1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
//===--- Float16bits.cpp - supports 2-byte floats ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements f16 and bf16 to support the compilation and execution
// of programs using these types.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/Float16bits.h"
#ifdef MLIR_FLOAT16_DEFINE_FUNCTIONS // We are building this library
#include <cmath>
#include <cstring>
namespace {
// Union used to make the int/float aliasing explicit so we can access the raw
// bits.
union Float32Bits {
uint32_t u;
float f;
};
const uint32_t kF32MantiBits = 23;
const uint32_t kF32HalfMantiBitDiff = 13;
const uint32_t kF32HalfBitDiff = 16;
const Float32Bits kF32Magic = {113 << kF32MantiBits};
const uint32_t kF32HalfExpAdjust = (127 - 15) << kF32MantiBits;
// Constructs the 16 bit representation for a half precision value from a float
// value. This implementation is adapted from Eigen.
uint16_t float2half(float floatValue) {
const Float32Bits inf = {255 << kF32MantiBits};
const Float32Bits f16max = {(127 + 16) << kF32MantiBits};
const Float32Bits denormMagic = {((127 - 15) + (kF32MantiBits - 10) + 1)
<< kF32MantiBits};
uint32_t signMask = 0x80000000u;
uint16_t halfValue = static_cast<uint16_t>(0x0u);
Float32Bits f;
f.f = floatValue;
uint32_t sign = f.u & signMask;
f.u ^= sign;
if (f.u >= f16max.u) {
const uint32_t halfQnan = 0x7e00;
const uint32_t halfInf = 0x7c00;
// Inf or NaN (all exponent bits set).
halfValue = (f.u > inf.u) ? halfQnan : halfInf; // NaN->qNaN and Inf->Inf
} else {
// (De)normalized number or zero.
if (f.u < kF32Magic.u) {
// The resulting FP16 is subnormal or zero.
//
// Use a magic value to align our 10 mantissa bits at the bottom of the
// float. As long as FP addition is round-to-nearest-even this works.
f.f += denormMagic.f;
halfValue = static_cast<uint16_t>(f.u - denormMagic.u);
} else {
uint32_t mantOdd =
(f.u >> kF32HalfMantiBitDiff) & 1; // Resulting mantissa is odd.
// Update exponent, rounding bias part 1. The following expressions are
// equivalent to `f.u += ((unsigned int)(15 - 127) << kF32MantiBits) +
// 0xfff`, but without arithmetic overflow.
f.u += 0xc8000fffU;
// Rounding bias part 2.
f.u += mantOdd;
halfValue = static_cast<uint16_t>(f.u >> kF32HalfMantiBitDiff);
}
}
halfValue |= static_cast<uint16_t>(sign >> kF32HalfBitDiff);
return halfValue;
}
// Converts the 16 bit representation of a half precision value to a float
// value. This implementation is adapted from Eigen.
float half2float(uint16_t halfValue) {
const uint32_t shiftedExp =
0x7c00 << kF32HalfMantiBitDiff; // Exponent mask after shift.
// Initialize the float representation with the exponent/mantissa bits.
Float32Bits f = {
static_cast<uint32_t>((halfValue & 0x7fff) << kF32HalfMantiBitDiff)};
const uint32_t exp = shiftedExp & f.u;
f.u += kF32HalfExpAdjust; // Adjust the exponent
// Handle exponent special cases.
if (exp == shiftedExp) {
// Inf/NaN
f.u += kF32HalfExpAdjust;
} else if (exp == 0) {
// Zero/Denormal?
f.u += 1 << kF32MantiBits;
f.f -= kF32Magic.f;
}
f.u |= (halfValue & 0x8000) << kF32HalfBitDiff; // Sign bit.
return f.f;
}
const uint32_t kF32BfMantiBitDiff = 16;
// Constructs the 16 bit representation for a bfloat value from a float value.
// This implementation is adapted from Eigen.
uint16_t float2bfloat(float floatValue) {
if (std::isnan(floatValue))
return std::signbit(floatValue) ? 0xFFC0 : 0x7FC0;
Float32Bits floatBits;
floatBits.f = floatValue;
uint16_t bfloatBits;
// Least significant bit of resulting bfloat.
uint32_t lsb = (floatBits.u >> kF32BfMantiBitDiff) & 1;
uint32_t roundingBias = 0x7fff + lsb;
floatBits.u += roundingBias;
bfloatBits = static_cast<uint16_t>(floatBits.u >> kF32BfMantiBitDiff);
return bfloatBits;
}
// Converts the 16 bit representation of a bfloat value to a float value. This
// implementation is adapted from Eigen.
float bfloat2float(uint16_t bfloatBits) {
Float32Bits floatBits;
floatBits.u = static_cast<uint32_t>(bfloatBits) << kF32BfMantiBitDiff;
return floatBits.f;
}
} // namespace
f16::f16(float f) : bits(float2half(f)) {}
bf16::bf16(float f) : bits(float2bfloat(f)) {}
std::ostream &operator<<(std::ostream &os, const f16 &f) {
os << half2float(f.bits);
return os;
}
std::ostream &operator<<(std::ostream &os, const bf16 &d) {
os << bfloat2float(d.bits);
return os;
}
// Mark these symbols as weak so they don't conflict when compiler-rt also
// defines them.
#define ATTR_WEAK
#ifdef __has_attribute
#if __has_attribute(weak) && !defined(__MINGW32__) && !defined(__CYGWIN__) && \
!defined(_WIN32)
#undef ATTR_WEAK
#define ATTR_WEAK __attribute__((__weak__))
#endif
#endif
#if defined(__x86_64__)
// On x86 bfloat16 is passed in SSE registers. Since both float and __bf16
// are passed in the same register we can use the wider type and careful casting
// to conform to x86_64 psABI. This only works with the assumption that we're
// dealing with little-endian values passed in wider registers.
// Ideally this would directly use __bf16, but that type isn't supported by all
// compilers.
using BF16ABIType = float;
#else
// Default to uint16_t if we have nothing else.
using BF16ABIType = uint16_t;
#endif
// Provide a float->bfloat conversion routine in case the runtime doesn't have
// one.
extern "C" BF16ABIType ATTR_WEAK __truncsfbf2(float f) {
uint16_t bf = float2bfloat(f);
// The output can be a float type, bitcast it from uint16_t.
BF16ABIType ret = 0;
std::memcpy(&ret, &bf, sizeof(bf));
return ret;
}
// Provide a double->bfloat conversion routine in case the runtime doesn't have
// one.
extern "C" BF16ABIType ATTR_WEAK __truncdfbf2(double d) {
// This does a double rounding step, but it's precise enough for our use
// cases.
return __truncsfbf2(static_cast<float>(d));
}
// Provide these to the CRunner with the local float16 knowledge.
extern "C" void printF16(uint16_t bits) {
f16 f;
std::memcpy(&f, &bits, sizeof(f16));
std::cout << f;
}
extern "C" void printBF16(uint16_t bits) {
bf16 f;
std::memcpy(&f, &bits, sizeof(bf16));
std::cout << f;
}
#endif // MLIR_FLOAT16_DEFINE_FUNCTIONS
|