1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
//===- TosaFolders.cpp ----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Fold TOSA operations
//
//===----------------------------------------------------------------------===//
#include <functional>
#include "mlir/Dialect/Tosa/IR/TosaOps.h"
#include "mlir/Dialect/Tosa/Transforms/Passes.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/FloatingPointMode.h"
#include "llvm/ADT/SmallVector.h"
using namespace mlir;
using namespace mlir::tosa;
namespace {
/// Rounding mode to be used on floating point operations that require rounding.
static constexpr llvm::RoundingMode tosaRoundingMode =
llvm::APFloat::rmNearestTiesToEven;
/// Apply the given transformation \p toApply to every element of the tensor to
/// be transformed \p toTransform.
///
/// Elements of \p toTransform are extracted as \p SrcValueType.
///
/// \returns A tensor with the same size as \p toTransform, containing
/// \p TargetValueType values of type \p TargetType.
template <class SrcValType, class TargetValType, class TargetType>
DenseElementsAttr applyElementWise(
const DenseElementsAttr &toTransform,
const std::function<TargetValType(const SrcValType &, TargetType)> &toApply,
TargetType targetType) {
SmallVector<TargetValType> transformedValues;
// We already know the amount of values we will insert, reserve space for
// all of them to avoid dynamic resizing
transformedValues.reserve(toTransform.getNumElements());
for (auto val : toTransform.getValues<SrcValType>()) {
auto transformedVal = toApply(val, targetType);
transformedValues.push_back(transformedVal);
}
// Make sure that the output tensor has the expected output type
auto inShape = toTransform.getType();
auto outTy = inShape.cloneWith({}, targetType);
return DenseElementsAttr::get(outTy, transformedValues);
}
template DenseElementsAttr applyElementWise<APFloat, APFloat, FloatType>(
const DenseElementsAttr &toTransform,
const std::function<APFloat(const APFloat &, FloatType)> &toApply,
FloatType targetType);
/// Function that checks if the type contained in \p toCheck is float.
LogicalResult notifyIfNotFloat(TypedValue<TensorType> toCheck, TosaOp location,
PatternRewriter &rewriter) {
if (isa<FloatType>(toCheck.getType().getElementType())) {
return success();
}
return rewriter.notifyMatchFailure(location,
"Unexpected input tensor type: the "
"TOSA spec only allows floats");
}
/// Function that checks if \p toCheck is a dense TOSA constant tensor.
LogicalResult notifyIfNoTosaDenseConstantTensor(TypedValue<TensorType> toCheck,
TosaOp location,
PatternRewriter &rewriter) {
// Check whether the tensor is constant and dense
// TODO We currently ensure the tensor is dense by using the correct type for
// the bind_value, however we do not actually need this value. It would be
// nicer to only have a check here.
DenseElementsAttr tmp;
if (!matchPattern(toCheck, m_Constant(&tmp))) {
return rewriter.notifyMatchFailure(location,
"Non-const or non-dense input tensor");
}
// Make sure it actually is a TOSA constant (the match allows for other
// constants as well)
if (isa<ConstOp>(toCheck.getDefiningOp())) {
return success();
}
return rewriter.notifyMatchFailure(location,
"The reciprocal can only be folded if "
"it operates on a TOSA constant");
}
/// Function that checks if \p toCheck is a dense TOSA constant float tensor.
LogicalResult notifyIfNotConstantFloatTosaTensor(TypedValue<TensorType> toCheck,
TosaOp location,
PatternRewriter &rewriter) {
auto floatCheck = notifyIfNotFloat(toCheck, location, rewriter);
if (failed(floatCheck)) {
return floatCheck;
}
return notifyIfNoTosaDenseConstantTensor(toCheck, location, rewriter);
}
/// Heuristic to decide when to replace a unary operation on a constant with the
/// folded value.
/// Folding operations on constants can lead to an increased memory usage
/// whenever the input cannot be replaced but a new constant is inserted. Hence,
/// this will currently only suggest folding when the memory impact is
/// negligible.
/// Takes the \p unaryOp and the constant input \p values.
/// \returns Whether folding should be applied.
bool constantUnaryOpShouldBeFolded(TosaOp unaryOp, DenseElementsAttr values) {
assert(unaryOp->getNumOperands() == 1);
auto inputOp = unaryOp->getOperand(0);
// If the input is a splat, we don't care for the number of users
if (isa<SplatElementsAttr>(values)) {
return true;
}
// If this is the only use of the tensor it should be replaced as no
// additional memory is required
return inputOp.hasOneUse();
}
template <typename BaseType>
DenseElementsAttr transposeType(ElementsAttr attr, ShapedType inputType,
ShapedType outputType,
llvm::ArrayRef<int64_t> permValues) {
if (inputType.getNumElements() == 0)
return DenseElementsAttr::get(outputType, llvm::ArrayRef<BaseType>{});
auto attrValues = attr.getValues<BaseType>();
auto inputShape = inputType.getShape();
// The inverted permutation map and strides of the output are used to compute
// the contribution of a given dimension to the destination linear index in
// an order-independent way.
auto outputStrides = computeStrides(outputType.getShape());
auto invertedPermValues = invertPermutationVector(permValues);
auto initialValue = *std::begin(attrValues);
SmallVector<BaseType> outputValues(inputType.getNumElements(), initialValue);
for (const auto &it : llvm::enumerate(attrValues)) {
auto srcLinearIndex = it.index();
uint64_t dstLinearIndex = 0;
for (int64_t dim = inputShape.size() - 1; dim >= 0; --dim) {
// Compute the index into the current dimension of the source vector.
auto sourceIndexForDim = srcLinearIndex % inputShape[dim];
srcLinearIndex /= inputShape[dim];
// Add the contribution of the current dimension to the output using the
// permutation map.
dstLinearIndex +=
outputStrides[invertedPermValues[dim]] * sourceIndexForDim;
}
outputValues[dstLinearIndex] = it.value();
}
return DenseElementsAttr::get(outputType,
llvm::ArrayRef<BaseType>(outputValues));
}
// A type specialized transposition of an ElementsAttr.
// This implementation tries to operate on the underlying data in its raw
// representation when possible to avoid allocating a large number of Attribute
// objects.
DenseElementsAttr transpose(ElementsAttr attr, ShapedType inputType,
ShapedType outputType,
llvm::ArrayRef<int64_t> permValues) {
auto baseType = inputType.getElementType();
// Handle possible integer types
if (auto intType = dyn_cast<IntegerType>(baseType)) {
switch (intType.getWidth()) {
case 1:
return transposeType<bool>(attr, inputType, outputType, permValues);
case 8:
return transposeType<int8_t>(attr, inputType, outputType, permValues);
case 16:
return transposeType<int16_t>(attr, inputType, outputType, permValues);
case 32:
return transposeType<int32_t>(attr, inputType, outputType, permValues);
case 64:
return transposeType<int64_t>(attr, inputType, outputType, permValues);
default:
return transposeType<APInt>(attr, inputType, outputType, permValues);
}
}
// Handle possible float types
if (baseType.isF32()) {
return transposeType<float>(attr, inputType, outputType, permValues);
}
return transposeType<APFloat>(attr, inputType, outputType, permValues);
}
struct TosaFoldConstantTranspose : public OpRewritePattern<tosa::TransposeOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::TransposeOp op,
PatternRewriter &rewriter) const override {
auto outputType = cast<ShapedType>(op.getType());
// TOSA supports quantized types.
if (!outputType.getElementType().isIntOrIndexOrFloat())
return failure();
ElementsAttr inputValues;
if (!matchPattern(op.getInput1(), m_Constant(&inputValues)))
return failure();
// Make sure the input is a constant that has a single user.
if (!llvm::hasSingleElement(op.getInput1().getDefiningOp()->getUsers()))
return failure();
DenseIntElementsAttr permAttr;
if (!matchPattern(op.getPerms(), m_Constant(&permAttr)))
return failure();
auto permValues = llvm::to_vector<6>(llvm::map_range(
// TOSA allows both 32- and 64-bit integer tensors here.
permAttr.getValues<APInt>(),
[](const APInt &val) { return val.getSExtValue(); }));
auto inputType = cast<ShapedType>(op.getInput1().getType());
auto resultAttr = transpose(inputValues, inputType, outputType, permValues);
rewriter.replaceOpWithNewOp<tosa::ConstOp>(op, outputType, resultAttr);
return success();
}
};
struct TosaFoldConstantReciprocal : public OpRewritePattern<ReciprocalOp> {
using OpRewritePattern::OpRewritePattern;
static APFloat computeReciprocal(const APFloat &floatVal, FloatType floatTy) {
auto recipAttr = FloatAttr::get(floatTy, 1.0);
APFloat recip = recipAttr.getValue();
recip.divide(floatVal, tosaRoundingMode);
return recip;
}
LogicalResult matchAndRewrite(ReciprocalOp recip,
PatternRewriter &rewriter) const override {
auto inputTensor = recip.getInput1();
// Check that we can apply folding
auto preCondCheck =
notifyIfNotConstantFloatTosaTensor(inputTensor, recip, rewriter);
if (failed(preCondCheck)) {
return preCondCheck;
}
// Extract the tensor values
DenseElementsAttr inputValues;
matchPattern(inputTensor, m_Constant(&inputValues));
// Check whether this should be folded.
if (!constantUnaryOpShouldBeFolded(recip, inputValues)) {
return rewriter.notifyMatchFailure(
recip, "Currently, reciprocals will only be folded if the input "
"tensor has a single user");
}
// Create a new tensor with the updated values
auto newTensor = applyElementWise<APFloat, APFloat, FloatType>(
inputValues, &computeReciprocal,
cast<FloatType>(inputValues.getElementType()));
// Replace the use of the reciprocal with the transformed tensor
rewriter.replaceOpWithNewOp<ConstOp>(recip, newTensor.getType(), newTensor);
return success();
}
};
} // namespace
void mlir::tosa::populateTosaFoldConstantTransposePatterns(
MLIRContext *ctx, RewritePatternSet &patterns) {
patterns.add<TosaFoldConstantTranspose>(ctx);
}
void mlir::tosa::populateTosaFoldConstantReciprocalPatterns(
MLIRContext *ctx, RewritePatternSet &patterns) {
patterns.add<TosaFoldConstantReciprocal>(ctx);
}
|