1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
//===- ExecutionEngine.cpp - MLIR Execution engine and utils --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the execution engine for MLIR modules based on LLVM Orc
// JIT engine.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/ExecutionEngine.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/Support/FileUtilities.h"
#include "mlir/Target/LLVMIR/Export.h"
#include "llvm/ExecutionEngine/JITEventListener.h"
#include "llvm/ExecutionEngine/ObjectCache.h"
#include "llvm/ExecutionEngine/Orc/CompileUtils.h"
#include "llvm/ExecutionEngine/Orc/ExecutionUtils.h"
#include "llvm/ExecutionEngine/Orc/IRCompileLayer.h"
#include "llvm/ExecutionEngine/Orc/IRTransformLayer.h"
#include "llvm/ExecutionEngine/Orc/JITTargetMachineBuilder.h"
#include "llvm/ExecutionEngine/Orc/RTDyldObjectLinkingLayer.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/ToolOutputFile.h"
#include "llvm/TargetParser/Host.h"
#include "llvm/TargetParser/SubtargetFeature.h"
#define DEBUG_TYPE "execution-engine"
using namespace mlir;
using llvm::dbgs;
using llvm::Error;
using llvm::errs;
using llvm::Expected;
using llvm::LLVMContext;
using llvm::MemoryBuffer;
using llvm::MemoryBufferRef;
using llvm::Module;
using llvm::SectionMemoryManager;
using llvm::StringError;
using llvm::Triple;
using llvm::orc::DynamicLibrarySearchGenerator;
using llvm::orc::ExecutionSession;
using llvm::orc::IRCompileLayer;
using llvm::orc::JITTargetMachineBuilder;
using llvm::orc::MangleAndInterner;
using llvm::orc::RTDyldObjectLinkingLayer;
using llvm::orc::SymbolMap;
using llvm::orc::ThreadSafeModule;
using llvm::orc::TMOwningSimpleCompiler;
/// Wrap a string into an llvm::StringError.
static Error makeStringError(const Twine &message) {
return llvm::make_error<StringError>(message.str(),
llvm::inconvertibleErrorCode());
}
void SimpleObjectCache::notifyObjectCompiled(const Module *m,
MemoryBufferRef objBuffer) {
cachedObjects[m->getModuleIdentifier()] = MemoryBuffer::getMemBufferCopy(
objBuffer.getBuffer(), objBuffer.getBufferIdentifier());
}
std::unique_ptr<MemoryBuffer> SimpleObjectCache::getObject(const Module *m) {
auto i = cachedObjects.find(m->getModuleIdentifier());
if (i == cachedObjects.end()) {
LLVM_DEBUG(dbgs() << "No object for " << m->getModuleIdentifier()
<< " in cache. Compiling.\n");
return nullptr;
}
LLVM_DEBUG(dbgs() << "Object for " << m->getModuleIdentifier()
<< " loaded from cache.\n");
return MemoryBuffer::getMemBuffer(i->second->getMemBufferRef());
}
void SimpleObjectCache::dumpToObjectFile(StringRef outputFilename) {
// Set up the output file.
std::string errorMessage;
auto file = openOutputFile(outputFilename, &errorMessage);
if (!file) {
llvm::errs() << errorMessage << "\n";
return;
}
// Dump the object generated for a single module to the output file.
assert(cachedObjects.size() == 1 && "Expected only one object entry.");
auto &cachedObject = cachedObjects.begin()->second;
file->os() << cachedObject->getBuffer();
file->keep();
}
bool SimpleObjectCache::isEmpty() { return cachedObjects.empty(); }
void ExecutionEngine::dumpToObjectFile(StringRef filename) {
if (cache == nullptr) {
llvm::errs() << "cannot dump ExecutionEngine object code to file: "
"object cache is disabled\n";
return;
}
// Compilation is lazy and it doesn't populate object cache unless requested.
// In case object dump is requested before cache is populated, we need to
// force compilation manually.
if (cache->isEmpty()) {
for (std::string &functionName : functionNames) {
auto result = lookupPacked(functionName);
if (!result) {
llvm::errs() << "Could not compile " << functionName << ":\n "
<< result.takeError() << "\n";
return;
}
}
}
cache->dumpToObjectFile(filename);
}
void ExecutionEngine::registerSymbols(
llvm::function_ref<SymbolMap(MangleAndInterner)> symbolMap) {
auto &mainJitDylib = jit->getMainJITDylib();
cantFail(mainJitDylib.define(
absoluteSymbols(symbolMap(llvm::orc::MangleAndInterner(
mainJitDylib.getExecutionSession(), jit->getDataLayout())))));
}
void ExecutionEngine::setupTargetTripleAndDataLayout(Module *llvmModule,
llvm::TargetMachine *tm) {
llvmModule->setDataLayout(tm->createDataLayout());
llvmModule->setTargetTriple(tm->getTargetTriple().getTriple());
}
static std::string makePackedFunctionName(StringRef name) {
return "_mlir_" + name.str();
}
// For each function in the LLVM module, define an interface function that wraps
// all the arguments of the original function and all its results into an i8**
// pointer to provide a unified invocation interface.
static void packFunctionArguments(Module *module) {
auto &ctx = module->getContext();
llvm::IRBuilder<> builder(ctx);
DenseSet<llvm::Function *> interfaceFunctions;
for (auto &func : module->getFunctionList()) {
if (func.isDeclaration()) {
continue;
}
if (interfaceFunctions.count(&func)) {
continue;
}
// Given a function `foo(<...>)`, define the interface function
// `mlir_foo(i8**)`.
auto *newType = llvm::FunctionType::get(
builder.getVoidTy(), builder.getInt8PtrTy()->getPointerTo(),
/*isVarArg=*/false);
auto newName = makePackedFunctionName(func.getName());
auto funcCst = module->getOrInsertFunction(newName, newType);
llvm::Function *interfaceFunc = cast<llvm::Function>(funcCst.getCallee());
interfaceFunctions.insert(interfaceFunc);
// Extract the arguments from the type-erased argument list and cast them to
// the proper types.
auto *bb = llvm::BasicBlock::Create(ctx);
bb->insertInto(interfaceFunc);
builder.SetInsertPoint(bb);
llvm::Value *argList = interfaceFunc->arg_begin();
SmallVector<llvm::Value *, 8> args;
args.reserve(llvm::size(func.args()));
for (auto [index, arg] : llvm::enumerate(func.args())) {
llvm::Value *argIndex = llvm::Constant::getIntegerValue(
builder.getInt64Ty(), APInt(64, index));
llvm::Value *argPtrPtr =
builder.CreateGEP(builder.getInt8PtrTy(), argList, argIndex);
llvm::Value *argPtr =
builder.CreateLoad(builder.getInt8PtrTy(), argPtrPtr);
llvm::Type *argTy = arg.getType();
argPtr = builder.CreateBitCast(argPtr, argTy->getPointerTo());
llvm::Value *load = builder.CreateLoad(argTy, argPtr);
args.push_back(load);
}
// Call the implementation function with the extracted arguments.
llvm::Value *result = builder.CreateCall(&func, args);
// Assuming the result is one value, potentially of type `void`.
if (!result->getType()->isVoidTy()) {
llvm::Value *retIndex = llvm::Constant::getIntegerValue(
builder.getInt64Ty(), APInt(64, llvm::size(func.args())));
llvm::Value *retPtrPtr =
builder.CreateGEP(builder.getInt8PtrTy(), argList, retIndex);
llvm::Value *retPtr =
builder.CreateLoad(builder.getInt8PtrTy(), retPtrPtr);
retPtr = builder.CreateBitCast(retPtr, result->getType()->getPointerTo());
builder.CreateStore(result, retPtr);
}
// The interface function returns void.
builder.CreateRetVoid();
}
}
ExecutionEngine::ExecutionEngine(bool enableObjectDump,
bool enableGDBNotificationListener,
bool enablePerfNotificationListener)
: cache(enableObjectDump ? new SimpleObjectCache() : nullptr),
functionNames(),
gdbListener(enableGDBNotificationListener
? llvm::JITEventListener::createGDBRegistrationListener()
: nullptr),
perfListener(nullptr) {
if (enablePerfNotificationListener) {
if (auto *listener = llvm::JITEventListener::createPerfJITEventListener())
perfListener = listener;
else if (auto *listener =
llvm::JITEventListener::createIntelJITEventListener())
perfListener = listener;
}
}
ExecutionEngine::~ExecutionEngine() {
// Run all dynamic library destroy callbacks to prepare for the shutdown.
for (LibraryDestroyFn destroy : destroyFns)
destroy();
}
Expected<std::unique_ptr<ExecutionEngine>>
ExecutionEngine::create(Operation *m, const ExecutionEngineOptions &options,
std::unique_ptr<llvm::TargetMachine> tm) {
auto engine = std::make_unique<ExecutionEngine>(
options.enableObjectDump, options.enableGDBNotificationListener,
options.enablePerfNotificationListener);
// Remember all entry-points if object dumping is enabled.
if (options.enableObjectDump) {
for (auto funcOp : m->getRegion(0).getOps<LLVM::LLVMFuncOp>()) {
StringRef funcName = funcOp.getSymName();
engine->functionNames.push_back(funcName.str());
}
}
std::unique_ptr<llvm::LLVMContext> ctx(new llvm::LLVMContext);
auto llvmModule = options.llvmModuleBuilder
? options.llvmModuleBuilder(m, *ctx)
: translateModuleToLLVMIR(m, *ctx);
if (!llvmModule)
return makeStringError("could not convert to LLVM IR");
// If no valid TargetMachine was passed, create a default TM ignoring any
// input arguments from the user.
if (!tm) {
auto tmBuilderOrError = llvm::orc::JITTargetMachineBuilder::detectHost();
if (!tmBuilderOrError)
return tmBuilderOrError.takeError();
auto tmOrError = tmBuilderOrError->createTargetMachine();
if (!tmOrError)
return tmOrError.takeError();
tm = std::move(tmOrError.get());
}
// TODO: Currently, the LLVM module created above has no triple associated
// with it. Instead, the triple is extracted from the TargetMachine, which is
// either based on the host defaults or command line arguments when specified
// (set-up by callers of this method). It could also be passed to the
// translation or dialect conversion instead of this.
setupTargetTripleAndDataLayout(llvmModule.get(), tm.get());
packFunctionArguments(llvmModule.get());
auto dataLayout = llvmModule->getDataLayout();
// Use absolute library path so that gdb can find the symbol table.
SmallVector<SmallString<256>, 4> sharedLibPaths;
transform(
options.sharedLibPaths, std::back_inserter(sharedLibPaths),
[](StringRef libPath) {
SmallString<256> absPath(libPath.begin(), libPath.end());
cantFail(llvm::errorCodeToError(llvm::sys::fs::make_absolute(absPath)));
return absPath;
});
// If shared library implements custom execution layer library init and
// destroy functions, we'll use them to register the library. Otherwise, load
// the library as JITDyLib below.
llvm::StringMap<void *> exportSymbols;
SmallVector<LibraryDestroyFn> destroyFns;
SmallVector<StringRef> jitDyLibPaths;
for (auto &libPath : sharedLibPaths) {
auto lib = llvm::sys::DynamicLibrary::getPermanentLibrary(
libPath.str().str().c_str());
void *initSym = lib.getAddressOfSymbol(kLibraryInitFnName);
void *destroySim = lib.getAddressOfSymbol(kLibraryDestroyFnName);
// Library does not provide call backs, rely on symbol visiblity.
if (!initSym || !destroySim) {
jitDyLibPaths.push_back(libPath);
continue;
}
auto initFn = reinterpret_cast<LibraryInitFn>(initSym);
initFn(exportSymbols);
auto destroyFn = reinterpret_cast<LibraryDestroyFn>(destroySim);
destroyFns.push_back(destroyFn);
}
engine->destroyFns = std::move(destroyFns);
// Callback to create the object layer with symbol resolution to current
// process and dynamically linked libraries.
auto objectLinkingLayerCreator = [&](ExecutionSession &session,
const Triple &tt) {
auto objectLayer = std::make_unique<RTDyldObjectLinkingLayer>(
session, [sectionMemoryMapper = options.sectionMemoryMapper]() {
return std::make_unique<SectionMemoryManager>(sectionMemoryMapper);
});
// Register JIT event listeners if they are enabled.
if (engine->gdbListener)
objectLayer->registerJITEventListener(*engine->gdbListener);
if (engine->perfListener)
objectLayer->registerJITEventListener(*engine->perfListener);
// COFF format binaries (Windows) need special handling to deal with
// exported symbol visibility.
// cf llvm/lib/ExecutionEngine/Orc/LLJIT.cpp LLJIT::createObjectLinkingLayer
llvm::Triple targetTriple(llvm::Twine(llvmModule->getTargetTriple()));
if (targetTriple.isOSBinFormatCOFF()) {
objectLayer->setOverrideObjectFlagsWithResponsibilityFlags(true);
objectLayer->setAutoClaimResponsibilityForObjectSymbols(true);
}
// Resolve symbols from shared libraries.
for (auto &libPath : jitDyLibPaths) {
auto mb = llvm::MemoryBuffer::getFile(libPath);
if (!mb) {
errs() << "Failed to create MemoryBuffer for: " << libPath
<< "\nError: " << mb.getError().message() << "\n";
continue;
}
auto &jd = session.createBareJITDylib(std::string(libPath));
auto loaded = DynamicLibrarySearchGenerator::Load(
libPath.str().c_str(), dataLayout.getGlobalPrefix());
if (!loaded) {
errs() << "Could not load " << libPath << ":\n " << loaded.takeError()
<< "\n";
continue;
}
jd.addGenerator(std::move(*loaded));
cantFail(objectLayer->add(jd, std::move(mb.get())));
}
return objectLayer;
};
// Callback to inspect the cache and recompile on demand. This follows Lang's
// LLJITWithObjectCache example.
auto compileFunctionCreator = [&](JITTargetMachineBuilder jtmb)
-> Expected<std::unique_ptr<IRCompileLayer::IRCompiler>> {
if (options.jitCodeGenOptLevel)
jtmb.setCodeGenOptLevel(*options.jitCodeGenOptLevel);
return std::make_unique<TMOwningSimpleCompiler>(std::move(tm),
engine->cache.get());
};
// Create the LLJIT by calling the LLJITBuilder with 2 callbacks.
auto jit =
cantFail(llvm::orc::LLJITBuilder()
.setCompileFunctionCreator(compileFunctionCreator)
.setObjectLinkingLayerCreator(objectLinkingLayerCreator)
.setDataLayout(dataLayout)
.create());
// Add a ThreadSafemodule to the engine and return.
ThreadSafeModule tsm(std::move(llvmModule), std::move(ctx));
if (options.transformer)
cantFail(tsm.withModuleDo(
[&](llvm::Module &module) { return options.transformer(&module); }));
cantFail(jit->addIRModule(std::move(tsm)));
engine->jit = std::move(jit);
// Resolve symbols that are statically linked in the current process.
llvm::orc::JITDylib &mainJD = engine->jit->getMainJITDylib();
mainJD.addGenerator(
cantFail(DynamicLibrarySearchGenerator::GetForCurrentProcess(
dataLayout.getGlobalPrefix())));
// Build a runtime symbol map from the exported symbols and register them.
auto runtimeSymbolMap = [&](llvm::orc::MangleAndInterner interner) {
auto symbolMap = llvm::orc::SymbolMap();
for (auto &exportSymbol : exportSymbols)
symbolMap[interner(exportSymbol.getKey())] = {
llvm::orc::ExecutorAddr::fromPtr(exportSymbol.getValue()),
llvm::JITSymbolFlags::Exported};
return symbolMap;
};
engine->registerSymbols(runtimeSymbolMap);
return std::move(engine);
}
Expected<void (*)(void **)>
ExecutionEngine::lookupPacked(StringRef name) const {
auto result = lookup(makePackedFunctionName(name));
if (!result)
return result.takeError();
return reinterpret_cast<void (*)(void **)>(result.get());
}
Expected<void *> ExecutionEngine::lookup(StringRef name) const {
auto expectedSymbol = jit->lookup(name);
// JIT lookup may return an Error referring to strings stored internally by
// the JIT. If the Error outlives the ExecutionEngine, it would want have a
// dangling reference, which is currently caught by an assertion inside JIT
// thanks to hand-rolled reference counting. Rewrap the error message into a
// string before returning. Alternatively, ORC JIT should consider copying
// the string into the error message.
if (!expectedSymbol) {
std::string errorMessage;
llvm::raw_string_ostream os(errorMessage);
llvm::handleAllErrors(expectedSymbol.takeError(),
[&os](llvm::ErrorInfoBase &ei) { ei.log(os); });
return makeStringError(os.str());
}
if (void *fptr = expectedSymbol->toPtr<void *>())
return fptr;
return makeStringError("looked up function is null");
}
Error ExecutionEngine::invokePacked(StringRef name,
MutableArrayRef<void *> args) {
auto expectedFPtr = lookupPacked(name);
if (!expectedFPtr)
return expectedFPtr.takeError();
auto fptr = *expectedFPtr;
(*fptr)(args.data());
return Error::success();
}
|