 64-bit integer tensors here.
        permAttr.getValues<APInt>(),
        [](const APInt &val) { return val.getSExtValue(); }));

    auto inputType = cast<ShapedType>(op.getInput1().getType());

    auto resultAttr = transpose(inputValues, inputType, outputType, permValues);
    rewriter.replaceOpWithNewOp<tosa::ConstOp>(op, outputType, resultAttr);
    return success();
  }
};

struct TosaFoldConstantReciprocal : public OpRewritePattern<ReciprocalOp> {

  using OpRewritePattern::OpRewritePattern;

  static APFloat computeReciprocal(const APFloat &floatVal, FloatType floatTy) {
    auto recipAttr = FloatAttr::get(floatTy, 1.0);
    APFloat recip = recipAttr.getValue();
    recip.divide(floatVal, tosaRoundingMode);

    return recip;
  }

  LogicalResult matchAndRewrite(ReciprocalOp recip,
                                PatternRewriter &rewriter) const override {
    auto inputTensor = recip.getInput1();

    // Check that we can apply folding
    auto preCondCheck =
        notifyIfNotConstantFloatTosaTensor(inputTensor, recip, rewriter);
    if (failed(preCondCheck)) {
      return preCondCheck;
    }

    // Extract the tensor values
    DenseElementsAttr inputValues;
    matchPattern(inputTensor, m_Constant(&inputValues));

    // Check whether this should be folded.
    if (!constantUnaryOpShouldBeFolded(recip, inputValues)) {
      return rewriter.notifyMatchFailure(
          recip, "Currently, reciprocals will only be folded if the input "
                 "tensor has a single user");
    }

    // Create a new tensor with the updated values
    auto newTensor = applyElementWise<APFloat, APFloat, FloatType>(
        inputValues, &computeReciprocal,
        cast<FloatType>(inputValues.getElementType()));

    // Replace the use of the reciprocal with the transformed tensor
    rewriter.replaceOpWithNewOp<ConstOp>(recip, newTensor.getType(), newTensor);
    return success();
  }
};

} // namespace

void mlir::tosa::populateTosaFoldConstantTransposePatterns(
    MLIRContext *ctx, RewritePatternSet &patterns) {
  patterns.add<TosaFoldConstantTranspose>(ctx);
}

void mlir::tosa::populateTosaFoldConstantReciprocalPatterns(
    MLIRContext *ctx, RewritePatternSet &patterns) {
  patterns.add<TosaFoldConstantReciprocal>(ctx);
}