1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887
|
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <numeric>
#include <optional>
#include <type_traits>
using namespace mlir;
namespace {
// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
: numDims(numDims), operandConsts(operandConsts) {}
/// Attempt to constant fold the specified affine expr, or return null on
/// failure.
IntegerAttr constantFold(AffineExpr expr) {
if (auto result = constantFoldImpl(expr))
return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
return nullptr;
}
private:
std::optional<int64_t> constantFoldImpl(AffineExpr expr) {
switch (expr.getKind()) {
case AffineExprKind::Add:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
case AffineExprKind::Mul:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
case AffineExprKind::Mod:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
case AffineExprKind::FloorDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
case AffineExprKind::CeilDiv:
return constantFoldBinExpr(
expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
case AffineExprKind::Constant:
return expr.cast<AffineConstantExpr>().getValue();
case AffineExprKind::DimId:
if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
operandConsts[expr.cast<AffineDimExpr>().getPosition()]))
return attr.getInt();
return std::nullopt;
case AffineExprKind::SymbolId:
if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
operandConsts[numDims +
expr.cast<AffineSymbolExpr>().getPosition()]))
return attr.getInt();
return std::nullopt;
}
llvm_unreachable("Unknown AffineExpr");
}
// TODO: Change these to operate on APInts too.
std::optional<int64_t> constantFoldBinExpr(AffineExpr expr,
int64_t (*op)(int64_t, int64_t)) {
auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
return op(*lhs, *rhs);
return std::nullopt;
}
// The number of dimension operands in AffineMap containing this expression.
unsigned numDims;
// The constant valued operands used to evaluate this AffineExpr.
ArrayRef<Attribute> operandConsts;
};
} // namespace
/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
return get(/*dimCount=*/0, /*symbolCount=*/0,
{getAffineConstantExpr(val, context)});
}
/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
/// minor dimensions.
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
MLIRContext *context) {
assert(dims >= results && "Dimension mismatch");
auto id = AffineMap::getMultiDimIdentityMap(dims, context);
return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
}
AffineMap AffineMap::getFilteredIdentityMap(
MLIRContext *ctx, unsigned numDims,
llvm::function_ref<bool(AffineDimExpr)> keepDimFilter) {
auto identityMap = getMultiDimIdentityMap(numDims, ctx);
// Apply filter to results.
llvm::SmallBitVector dropDimResults(numDims);
for (auto [idx, resultExpr] : llvm::enumerate(identityMap.getResults()))
dropDimResults[idx] = !keepDimFilter(resultExpr.cast<AffineDimExpr>());
return identityMap.dropResults(dropDimResults);
}
bool AffineMap::isMinorIdentity() const {
return getNumDims() >= getNumResults() &&
*this ==
getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
}
/// Returns true if this affine map is a minor identity up to broadcasted
/// dimensions which are indicated by value 0 in the result.
bool AffineMap::isMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> *broadcastedDims) const {
if (broadcastedDims)
broadcastedDims->clear();
if (getNumDims() < getNumResults())
return false;
unsigned suffixStart = getNumDims() - getNumResults();
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
// Each result may be either a constant 0 (broadcasted dimension).
if (constExpr.getValue() != 0)
return false;
if (broadcastedDims)
broadcastedDims->push_back(resIdx);
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
// Or it may be the input dimension corresponding to this result position.
if (dimExpr.getPosition() != suffixStart + resIdx)
return false;
} else {
return false;
}
}
return true;
}
/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
/// * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
/// perm = [1, 0] and broadcast d2
/// * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
/// permutation + broadcast
/// * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
/// with perm = [1, 0, 2] and broadcast d2
/// * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
/// leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
/// perm = [3, 0, 1, 2]
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
SmallVectorImpl<unsigned> &permutedDims) const {
unsigned projectionStart =
getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
permutedDims.clear();
SmallVector<unsigned> broadcastDims;
permutedDims.resize(getNumResults(), 0);
// If there are more results than input dimensions we want the new map to
// start with broadcast dimensions in order to be a minor identity with
// broadcasting.
unsigned leadingBroadcast =
getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
false);
for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
unsigned resIdx = idxAndExpr.index();
AffineExpr expr = idxAndExpr.value();
// Each result may be either a constant 0 (broadcast dimension) or a
// dimension.
if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
if (constExpr.getValue() != 0)
return false;
broadcastDims.push_back(resIdx);
} else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
if (dimExpr.getPosition() < projectionStart)
return false;
unsigned newPosition =
dimExpr.getPosition() - projectionStart + leadingBroadcast;
permutedDims[resIdx] = newPosition;
dimFound[newPosition] = true;
} else {
return false;
}
}
// Find a permuation for the broadcast dimension. Since they are broadcasted
// any valid permutation is acceptable. We just permute the dim into a slot
// without an existing dimension.
unsigned pos = 0;
for (auto dim : broadcastDims) {
while (pos < dimFound.size() && dimFound[pos]) {
pos++;
}
permutedDims[dim] = pos++;
}
return true;
}
/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
MLIRContext *context) {
assert(!permutation.empty() &&
"Cannot create permutation map from empty permutation vector");
SmallVector<AffineExpr, 4> affExprs;
for (auto index : permutation)
affExprs.push_back(getAffineDimExpr(index, context));
const auto *m = std::max_element(permutation.begin(), permutation.end());
auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
assert(permutationMap.isPermutation() && "Invalid permutation vector");
return permutationMap;
}
template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
assert(!exprsList.empty());
assert(!exprsList[0].empty());
auto context = exprsList[0][0].getContext();
int64_t maxDim = -1, maxSym = -1;
getMaxDimAndSymbol(exprsList, maxDim, maxSym);
SmallVector<AffineMap, 4> maps;
maps.reserve(exprsList.size());
for (const auto &exprs : exprsList)
maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
/*symbolCount=*/maxSym + 1, exprs, context));
return maps;
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
return ::inferFromExprList(exprsList);
}
SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
return ::inferFromExprList(exprsList);
}
uint64_t AffineMap::getLargestKnownDivisorOfMapExprs() {
uint64_t gcd = 0;
for (AffineExpr resultExpr : getResults()) {
uint64_t thisGcd = resultExpr.getLargestKnownDivisor();
gcd = std::gcd(gcd, thisGcd);
}
if (gcd == 0)
gcd = std::numeric_limits<uint64_t>::max();
return gcd;
}
AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
MLIRContext *context) {
SmallVector<AffineExpr, 4> dimExprs;
dimExprs.reserve(numDims);
for (unsigned i = 0; i < numDims; ++i)
dimExprs.push_back(mlir::getAffineDimExpr(i, context));
return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}
MLIRContext *AffineMap::getContext() const { return map->context; }
bool AffineMap::isIdentity() const {
if (getNumDims() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isSymbolIdentity() const {
if (getNumSymbols() != getNumResults())
return false;
ArrayRef<AffineExpr> results = getResults();
for (unsigned i = 0, numSymbols = getNumSymbols(); i < numSymbols; ++i) {
auto expr = results[i].dyn_cast<AffineDimExpr>();
if (!expr || expr.getPosition() != i)
return false;
}
return true;
}
bool AffineMap::isEmpty() const {
return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}
bool AffineMap::isSingleConstant() const {
return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}
bool AffineMap::isConstant() const {
return llvm::all_of(getResults(), [](AffineExpr expr) {
return expr.isa<AffineConstantExpr>();
});
}
int64_t AffineMap::getSingleConstantResult() const {
assert(isSingleConstant() && "map must have a single constant result");
return getResult(0).cast<AffineConstantExpr>().getValue();
}
SmallVector<int64_t> AffineMap::getConstantResults() const {
assert(isConstant() && "map must have only constant results");
SmallVector<int64_t> result;
for (auto expr : getResults())
result.emplace_back(expr.cast<AffineConstantExpr>().getValue());
return result;
}
unsigned AffineMap::getNumDims() const {
assert(map && "uninitialized map storage");
return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
assert(map && "uninitialized map storage");
return map->numSymbols;
}
unsigned AffineMap::getNumResults() const { return getResults().size(); }
unsigned AffineMap::getNumInputs() const {
assert(map && "uninitialized map storage");
return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
assert(map && "uninitialized map storage");
return map->results();
}
AffineExpr AffineMap::getResult(unsigned idx) const {
return getResults()[idx];
}
unsigned AffineMap::getDimPosition(unsigned idx) const {
return getResult(idx).cast<AffineDimExpr>().getPosition();
}
std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const {
if (!input.isa<AffineDimExpr>())
return std::nullopt;
for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++) {
if (getResult(i) == input)
return i;
}
return std::nullopt;
}
/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<Attribute> &results) const {
// Attempt partial folding.
SmallVector<int64_t, 2> integers;
partialConstantFold(operandConstants, &integers);
// If all expressions folded to a constant, populate results with attributes
// containing those constants.
if (integers.empty())
return failure();
auto range = llvm::map_range(integers, [this](int64_t i) {
return IntegerAttr::get(IndexType::get(getContext()), i);
});
results.append(range.begin(), range.end());
return success();
}
AffineMap
AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
SmallVectorImpl<int64_t> *results) const {
assert(getNumInputs() == operandConstants.size());
// Fold each of the result expressions.
AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(getNumResults());
for (auto expr : getResults()) {
auto folded = exprFolder.constantFold(expr);
// If did not fold to a constant, keep the original expression, and clear
// the integer results vector.
if (folded) {
exprs.push_back(
getAffineConstantExpr(folded.getInt(), folded.getContext()));
if (results)
results->push_back(folded.getInt());
} else {
exprs.push_back(expr);
if (results) {
results->clear();
results = nullptr;
}
}
}
return get(getNumDims(), getNumSymbols(), exprs, getContext());
}
/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
for (auto expr : getResults())
expr.walk(callback);
}
/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping. Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result. The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
ArrayRef<AffineExpr> symReplacements,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 8> results;
results.reserve(getNumResults());
for (auto expr : getResults())
results.push_back(
expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
return get(numResultDims, numResultSyms, results, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
/// each of the results and return a new AffineMap with the new results and
/// with the specified number of dims and symbols.
AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(expr, replacement));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
/// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
/// results and return a new AffineMap with the new results and with the
/// specified number of dims and symbols.
AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
unsigned numResultDims,
unsigned numResultSyms) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}
AffineMap
AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
SmallVector<AffineExpr, 4> newResults;
newResults.reserve(getNumResults());
for (AffineExpr e : getResults())
newResults.push_back(e.replace(map));
return AffineMap::inferFromExprList(newResults).front();
}
AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
auto exprs = llvm::to_vector<4>(getResults());
// TODO: this is a pretty terrible API .. is there anything better?
for (auto pos = positions.find_last(); pos != -1;
pos = positions.find_prev(pos))
exprs.erase(exprs.begin() + pos);
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap AffineMap::compose(AffineMap map) const {
assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
// Prepare `map` by concatenating the symbols and rewriting its exprs.
unsigned numDims = map.getNumDims();
unsigned numSymbolsThisMap = getNumSymbols();
unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
SmallVector<AffineExpr, 8> newDims(numDims);
for (unsigned idx = 0; idx < numDims; ++idx) {
newDims[idx] = getAffineDimExpr(idx, getContext());
}
SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
newSymbols[idx - numSymbolsThisMap] =
getAffineSymbolExpr(idx, getContext());
}
auto newMap =
map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
SmallVector<AffineExpr, 8> exprs;
exprs.reserve(getResults().size());
for (auto expr : getResults())
exprs.push_back(expr.compose(newMap));
return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}
SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
assert(getNumSymbols() == 0 && "Expected symbol-less map");
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(values.size());
MLIRContext *ctx = getContext();
for (auto v : values)
exprs.push_back(getAffineConstantExpr(v, ctx));
auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
SmallVector<int64_t, 4> res;
res.reserve(resMap.getNumResults());
for (auto e : resMap.getResults())
res.push_back(e.cast<AffineConstantExpr>().getValue());
return res;
}
bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
if (getNumSymbols() > 0)
return false;
// Having more results than inputs means that results have duplicated dims or
// zeros that can't be mapped to input dims.
if (getNumResults() > getNumInputs())
return false;
SmallVector<bool, 8> seen(getNumInputs(), false);
// A projected permutation can have, at most, only one instance of each input
// dimension in the result expressions. Zeros are allowed as long as the
// number of result expressions is lower or equal than the number of input
// expressions.
for (auto expr : getResults()) {
if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
if (seen[dim.getPosition()])
return false;
seen[dim.getPosition()] = true;
} else {
auto constExpr = expr.dyn_cast<AffineConstantExpr>();
if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
return false;
}
}
// Results are either dims or zeros and zeros can be mapped to input dims.
return true;
}
bool AffineMap::isPermutation() const {
if (getNumDims() != getNumResults())
return false;
return isProjectedPermutation();
}
AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(resultPos.size());
for (auto idx : resultPos)
exprs.push_back(getResult(idx));
return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}
AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
return AffineMap::get(getNumDims(), getNumSymbols(),
getResults().slice(start, length), getContext());
}
AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSliceMap(0, numResults);
}
AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
if (numResults == 0)
return AffineMap();
if (numResults > getNumResults())
return *this;
return getSliceMap(getNumResults() - numResults, numResults);
}
/// Implementation detail to compress multiple affine maps with a compressionFun
/// that is expected to be either compressUnusedDims or compressUnusedSymbols.
/// The implementation keeps track of num dims and symbols across the different
/// affine maps.
static SmallVector<AffineMap> compressUnusedListImpl(
ArrayRef<AffineMap> maps,
llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
if (maps.empty())
return SmallVector<AffineMap>();
SmallVector<AffineExpr> allExprs;
allExprs.reserve(maps.size() * maps.front().getNumResults());
unsigned numDims = maps.front().getNumDims(),
numSymbols = maps.front().getNumSymbols();
for (auto m : maps) {
assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
"expected maps with same num dims and symbols");
llvm::append_range(allExprs, m.getResults());
}
AffineMap unifiedMap = compressionFun(
AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
unsigned unifiedNumDims = unifiedMap.getNumDims(),
unifiedNumSymbols = unifiedMap.getNumSymbols();
ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
SmallVector<AffineMap> res;
res.reserve(maps.size());
for (auto m : maps) {
res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
unifiedResults.take_front(m.getNumResults()),
m.getContext()));
unifiedResults = unifiedResults.drop_front(m.getNumResults());
}
return res;
}
AffineMap mlir::compressDims(AffineMap map,
const llvm::SmallBitVector &unusedDims) {
return projectDims(map, unusedDims, /*compressDimsFlag=*/true);
}
AffineMap mlir::compressUnusedDims(AffineMap map) {
return compressDims(map, getUnusedDimsBitVector({map}));
}
SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
return compressUnusedListImpl(
maps, [](AffineMap m) { return compressUnusedDims(m); });
}
AffineMap mlir::compressSymbols(AffineMap map,
const llvm::SmallBitVector &unusedSymbols) {
return projectSymbols(map, unusedSymbols, /*compressSymbolsFlag=*/true);
}
AffineMap mlir::compressUnusedSymbols(AffineMap map) {
return compressSymbols(map, getUnusedSymbolsBitVector({map}));
}
SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
return compressUnusedListImpl(
maps, [](AffineMap m) { return compressUnusedSymbols(m); });
}
AffineMap mlir::simplifyAffineMap(AffineMap map) {
SmallVector<AffineExpr, 8> exprs;
for (auto e : map.getResults()) {
exprs.push_back(
simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
}
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
map.getContext());
}
AffineMap mlir::removeDuplicateExprs(AffineMap map) {
auto results = map.getResults();
SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
uniqueExprs.end());
return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
map.getContext());
}
AffineMap mlir::inversePermutation(AffineMap map) {
if (map.isEmpty())
return map;
assert(map.getNumSymbols() == 0 && "expected map without symbols");
SmallVector<AffineExpr, 4> exprs(map.getNumDims());
for (const auto &en : llvm::enumerate(map.getResults())) {
auto expr = en.value();
// Skip non-permutations.
if (auto d = expr.dyn_cast<AffineDimExpr>()) {
if (exprs[d.getPosition()])
continue;
exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
}
}
SmallVector<AffineExpr, 4> seenExprs;
seenExprs.reserve(map.getNumDims());
for (auto expr : exprs)
if (expr)
seenExprs.push_back(expr);
if (seenExprs.size() != map.getNumInputs())
return AffineMap();
return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}
AffineMap mlir::inverseAndBroadcastProjectedPermutation(AffineMap map) {
assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
MLIRContext *context = map.getContext();
AffineExpr zero = mlir::getAffineConstantExpr(0, context);
// Start with all the results as 0.
SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
// Skip zeros from input map. 'exprs' is already initialized to zero.
if (auto constExpr = map.getResult(i).dyn_cast<AffineConstantExpr>()) {
assert(constExpr.getValue() == 0 &&
"Unexpected constant in projected permutation");
(void)constExpr;
continue;
}
// Reverse each dimension existing in the original map result.
exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
}
return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
}
AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
unsigned numResults = 0, numDims = 0, numSymbols = 0;
for (auto m : maps)
numResults += m.getNumResults();
SmallVector<AffineExpr, 8> results;
results.reserve(numResults);
for (auto m : maps) {
for (auto res : m.getResults())
results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));
numSymbols += m.getNumSymbols();
numDims = std::max(m.getNumDims(), numDims);
}
return AffineMap::get(numDims, numSymbols, results,
maps.front().getContext());
}
/// Common implementation to project out dimensions or symbols from an affine
/// map based on the template type.
/// Additionally, if 'compress' is true, the projected out dimensions or symbols
/// are also dropped from the resulting map.
template <typename AffineDimOrSymExpr>
static AffineMap projectCommonImpl(AffineMap map,
const llvm::SmallBitVector &toProject,
bool compress) {
static_assert(llvm::is_one_of<AffineDimOrSymExpr, AffineDimExpr,
AffineSymbolExpr>::value,
"expected AffineDimExpr or AffineSymbolExpr");
constexpr bool isDim = std::is_same<AffineDimOrSymExpr, AffineDimExpr>::value;
int64_t numDimOrSym = (isDim) ? map.getNumDims() : map.getNumSymbols();
SmallVector<AffineExpr> replacements;
replacements.reserve(numDimOrSym);
auto createNewDimOrSym = (isDim) ? getAffineDimExpr : getAffineSymbolExpr;
using replace_fn_ty =
std::function<AffineExpr(AffineExpr, ArrayRef<AffineExpr>)>;
replace_fn_ty replaceDims = [](AffineExpr e,
ArrayRef<AffineExpr> replacements) {
return e.replaceDims(replacements);
};
replace_fn_ty replaceSymbols = [](AffineExpr e,
ArrayRef<AffineExpr> replacements) {
return e.replaceSymbols(replacements);
};
replace_fn_ty replaceNewDimOrSym = (isDim) ? replaceDims : replaceSymbols;
MLIRContext *context = map.getContext();
int64_t newNumDimOrSym = 0;
for (unsigned dimOrSym = 0; dimOrSym < numDimOrSym; ++dimOrSym) {
if (toProject.test(dimOrSym)) {
replacements.push_back(getAffineConstantExpr(0, context));
continue;
}
int64_t newPos = compress ? newNumDimOrSym++ : dimOrSym;
replacements.push_back(createNewDimOrSym(newPos, context));
}
SmallVector<AffineExpr> resultExprs;
resultExprs.reserve(map.getNumResults());
for (auto e : map.getResults())
resultExprs.push_back(replaceNewDimOrSym(e, replacements));
int64_t numDims = (compress && isDim) ? newNumDimOrSym : map.getNumDims();
int64_t numSyms = (compress && !isDim) ? newNumDimOrSym : map.getNumSymbols();
return AffineMap::get(numDims, numSyms, resultExprs, context);
}
AffineMap mlir::projectDims(AffineMap map,
const llvm::SmallBitVector &projectedDimensions,
bool compressDimsFlag) {
return projectCommonImpl<AffineDimExpr>(map, projectedDimensions,
compressDimsFlag);
}
AffineMap mlir::projectSymbols(AffineMap map,
const llvm::SmallBitVector &projectedSymbols,
bool compressSymbolsFlag) {
return projectCommonImpl<AffineSymbolExpr>(map, projectedSymbols,
compressSymbolsFlag);
}
AffineMap mlir::getProjectedMap(AffineMap map,
const llvm::SmallBitVector &projectedDimensions,
bool compressDimsFlag,
bool compressSymbolsFlag) {
map = projectDims(map, projectedDimensions, compressDimsFlag);
if (compressSymbolsFlag)
map = compressUnusedSymbols(map);
return map;
}
llvm::SmallBitVector mlir::getUnusedDimsBitVector(ArrayRef<AffineMap> maps) {
unsigned numDims = maps[0].getNumDims();
llvm::SmallBitVector numDimsBitVector(numDims, true);
for (AffineMap m : maps) {
for (unsigned i = 0; i < numDims; ++i) {
if (m.isFunctionOfDim(i))
numDimsBitVector.reset(i);
}
}
return numDimsBitVector;
}
llvm::SmallBitVector mlir::getUnusedSymbolsBitVector(ArrayRef<AffineMap> maps) {
unsigned numSymbols = maps[0].getNumSymbols();
llvm::SmallBitVector numSymbolsBitVector(numSymbols, true);
for (AffineMap m : maps) {
for (unsigned i = 0; i < numSymbols; ++i) {
if (m.isFunctionOfSymbol(i))
numSymbolsBitVector.reset(i);
}
}
return numSymbolsBitVector;
}
AffineMap
mlir::expandDimsToRank(AffineMap map, int64_t rank,
const llvm::SmallBitVector &projectedDimensions) {
auto id = AffineMap::getMultiDimIdentityMap(rank, map.getContext());
AffineMap proj = id.dropResults(projectedDimensions);
return map.compose(proj);
}
//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//
MutableAffineMap::MutableAffineMap(AffineMap map)
: results(map.getResults().begin(), map.getResults().end()),
numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
context(map.getContext()) {}
void MutableAffineMap::reset(AffineMap map) {
results.clear();
numDims = map.getNumDims();
numSymbols = map.getNumSymbols();
context = map.getContext();
llvm::append_range(results, map.getResults());
}
bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
if (results[idx].isMultipleOf(factor))
return true;
// TODO: use simplifyAffineExpr and FlatAffineValueConstraints to
// complete this (for a more powerful analysis).
return false;
}
// Simplifies the result affine expressions of this map. The expressions
// have to be pure for the simplification implemented.
void MutableAffineMap::simplify() {
// Simplify each of the results if possible.
// TODO: functional-style map
for (unsigned i = 0, e = getNumResults(); i < e; i++) {
results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
}
}
AffineMap MutableAffineMap::getAffineMap() const {
return AffineMap::get(numDims, numSymbols, results, context);
}
|