File: ConversionUtils.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (157 lines) | stat: -rw-r--r-- 5,549 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
//===- ConversionUtils.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Utility functions for TOSA lowering
//
//===----------------------------------------------------------------------===//

#include "mlir/Dialect/Tosa/Utils/ConversionUtils.h"
#include "mlir/Dialect/Tosa/IR/TosaOps.h"

using namespace mlir;
using namespace mlir::tosa;

SmallVector<utils::IteratorType>
mlir::tosa::getNParallelLoopsAttrs(unsigned nParallelLoops) {
  return SmallVector<utils::IteratorType>(nParallelLoops,
                                          utils::IteratorType::parallel);
}

SmallVector<Value>
mlir::tosa::condenseValues(const SmallVector<Value> &values) {
  SmallVector<Value> condensedValues;
  for (auto value : values)
    if (value)
      condensedValues.push_back(value);
  return condensedValues;
}

Value mlir::tosa::clampFloatHelper(Location loc, Value arg, Value min,
                                   Value max, OpBuilder &rewriter) {
  Value minValue = rewriter.create<arith::MinFOp>(loc, arg, max);
  return rewriter.create<arith::MaxFOp>(loc, minValue, min);
}

Value mlir::tosa::clampIntHelper(Location loc, Value arg, Value min, Value max,
                                 OpBuilder &rewriter) {
  auto smallerThanMin =
      rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, arg, min);
  auto minOrArg =
      rewriter.create<arith::SelectOp>(loc, smallerThanMin, min, arg);
  auto largerThanMax =
      rewriter.create<arith::CmpIOp>(loc, arith::CmpIPredicate::slt, max, arg);
  return rewriter.create<arith::SelectOp>(loc, largerThanMax, max, minOrArg);
}

bool mlir::tosa::validIntegerRange(IntegerType ty, int64_t value) {
  uint64_t bitwidth = ty.getIntOrFloatBitWidth();
  if (ty.getSignedness() == IntegerType::Unsigned) {
    uint64_t uvalue = value;
    APInt intMin = APInt::getMinValue(bitwidth);
    APInt intMax = APInt::getMaxValue(bitwidth);
    return uvalue >= intMin.getZExtValue() && uvalue <= intMax.getZExtValue();
  }

  APInt intMin = APInt::getSignedMinValue(bitwidth);
  APInt intMax = APInt::getSignedMaxValue(bitwidth);
  return value >= intMin.getSExtValue() && value <= intMax.getSExtValue();
}

namespace {
// Given two tensors of high and low ranks, derive the output shape
// to reshape the lower rank to.
// Examples:
// If lower=[c], higher=[a, b, c], [c] reshaped into [1, 1, c].
// If lower=[b, c], higher=[a, b, c], [b, c] reshaped into [1, b, c].
// If lower=[a], higher=[a, a], [a] reshaped into [1, a].
// If lower=[a], target=[a, b, a], [a] reshaped into [1, 1, a].
// If lower=[], target=[a, b, c], [] reshaped into [1, 1, 1].
LogicalResult
computeReshapeOutput(ArrayRef<int64_t> higherRankShape,
                     ArrayRef<int64_t> lowerRankShape,
                     SmallVectorImpl<int64_t> &reshapeOutputShape) {
  // Initialize new shapes with [1] * higherRank.
  int64_t higherRank = higherRankShape.size();
  int64_t lowerRank = lowerRankShape.size();

  reshapeOutputShape.assign(higherRank, 1);

  int64_t higherRankDim;
  int64_t lowerRankDim;

  for (int64_t i = higherRank - 1, j = lowerRank - 1; i >= 0 && j >= 0;
       i--, j--) {
    higherRankDim = higherRankShape[i];
    lowerRankDim = lowerRankShape[j];

    if (lowerRankDim == 1 && higherRankDim > 1)
      reshapeOutputShape[i] = 1;
    else if ((lowerRankDim > 1 && higherRankDim == 1) ||
             (lowerRankDim == higherRankDim))
      reshapeOutputShape[i] = lowerRankDim;
    else if (higherRankDim != lowerRankDim)
      return failure();
  }
  return success();
}
} // namespace

LogicalResult mlir::tosa::EqualizeRanks(PatternRewriter &rewriter, Location loc,
                                        Value &input1, Value &input2) {
  auto input1Ty = llvm::dyn_cast<RankedTensorType>(input1.getType());
  auto input2Ty = llvm::dyn_cast<RankedTensorType>(input2.getType());

  if (!input1Ty || !input2Ty) {
    return failure();
  }

  int64_t input1Rank = input1Ty.getRank();
  int64_t input2Rank = input2Ty.getRank();

  if (input1Rank == input2Rank)
    return success();

  Value higherTensorValue, lowerTensorValue;
  if (input1Rank > input2Rank) {
    higherTensorValue = input1;
    lowerTensorValue = input2;
  } else {
    higherTensorValue = input2;
    lowerTensorValue = input1;
  }

  ArrayRef<int64_t> higherRankShape =
      llvm::cast<RankedTensorType>(higherTensorValue.getType()).getShape();
  ArrayRef<int64_t> lowerRankShape =
      llvm::cast<RankedTensorType>(lowerTensorValue.getType()).getShape();

  SmallVector<int64_t, 4> reshapeOutputShape;

  if (computeReshapeOutput(higherRankShape, lowerRankShape, reshapeOutputShape)
          .failed())
    return failure();

  auto reshapeInputType =
      llvm::cast<RankedTensorType>(lowerTensorValue.getType());
  auto reshapeOutputType = RankedTensorType::get(
      ArrayRef<int64_t>(reshapeOutputShape), reshapeInputType.getElementType());

  auto reshapeLower = rewriter.create<tosa::ReshapeOp>(
      loc, reshapeOutputType, lowerTensorValue,
      rewriter.getDenseI64ArrayAttr(reshapeOutputShape));

  if (input1Rank > input2Rank) {
    input1 = higherTensorValue;
    input2 = reshapeLower.getResult();
  } else {
    input1 = reshapeLower.getResult();
    input2 = higherTensorValue;
  }

  return success();
}