File: AffineMap.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (887 lines) | stat: -rw-r--r-- 33,676 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
//===- AffineMap.cpp - MLIR Affine Map Classes ----------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/AffineMap.h"
#include "AffineMapDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Support/LogicalResult.h"
#include "mlir/Support/MathExtras.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Support/raw_ostream.h"
#include <iterator>
#include <numeric>
#include <optional>
#include <type_traits>

using namespace mlir;

namespace {

// AffineExprConstantFolder evaluates an affine expression using constant
// operands passed in 'operandConsts'. Returns an IntegerAttr attribute
// representing the constant value of the affine expression evaluated on
// constant 'operandConsts', or nullptr if it can't be folded.
class AffineExprConstantFolder {
public:
  AffineExprConstantFolder(unsigned numDims, ArrayRef<Attribute> operandConsts)
      : numDims(numDims), operandConsts(operandConsts) {}

  /// Attempt to constant fold the specified affine expr, or return null on
  /// failure.
  IntegerAttr constantFold(AffineExpr expr) {
    if (auto result = constantFoldImpl(expr))
      return IntegerAttr::get(IndexType::get(expr.getContext()), *result);
    return nullptr;
  }

private:
  std::optional<int64_t> constantFoldImpl(AffineExpr expr) {
    switch (expr.getKind()) {
    case AffineExprKind::Add:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return lhs + rhs; });
    case AffineExprKind::Mul:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return lhs * rhs; });
    case AffineExprKind::Mod:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return mod(lhs, rhs); });
    case AffineExprKind::FloorDiv:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return floorDiv(lhs, rhs); });
    case AffineExprKind::CeilDiv:
      return constantFoldBinExpr(
          expr, [](int64_t lhs, int64_t rhs) { return ceilDiv(lhs, rhs); });
    case AffineExprKind::Constant:
      return expr.cast<AffineConstantExpr>().getValue();
    case AffineExprKind::DimId:
      if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
              operandConsts[expr.cast<AffineDimExpr>().getPosition()]))
        return attr.getInt();
      return std::nullopt;
    case AffineExprKind::SymbolId:
      if (auto attr = llvm::dyn_cast_or_null<IntegerAttr>(
              operandConsts[numDims +
                            expr.cast<AffineSymbolExpr>().getPosition()]))
        return attr.getInt();
      return std::nullopt;
    }
    llvm_unreachable("Unknown AffineExpr");
  }

  // TODO: Change these to operate on APInts too.
  std::optional<int64_t> constantFoldBinExpr(AffineExpr expr,
                                             int64_t (*op)(int64_t, int64_t)) {
    auto binOpExpr = expr.cast<AffineBinaryOpExpr>();
    if (auto lhs = constantFoldImpl(binOpExpr.getLHS()))
      if (auto rhs = constantFoldImpl(binOpExpr.getRHS()))
        return op(*lhs, *rhs);
    return std::nullopt;
  }

  // The number of dimension operands in AffineMap containing this expression.
  unsigned numDims;
  // The constant valued operands used to evaluate this AffineExpr.
  ArrayRef<Attribute> operandConsts;
};

} // namespace

/// Returns a single constant result affine map.
AffineMap AffineMap::getConstantMap(int64_t val, MLIRContext *context) {
  return get(/*dimCount=*/0, /*symbolCount=*/0,
             {getAffineConstantExpr(val, context)});
}

/// Returns an identity affine map (d0, ..., dn) -> (dp, ..., dn) on the most
/// minor dimensions.
AffineMap AffineMap::getMinorIdentityMap(unsigned dims, unsigned results,
                                         MLIRContext *context) {
  assert(dims >= results && "Dimension mismatch");
  auto id = AffineMap::getMultiDimIdentityMap(dims, context);
  return AffineMap::get(dims, 0, id.getResults().take_back(results), context);
}

AffineMap AffineMap::getFilteredIdentityMap(
    MLIRContext *ctx, unsigned numDims,
    llvm::function_ref<bool(AffineDimExpr)> keepDimFilter) {
  auto identityMap = getMultiDimIdentityMap(numDims, ctx);

  // Apply filter to results.
  llvm::SmallBitVector dropDimResults(numDims);
  for (auto [idx, resultExpr] : llvm::enumerate(identityMap.getResults()))
    dropDimResults[idx] = !keepDimFilter(resultExpr.cast<AffineDimExpr>());

  return identityMap.dropResults(dropDimResults);
}

bool AffineMap::isMinorIdentity() const {
  return getNumDims() >= getNumResults() &&
         *this ==
             getMinorIdentityMap(getNumDims(), getNumResults(), getContext());
}

/// Returns true if this affine map is a minor identity up to broadcasted
/// dimensions which are indicated by value 0 in the result.
bool AffineMap::isMinorIdentityWithBroadcasting(
    SmallVectorImpl<unsigned> *broadcastedDims) const {
  if (broadcastedDims)
    broadcastedDims->clear();
  if (getNumDims() < getNumResults())
    return false;
  unsigned suffixStart = getNumDims() - getNumResults();
  for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
    unsigned resIdx = idxAndExpr.index();
    AffineExpr expr = idxAndExpr.value();
    if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
      // Each result may be either a constant 0 (broadcasted dimension).
      if (constExpr.getValue() != 0)
        return false;
      if (broadcastedDims)
        broadcastedDims->push_back(resIdx);
    } else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
      // Or it may be the input dimension corresponding to this result position.
      if (dimExpr.getPosition() != suffixStart + resIdx)
        return false;
    } else {
      return false;
    }
  }
  return true;
}

/// Return true if this affine map can be converted to a minor identity with
/// broadcast by doing a permute. Return a permutation (there may be
/// several) to apply to get to a minor identity with broadcasts.
/// Ex:
///  * (d0, d1, d2) -> (0, d1) maps to minor identity (d1, 0 = d2) with
///  perm = [1, 0] and broadcast d2
///  * (d0, d1, d2) -> (d0, 0) cannot be mapped to a minor identity by
///  permutation + broadcast
///  * (d0, d1, d2, d3) -> (0, d1, d3) maps to minor identity (d1, 0 = d2, d3)
///  with perm = [1, 0, 2] and broadcast d2
///  * (d0, d1) -> (d1, 0, 0, d0) maps to minor identity (d0, d1) with extra
///  leading broadcat dimensions. The map returned would be (0, 0, d0, d1) with
///  perm = [3, 0, 1, 2]
bool AffineMap::isPermutationOfMinorIdentityWithBroadcasting(
    SmallVectorImpl<unsigned> &permutedDims) const {
  unsigned projectionStart =
      getNumResults() < getNumInputs() ? getNumInputs() - getNumResults() : 0;
  permutedDims.clear();
  SmallVector<unsigned> broadcastDims;
  permutedDims.resize(getNumResults(), 0);
  // If there are more results than input dimensions we want the new map to
  // start with broadcast dimensions in order to be a minor identity with
  // broadcasting.
  unsigned leadingBroadcast =
      getNumResults() > getNumInputs() ? getNumResults() - getNumInputs() : 0;
  llvm::SmallBitVector dimFound(std::max(getNumInputs(), getNumResults()),
                                false);
  for (const auto &idxAndExpr : llvm::enumerate(getResults())) {
    unsigned resIdx = idxAndExpr.index();
    AffineExpr expr = idxAndExpr.value();
    // Each result may be either a constant 0 (broadcast dimension) or a
    // dimension.
    if (auto constExpr = expr.dyn_cast<AffineConstantExpr>()) {
      if (constExpr.getValue() != 0)
        return false;
      broadcastDims.push_back(resIdx);
    } else if (auto dimExpr = expr.dyn_cast<AffineDimExpr>()) {
      if (dimExpr.getPosition() < projectionStart)
        return false;
      unsigned newPosition =
          dimExpr.getPosition() - projectionStart + leadingBroadcast;
      permutedDims[resIdx] = newPosition;
      dimFound[newPosition] = true;
    } else {
      return false;
    }
  }
  // Find a permuation for the broadcast dimension. Since they are broadcasted
  // any valid permutation is acceptable. We just permute the dim into a slot
  // without an existing dimension.
  unsigned pos = 0;
  for (auto dim : broadcastDims) {
    while (pos < dimFound.size() && dimFound[pos]) {
      pos++;
    }
    permutedDims[dim] = pos++;
  }
  return true;
}

/// Returns an AffineMap representing a permutation.
AffineMap AffineMap::getPermutationMap(ArrayRef<unsigned> permutation,
                                       MLIRContext *context) {
  assert(!permutation.empty() &&
         "Cannot create permutation map from empty permutation vector");
  SmallVector<AffineExpr, 4> affExprs;
  for (auto index : permutation)
    affExprs.push_back(getAffineDimExpr(index, context));
  const auto *m = std::max_element(permutation.begin(), permutation.end());
  auto permutationMap = AffineMap::get(*m + 1, 0, affExprs, context);
  assert(permutationMap.isPermutation() && "Invalid permutation vector");
  return permutationMap;
}

template <typename AffineExprContainer>
static SmallVector<AffineMap, 4>
inferFromExprList(ArrayRef<AffineExprContainer> exprsList) {
  assert(!exprsList.empty());
  assert(!exprsList[0].empty());
  auto context = exprsList[0][0].getContext();
  int64_t maxDim = -1, maxSym = -1;
  getMaxDimAndSymbol(exprsList, maxDim, maxSym);
  SmallVector<AffineMap, 4> maps;
  maps.reserve(exprsList.size());
  for (const auto &exprs : exprsList)
    maps.push_back(AffineMap::get(/*dimCount=*/maxDim + 1,
                                  /*symbolCount=*/maxSym + 1, exprs, context));
  return maps;
}

SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<ArrayRef<AffineExpr>> exprsList) {
  return ::inferFromExprList(exprsList);
}

SmallVector<AffineMap, 4>
AffineMap::inferFromExprList(ArrayRef<SmallVector<AffineExpr, 4>> exprsList) {
  return ::inferFromExprList(exprsList);
}

uint64_t AffineMap::getLargestKnownDivisorOfMapExprs() {
  uint64_t gcd = 0;
  for (AffineExpr resultExpr : getResults()) {
    uint64_t thisGcd = resultExpr.getLargestKnownDivisor();
    gcd = std::gcd(gcd, thisGcd);
  }
  if (gcd == 0)
    gcd = std::numeric_limits<uint64_t>::max();
  return gcd;
}

AffineMap AffineMap::getMultiDimIdentityMap(unsigned numDims,
                                            MLIRContext *context) {
  SmallVector<AffineExpr, 4> dimExprs;
  dimExprs.reserve(numDims);
  for (unsigned i = 0; i < numDims; ++i)
    dimExprs.push_back(mlir::getAffineDimExpr(i, context));
  return get(/*dimCount=*/numDims, /*symbolCount=*/0, dimExprs, context);
}

MLIRContext *AffineMap::getContext() const { return map->context; }

bool AffineMap::isIdentity() const {
  if (getNumDims() != getNumResults())
    return false;
  ArrayRef<AffineExpr> results = getResults();
  for (unsigned i = 0, numDims = getNumDims(); i < numDims; ++i) {
    auto expr = results[i].dyn_cast<AffineDimExpr>();
    if (!expr || expr.getPosition() != i)
      return false;
  }
  return true;
}

bool AffineMap::isSymbolIdentity() const {
  if (getNumSymbols() != getNumResults())
    return false;
  ArrayRef<AffineExpr> results = getResults();
  for (unsigned i = 0, numSymbols = getNumSymbols(); i < numSymbols; ++i) {
    auto expr = results[i].dyn_cast<AffineDimExpr>();
    if (!expr || expr.getPosition() != i)
      return false;
  }
  return true;
}

bool AffineMap::isEmpty() const {
  return getNumDims() == 0 && getNumSymbols() == 0 && getNumResults() == 0;
}

bool AffineMap::isSingleConstant() const {
  return getNumResults() == 1 && getResult(0).isa<AffineConstantExpr>();
}

bool AffineMap::isConstant() const {
  return llvm::all_of(getResults(), [](AffineExpr expr) {
    return expr.isa<AffineConstantExpr>();
  });
}

int64_t AffineMap::getSingleConstantResult() const {
  assert(isSingleConstant() && "map must have a single constant result");
  return getResult(0).cast<AffineConstantExpr>().getValue();
}

SmallVector<int64_t> AffineMap::getConstantResults() const {
  assert(isConstant() && "map must have only constant results");
  SmallVector<int64_t> result;
  for (auto expr : getResults())
    result.emplace_back(expr.cast<AffineConstantExpr>().getValue());
  return result;
}

unsigned AffineMap::getNumDims() const {
  assert(map && "uninitialized map storage");
  return map->numDims;
}
unsigned AffineMap::getNumSymbols() const {
  assert(map && "uninitialized map storage");
  return map->numSymbols;
}
unsigned AffineMap::getNumResults() const { return getResults().size(); }
unsigned AffineMap::getNumInputs() const {
  assert(map && "uninitialized map storage");
  return map->numDims + map->numSymbols;
}
ArrayRef<AffineExpr> AffineMap::getResults() const {
  assert(map && "uninitialized map storage");
  return map->results();
}
AffineExpr AffineMap::getResult(unsigned idx) const {
  return getResults()[idx];
}

unsigned AffineMap::getDimPosition(unsigned idx) const {
  return getResult(idx).cast<AffineDimExpr>().getPosition();
}

std::optional<unsigned> AffineMap::getResultPosition(AffineExpr input) const {
  if (!input.isa<AffineDimExpr>())
    return std::nullopt;

  for (unsigned i = 0, numResults = getNumResults(); i < numResults; i++) {
    if (getResult(i) == input)
      return i;
  }

  return std::nullopt;
}

/// Folds the results of the application of an affine map on the provided
/// operands to a constant if possible. Returns false if the folding happens,
/// true otherwise.
LogicalResult
AffineMap::constantFold(ArrayRef<Attribute> operandConstants,
                        SmallVectorImpl<Attribute> &results) const {
  // Attempt partial folding.
  SmallVector<int64_t, 2> integers;
  partialConstantFold(operandConstants, &integers);

  // If all expressions folded to a constant, populate results with attributes
  // containing those constants.
  if (integers.empty())
    return failure();

  auto range = llvm::map_range(integers, [this](int64_t i) {
    return IntegerAttr::get(IndexType::get(getContext()), i);
  });
  results.append(range.begin(), range.end());
  return success();
}

AffineMap
AffineMap::partialConstantFold(ArrayRef<Attribute> operandConstants,
                               SmallVectorImpl<int64_t> *results) const {
  assert(getNumInputs() == operandConstants.size());

  // Fold each of the result expressions.
  AffineExprConstantFolder exprFolder(getNumDims(), operandConstants);
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(getNumResults());

  for (auto expr : getResults()) {
    auto folded = exprFolder.constantFold(expr);
    // If did not fold to a constant, keep the original expression, and clear
    // the integer results vector.
    if (folded) {
      exprs.push_back(
          getAffineConstantExpr(folded.getInt(), folded.getContext()));
      if (results)
        results->push_back(folded.getInt());
    } else {
      exprs.push_back(expr);
      if (results) {
        results->clear();
        results = nullptr;
      }
    }
  }

  return get(getNumDims(), getNumSymbols(), exprs, getContext());
}

/// Walk all of the AffineExpr's in this mapping. Each node in an expression
/// tree is visited in postorder.
void AffineMap::walkExprs(llvm::function_ref<void(AffineExpr)> callback) const {
  for (auto expr : getResults())
    expr.walk(callback);
}

/// This method substitutes any uses of dimensions and symbols (e.g.
/// dim#0 with dimReplacements[0]) in subexpressions and returns the modified
/// expression mapping.  Because this can be used to eliminate dims and
/// symbols, the client needs to specify the number of dims and symbols in
/// the result.  The returned map always has the same number of results.
AffineMap AffineMap::replaceDimsAndSymbols(ArrayRef<AffineExpr> dimReplacements,
                                           ArrayRef<AffineExpr> symReplacements,
                                           unsigned numResultDims,
                                           unsigned numResultSyms) const {
  SmallVector<AffineExpr, 8> results;
  results.reserve(getNumResults());
  for (auto expr : getResults())
    results.push_back(
        expr.replaceDimsAndSymbols(dimReplacements, symReplacements));
  return get(numResultDims, numResultSyms, results, getContext());
}

/// Sparse replace method. Apply AffineExpr::replace(`expr`, `replacement`) to
/// each of the results and return a new AffineMap with the new results and
/// with the specified number of dims and symbols.
AffineMap AffineMap::replace(AffineExpr expr, AffineExpr replacement,
                             unsigned numResultDims,
                             unsigned numResultSyms) const {
  SmallVector<AffineExpr, 4> newResults;
  newResults.reserve(getNumResults());
  for (AffineExpr e : getResults())
    newResults.push_back(e.replace(expr, replacement));
  return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}

/// Sparse replace method. Apply AffineExpr::replace(`map`) to each of the
/// results and return a new AffineMap with the new results and with the
/// specified number of dims and symbols.
AffineMap AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map,
                             unsigned numResultDims,
                             unsigned numResultSyms) const {
  SmallVector<AffineExpr, 4> newResults;
  newResults.reserve(getNumResults());
  for (AffineExpr e : getResults())
    newResults.push_back(e.replace(map));
  return AffineMap::get(numResultDims, numResultSyms, newResults, getContext());
}

AffineMap
AffineMap::replace(const DenseMap<AffineExpr, AffineExpr> &map) const {
  SmallVector<AffineExpr, 4> newResults;
  newResults.reserve(getNumResults());
  for (AffineExpr e : getResults())
    newResults.push_back(e.replace(map));
  return AffineMap::inferFromExprList(newResults).front();
}

AffineMap AffineMap::dropResults(const llvm::SmallBitVector &positions) const {
  auto exprs = llvm::to_vector<4>(getResults());
  // TODO: this is a pretty terrible API .. is there anything better?
  for (auto pos = positions.find_last(); pos != -1;
       pos = positions.find_prev(pos))
    exprs.erase(exprs.begin() + pos);
  return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}

AffineMap AffineMap::compose(AffineMap map) const {
  assert(getNumDims() == map.getNumResults() && "Number of results mismatch");
  // Prepare `map` by concatenating the symbols and rewriting its exprs.
  unsigned numDims = map.getNumDims();
  unsigned numSymbolsThisMap = getNumSymbols();
  unsigned numSymbols = numSymbolsThisMap + map.getNumSymbols();
  SmallVector<AffineExpr, 8> newDims(numDims);
  for (unsigned idx = 0; idx < numDims; ++idx) {
    newDims[idx] = getAffineDimExpr(idx, getContext());
  }
  SmallVector<AffineExpr, 8> newSymbols(numSymbols - numSymbolsThisMap);
  for (unsigned idx = numSymbolsThisMap; idx < numSymbols; ++idx) {
    newSymbols[idx - numSymbolsThisMap] =
        getAffineSymbolExpr(idx, getContext());
  }
  auto newMap =
      map.replaceDimsAndSymbols(newDims, newSymbols, numDims, numSymbols);
  SmallVector<AffineExpr, 8> exprs;
  exprs.reserve(getResults().size());
  for (auto expr : getResults())
    exprs.push_back(expr.compose(newMap));
  return AffineMap::get(numDims, numSymbols, exprs, map.getContext());
}

SmallVector<int64_t, 4> AffineMap::compose(ArrayRef<int64_t> values) const {
  assert(getNumSymbols() == 0 && "Expected symbol-less map");
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(values.size());
  MLIRContext *ctx = getContext();
  for (auto v : values)
    exprs.push_back(getAffineConstantExpr(v, ctx));
  auto resMap = compose(AffineMap::get(0, 0, exprs, ctx));
  SmallVector<int64_t, 4> res;
  res.reserve(resMap.getNumResults());
  for (auto e : resMap.getResults())
    res.push_back(e.cast<AffineConstantExpr>().getValue());
  return res;
}

bool AffineMap::isProjectedPermutation(bool allowZeroInResults) const {
  if (getNumSymbols() > 0)
    return false;

  // Having more results than inputs means that results have duplicated dims or
  // zeros that can't be mapped to input dims.
  if (getNumResults() > getNumInputs())
    return false;

  SmallVector<bool, 8> seen(getNumInputs(), false);
  // A projected permutation can have, at most, only one instance of each input
  // dimension in the result expressions. Zeros are allowed as long as the
  // number of result expressions is lower or equal than the number of input
  // expressions.
  for (auto expr : getResults()) {
    if (auto dim = expr.dyn_cast<AffineDimExpr>()) {
      if (seen[dim.getPosition()])
        return false;
      seen[dim.getPosition()] = true;
    } else {
      auto constExpr = expr.dyn_cast<AffineConstantExpr>();
      if (!allowZeroInResults || !constExpr || constExpr.getValue() != 0)
        return false;
    }
  }

  // Results are either dims or zeros and zeros can be mapped to input dims.
  return true;
}

bool AffineMap::isPermutation() const {
  if (getNumDims() != getNumResults())
    return false;
  return isProjectedPermutation();
}

AffineMap AffineMap::getSubMap(ArrayRef<unsigned> resultPos) const {
  SmallVector<AffineExpr, 4> exprs;
  exprs.reserve(resultPos.size());
  for (auto idx : resultPos)
    exprs.push_back(getResult(idx));
  return AffineMap::get(getNumDims(), getNumSymbols(), exprs, getContext());
}

AffineMap AffineMap::getSliceMap(unsigned start, unsigned length) const {
  return AffineMap::get(getNumDims(), getNumSymbols(),
                        getResults().slice(start, length), getContext());
}

AffineMap AffineMap::getMajorSubMap(unsigned numResults) const {
  if (numResults == 0)
    return AffineMap();
  if (numResults > getNumResults())
    return *this;
  return getSliceMap(0, numResults);
}

AffineMap AffineMap::getMinorSubMap(unsigned numResults) const {
  if (numResults == 0)
    return AffineMap();
  if (numResults > getNumResults())
    return *this;
  return getSliceMap(getNumResults() - numResults, numResults);
}

/// Implementation detail to compress multiple affine maps with a compressionFun
/// that is expected to be either compressUnusedDims or compressUnusedSymbols.
/// The implementation keeps track of num dims and symbols across the different
/// affine maps.
static SmallVector<AffineMap> compressUnusedListImpl(
    ArrayRef<AffineMap> maps,
    llvm::function_ref<AffineMap(AffineMap)> compressionFun) {
  if (maps.empty())
    return SmallVector<AffineMap>();
  SmallVector<AffineExpr> allExprs;
  allExprs.reserve(maps.size() * maps.front().getNumResults());
  unsigned numDims = maps.front().getNumDims(),
           numSymbols = maps.front().getNumSymbols();
  for (auto m : maps) {
    assert(numDims == m.getNumDims() && numSymbols == m.getNumSymbols() &&
           "expected maps with same num dims and symbols");
    llvm::append_range(allExprs, m.getResults());
  }
  AffineMap unifiedMap = compressionFun(
      AffineMap::get(numDims, numSymbols, allExprs, maps.front().getContext()));
  unsigned unifiedNumDims = unifiedMap.getNumDims(),
           unifiedNumSymbols = unifiedMap.getNumSymbols();
  ArrayRef<AffineExpr> unifiedResults = unifiedMap.getResults();
  SmallVector<AffineMap> res;
  res.reserve(maps.size());
  for (auto m : maps) {
    res.push_back(AffineMap::get(unifiedNumDims, unifiedNumSymbols,
                                 unifiedResults.take_front(m.getNumResults()),
                                 m.getContext()));
    unifiedResults = unifiedResults.drop_front(m.getNumResults());
  }
  return res;
}

AffineMap mlir::compressDims(AffineMap map,
                             const llvm::SmallBitVector &unusedDims) {
  return projectDims(map, unusedDims, /*compressDimsFlag=*/true);
}

AffineMap mlir::compressUnusedDims(AffineMap map) {
  return compressDims(map, getUnusedDimsBitVector({map}));
}

SmallVector<AffineMap> mlir::compressUnusedDims(ArrayRef<AffineMap> maps) {
  return compressUnusedListImpl(
      maps, [](AffineMap m) { return compressUnusedDims(m); });
}

AffineMap mlir::compressSymbols(AffineMap map,
                                const llvm::SmallBitVector &unusedSymbols) {
  return projectSymbols(map, unusedSymbols, /*compressSymbolsFlag=*/true);
}

AffineMap mlir::compressUnusedSymbols(AffineMap map) {
  return compressSymbols(map, getUnusedSymbolsBitVector({map}));
}

SmallVector<AffineMap> mlir::compressUnusedSymbols(ArrayRef<AffineMap> maps) {
  return compressUnusedListImpl(
      maps, [](AffineMap m) { return compressUnusedSymbols(m); });
}

AffineMap mlir::simplifyAffineMap(AffineMap map) {
  SmallVector<AffineExpr, 8> exprs;
  for (auto e : map.getResults()) {
    exprs.push_back(
        simplifyAffineExpr(e, map.getNumDims(), map.getNumSymbols()));
  }
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), exprs,
                        map.getContext());
}

AffineMap mlir::removeDuplicateExprs(AffineMap map) {
  auto results = map.getResults();
  SmallVector<AffineExpr, 4> uniqueExprs(results.begin(), results.end());
  uniqueExprs.erase(std::unique(uniqueExprs.begin(), uniqueExprs.end()),
                    uniqueExprs.end());
  return AffineMap::get(map.getNumDims(), map.getNumSymbols(), uniqueExprs,
                        map.getContext());
}

AffineMap mlir::inversePermutation(AffineMap map) {
  if (map.isEmpty())
    return map;
  assert(map.getNumSymbols() == 0 && "expected map without symbols");
  SmallVector<AffineExpr, 4> exprs(map.getNumDims());
  for (const auto &en : llvm::enumerate(map.getResults())) {
    auto expr = en.value();
    // Skip non-permutations.
    if (auto d = expr.dyn_cast<AffineDimExpr>()) {
      if (exprs[d.getPosition()])
        continue;
      exprs[d.getPosition()] = getAffineDimExpr(en.index(), d.getContext());
    }
  }
  SmallVector<AffineExpr, 4> seenExprs;
  seenExprs.reserve(map.getNumDims());
  for (auto expr : exprs)
    if (expr)
      seenExprs.push_back(expr);
  if (seenExprs.size() != map.getNumInputs())
    return AffineMap();
  return AffineMap::get(map.getNumResults(), 0, seenExprs, map.getContext());
}

AffineMap mlir::inverseAndBroadcastProjectedPermutation(AffineMap map) {
  assert(map.isProjectedPermutation(/*allowZeroInResults=*/true));
  MLIRContext *context = map.getContext();
  AffineExpr zero = mlir::getAffineConstantExpr(0, context);
  // Start with all the results as 0.
  SmallVector<AffineExpr, 4> exprs(map.getNumInputs(), zero);
  for (unsigned i : llvm::seq(unsigned(0), map.getNumResults())) {
    // Skip zeros from input map. 'exprs' is already initialized to zero.
    if (auto constExpr = map.getResult(i).dyn_cast<AffineConstantExpr>()) {
      assert(constExpr.getValue() == 0 &&
             "Unexpected constant in projected permutation");
      (void)constExpr;
      continue;
    }

    // Reverse each dimension existing in the original map result.
    exprs[map.getDimPosition(i)] = getAffineDimExpr(i, context);
  }
  return AffineMap::get(map.getNumResults(), /*symbolCount=*/0, exprs, context);
}

AffineMap mlir::concatAffineMaps(ArrayRef<AffineMap> maps) {
  unsigned numResults = 0, numDims = 0, numSymbols = 0;
  for (auto m : maps)
    numResults += m.getNumResults();
  SmallVector<AffineExpr, 8> results;
  results.reserve(numResults);
  for (auto m : maps) {
    for (auto res : m.getResults())
      results.push_back(res.shiftSymbols(m.getNumSymbols(), numSymbols));

    numSymbols += m.getNumSymbols();
    numDims = std::max(m.getNumDims(), numDims);
  }
  return AffineMap::get(numDims, numSymbols, results,
                        maps.front().getContext());
}

/// Common implementation to project out dimensions or symbols from an affine
/// map based on the template type.
/// Additionally, if 'compress' is true, the projected out dimensions or symbols
/// are also dropped from the resulting map.
template <typename AffineDimOrSymExpr>
static AffineMap projectCommonImpl(AffineMap map,
                                   const llvm::SmallBitVector &toProject,
                                   bool compress) {
  static_assert(llvm::is_one_of<AffineDimOrSymExpr, AffineDimExpr,
                                AffineSymbolExpr>::value,
                "expected AffineDimExpr or AffineSymbolExpr");

  constexpr bool isDim = std::is_same<AffineDimOrSymExpr, AffineDimExpr>::value;
  int64_t numDimOrSym = (isDim) ? map.getNumDims() : map.getNumSymbols();
  SmallVector<AffineExpr> replacements;
  replacements.reserve(numDimOrSym);

  auto createNewDimOrSym = (isDim) ? getAffineDimExpr : getAffineSymbolExpr;

  using replace_fn_ty =
      std::function<AffineExpr(AffineExpr, ArrayRef<AffineExpr>)>;
  replace_fn_ty replaceDims = [](AffineExpr e,
                                 ArrayRef<AffineExpr> replacements) {
    return e.replaceDims(replacements);
  };
  replace_fn_ty replaceSymbols = [](AffineExpr e,
                                    ArrayRef<AffineExpr> replacements) {
    return e.replaceSymbols(replacements);
  };
  replace_fn_ty replaceNewDimOrSym = (isDim) ? replaceDims : replaceSymbols;

  MLIRContext *context = map.getContext();
  int64_t newNumDimOrSym = 0;
  for (unsigned dimOrSym = 0; dimOrSym < numDimOrSym; ++dimOrSym) {
    if (toProject.test(dimOrSym)) {
      replacements.push_back(getAffineConstantExpr(0, context));
      continue;
    }
    int64_t newPos = compress ? newNumDimOrSym++ : dimOrSym;
    replacements.push_back(createNewDimOrSym(newPos, context));
  }
  SmallVector<AffineExpr> resultExprs;
  resultExprs.reserve(map.getNumResults());
  for (auto e : map.getResults())
    resultExprs.push_back(replaceNewDimOrSym(e, replacements));

  int64_t numDims = (compress && isDim) ? newNumDimOrSym : map.getNumDims();
  int64_t numSyms = (compress && !isDim) ? newNumDimOrSym : map.getNumSymbols();
  return AffineMap::get(numDims, numSyms, resultExprs, context);
}

AffineMap mlir::projectDims(AffineMap map,
                            const llvm::SmallBitVector &projectedDimensions,
                            bool compressDimsFlag) {
  return projectCommonImpl<AffineDimExpr>(map, projectedDimensions,
                                          compressDimsFlag);
}

AffineMap mlir::projectSymbols(AffineMap map,
                               const llvm::SmallBitVector &projectedSymbols,
                               bool compressSymbolsFlag) {
  return projectCommonImpl<AffineSymbolExpr>(map, projectedSymbols,
                                             compressSymbolsFlag);
}

AffineMap mlir::getProjectedMap(AffineMap map,
                                const llvm::SmallBitVector &projectedDimensions,
                                bool compressDimsFlag,
                                bool compressSymbolsFlag) {
  map = projectDims(map, projectedDimensions, compressDimsFlag);
  if (compressSymbolsFlag)
    map = compressUnusedSymbols(map);
  return map;
}

llvm::SmallBitVector mlir::getUnusedDimsBitVector(ArrayRef<AffineMap> maps) {
  unsigned numDims = maps[0].getNumDims();
  llvm::SmallBitVector numDimsBitVector(numDims, true);
  for (AffineMap m : maps) {
    for (unsigned i = 0; i < numDims; ++i) {
      if (m.isFunctionOfDim(i))
        numDimsBitVector.reset(i);
    }
  }
  return numDimsBitVector;
}

llvm::SmallBitVector mlir::getUnusedSymbolsBitVector(ArrayRef<AffineMap> maps) {
  unsigned numSymbols = maps[0].getNumSymbols();
  llvm::SmallBitVector numSymbolsBitVector(numSymbols, true);
  for (AffineMap m : maps) {
    for (unsigned i = 0; i < numSymbols; ++i) {
      if (m.isFunctionOfSymbol(i))
        numSymbolsBitVector.reset(i);
    }
  }
  return numSymbolsBitVector;
}

AffineMap
mlir::expandDimsToRank(AffineMap map, int64_t rank,
                       const llvm::SmallBitVector &projectedDimensions) {
  auto id = AffineMap::getMultiDimIdentityMap(rank, map.getContext());
  AffineMap proj = id.dropResults(projectedDimensions);
  return map.compose(proj);
}

//===----------------------------------------------------------------------===//
// MutableAffineMap.
//===----------------------------------------------------------------------===//

MutableAffineMap::MutableAffineMap(AffineMap map)
    : results(map.getResults().begin(), map.getResults().end()),
      numDims(map.getNumDims()), numSymbols(map.getNumSymbols()),
      context(map.getContext()) {}

void MutableAffineMap::reset(AffineMap map) {
  results.clear();
  numDims = map.getNumDims();
  numSymbols = map.getNumSymbols();
  context = map.getContext();
  llvm::append_range(results, map.getResults());
}

bool MutableAffineMap::isMultipleOf(unsigned idx, int64_t factor) const {
  if (results[idx].isMultipleOf(factor))
    return true;

  // TODO: use simplifyAffineExpr and FlatAffineValueConstraints to
  // complete this (for a more powerful analysis).
  return false;
}

// Simplifies the result affine expressions of this map. The expressions
// have to be pure for the simplification implemented.
void MutableAffineMap::simplify() {
  // Simplify each of the results if possible.
  // TODO: functional-style map
  for (unsigned i = 0, e = getNumResults(); i < e; i++) {
    results[i] = simplifyAffineExpr(getResult(i), numDims, numSymbols);
  }
}

AffineMap MutableAffineMap::getAffineMap() const {
  return AffineMap::get(numDims, numSymbols, results, context);
}