1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
//===- AttributeDetail.h - MLIR Affine Map details Class --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This holds implementation details of Attribute.
//
//===----------------------------------------------------------------------===//
#ifndef ATTRIBUTEDETAIL_H_
#define ATTRIBUTEDETAIL_H_
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/AttributeSupport.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/Support/StorageUniquer.h"
#include "mlir/Support/ThreadLocalCache.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/PointerIntPair.h"
#include "llvm/Support/TrailingObjects.h"
namespace mlir {
namespace detail {
//===----------------------------------------------------------------------===//
// Elements Attributes
//===----------------------------------------------------------------------===//
/// Return the bit width which DenseElementsAttr should use for this type.
inline size_t getDenseElementBitWidth(Type eltType) {
// Align the width for complex to 8 to make storage and interpretation easier.
if (ComplexType comp = llvm::dyn_cast<ComplexType>(eltType))
return llvm::alignTo<8>(getDenseElementBitWidth(comp.getElementType())) * 2;
if (eltType.isIndex())
return IndexType::kInternalStorageBitWidth;
return eltType.getIntOrFloatBitWidth();
}
/// An attribute representing a reference to a dense vector or tensor object.
struct DenseElementsAttributeStorage : public AttributeStorage {
public:
DenseElementsAttributeStorage(ShapedType type, bool isSplat)
: type(type), isSplat(isSplat) {}
ShapedType type;
bool isSplat;
};
/// An attribute representing a reference to a dense vector or tensor object.
struct DenseIntOrFPElementsAttrStorage : public DenseElementsAttributeStorage {
DenseIntOrFPElementsAttrStorage(ShapedType ty, ArrayRef<char> data,
bool isSplat = false)
: DenseElementsAttributeStorage(ty, isSplat), data(data) {}
struct KeyTy {
KeyTy(ShapedType type, ArrayRef<char> data, llvm::hash_code hashCode,
bool isSplat = false)
: type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}
/// The type of the dense elements.
ShapedType type;
/// The raw buffer for the data storage.
ArrayRef<char> data;
/// The computed hash code for the storage data.
llvm::hash_code hashCode;
/// A boolean that indicates if this data is a splat or not.
bool isSplat;
};
/// Compare this storage instance with the provided key.
bool operator==(const KeyTy &key) const {
return key.type == type && key.data == data;
}
/// Construct a key from a shaped type, raw data buffer, and a flag that
/// signals if the data is already known to be a splat. Callers to this
/// function are expected to tag preknown splat values when possible, e.g. one
/// element shapes.
static KeyTy getKey(ShapedType ty, ArrayRef<char> data, bool isKnownSplat) {
// Handle an empty storage instance.
if (data.empty())
return KeyTy(ty, data, 0);
// If the data is already known to be a splat, the key hash value is
// directly the data buffer.
bool isBoolData = ty.getElementType().isInteger(1);
if (isKnownSplat) {
if (isBoolData)
return getKeyForSplatBoolData(ty, data[0] != 0);
return KeyTy(ty, data, llvm::hash_value(data), isKnownSplat);
}
// Otherwise, we need to check if the data corresponds to a splat or not.
// Handle the simple case of only one element.
size_t numElements = ty.getNumElements();
assert(numElements != 1 && "splat of 1 element should already be detected");
// Handle boolean values directly as they are packed to 1-bit.
if (isBoolData)
return getKeyForBoolData(ty, data, numElements);
size_t elementWidth = getDenseElementBitWidth(ty.getElementType());
// Non 1-bit dense elements are padded to 8-bits.
size_t storageSize = llvm::divideCeil(elementWidth, CHAR_BIT);
assert(((data.size() / storageSize) == numElements) &&
"data does not hold expected number of elements");
// Create the initial hash value with just the first element.
auto firstElt = data.take_front(storageSize);
auto hashVal = llvm::hash_value(firstElt);
// Check to see if this storage represents a splat. If it doesn't then
// combine the hash for the data starting with the first non splat element.
for (size_t i = storageSize, e = data.size(); i != e; i += storageSize)
if (memcmp(data.data(), &data[i], storageSize))
return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));
// Otherwise, this is a splat so just return the hash of the first element.
return KeyTy(ty, firstElt, hashVal, /*isSplat=*/true);
}
/// Construct a key with a set of boolean data.
static KeyTy getKeyForBoolData(ShapedType ty, ArrayRef<char> data,
size_t numElements) {
ArrayRef<char> splatData = data;
bool splatValue = splatData.front() & 1;
// Check the simple case where the data matches the known splat value.
if (splatData == ArrayRef<char>(splatValue ? kSplatTrue : kSplatFalse))
return getKeyForSplatBoolData(ty, splatValue);
// Handle the case where the potential splat value is 1 and the number of
// elements is non 8-bit aligned.
size_t numOddElements = numElements % CHAR_BIT;
if (splatValue && numOddElements != 0) {
// Check that all bits are set in the last value.
char lastElt = splatData.back();
if (lastElt != llvm::maskTrailingOnes<unsigned char>(numOddElements))
return KeyTy(ty, data, llvm::hash_value(data));
// If this is the only element, the data is known to be a splat.
if (splatData.size() == 1)
return getKeyForSplatBoolData(ty, splatValue);
splatData = splatData.drop_back();
}
// Check that the data buffer corresponds to a splat of the proper mask.
char mask = splatValue ? ~0 : 0;
return llvm::all_of(splatData, [mask](char c) { return c == mask; })
? getKeyForSplatBoolData(ty, splatValue)
: KeyTy(ty, data, llvm::hash_value(data));
}
/// Return a key to use for a boolean splat of the given value.
static KeyTy getKeyForSplatBoolData(ShapedType type, bool splatValue) {
const char &splatData = splatValue ? kSplatTrue : kSplatFalse;
return KeyTy(type, splatData, llvm::hash_value(splatData),
/*isSplat=*/true);
}
/// Hash the key for the storage.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_combine(key.type, key.hashCode);
}
/// Construct a new storage instance.
static DenseIntOrFPElementsAttrStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// If the data buffer is non-empty, we copy it into the allocator with a
// 64-bit alignment.
ArrayRef<char> copy, data = key.data;
if (!data.empty()) {
char *rawData = reinterpret_cast<char *>(
allocator.allocate(data.size(), alignof(uint64_t)));
std::memcpy(rawData, data.data(), data.size());
copy = ArrayRef<char>(rawData, data.size());
}
return new (allocator.allocate<DenseIntOrFPElementsAttrStorage>())
DenseIntOrFPElementsAttrStorage(key.type, copy, key.isSplat);
}
ArrayRef<char> data;
/// The values used to denote a boolean splat value.
// This is not using constexpr declaration due to compilation failure
// encountered with MSVC where it would inline these values, which makes it
// unsafe to refer by reference in KeyTy.
static const char kSplatTrue;
static const char kSplatFalse;
};
/// An attribute representing a reference to a dense vector or tensor object
/// containing strings.
struct DenseStringElementsAttrStorage : public DenseElementsAttributeStorage {
DenseStringElementsAttrStorage(ShapedType ty, ArrayRef<StringRef> data,
bool isSplat = false)
: DenseElementsAttributeStorage(ty, isSplat), data(data) {}
struct KeyTy {
KeyTy(ShapedType type, ArrayRef<StringRef> data, llvm::hash_code hashCode,
bool isSplat = false)
: type(type), data(data), hashCode(hashCode), isSplat(isSplat) {}
/// The type of the dense elements.
ShapedType type;
/// The raw buffer for the data storage.
ArrayRef<StringRef> data;
/// The computed hash code for the storage data.
llvm::hash_code hashCode;
/// A boolean that indicates if this data is a splat or not.
bool isSplat;
};
/// Compare this storage instance with the provided key.
bool operator==(const KeyTy &key) const {
if (key.type != type)
return false;
// Otherwise, we can default to just checking the data. StringRefs compare
// by contents.
return key.data == data;
}
/// Construct a key from a shaped type, StringRef data buffer, and a flag that
/// signals if the data is already known to be a splat. Callers to this
/// function are expected to tag preknown splat values when possible, e.g. one
/// element shapes.
static KeyTy getKey(ShapedType ty, ArrayRef<StringRef> data,
bool isKnownSplat) {
// Handle an empty storage instance.
if (data.empty())
return KeyTy(ty, data, 0);
// If the data is already known to be a splat, the key hash value is
// directly the data buffer.
if (isKnownSplat)
return KeyTy(ty, data, llvm::hash_value(data.front()), isKnownSplat);
// Handle the simple case of only one element.
assert(ty.getNumElements() != 1 &&
"splat of 1 element should already be detected");
// Create the initial hash value with just the first element.
const auto &firstElt = data.front();
auto hashVal = llvm::hash_value(firstElt);
// Check to see if this storage represents a splat. If it doesn't then
// combine the hash for the data starting with the first non splat element.
for (size_t i = 1, e = data.size(); i != e; i++)
if (!firstElt.equals(data[i]))
return KeyTy(ty, data, llvm::hash_combine(hashVal, data.drop_front(i)));
// Otherwise, this is a splat so just return the hash of the first element.
return KeyTy(ty, data.take_front(), hashVal, /*isSplat=*/true);
}
/// Hash the key for the storage.
static llvm::hash_code hashKey(const KeyTy &key) {
return llvm::hash_combine(key.type, key.hashCode);
}
/// Construct a new storage instance.
static DenseStringElementsAttrStorage *
construct(AttributeStorageAllocator &allocator, KeyTy key) {
// If the data buffer is non-empty, we copy it into the allocator with a
// 64-bit alignment.
ArrayRef<StringRef> copy, data = key.data;
if (data.empty()) {
return new (allocator.allocate<DenseStringElementsAttrStorage>())
DenseStringElementsAttrStorage(key.type, copy, key.isSplat);
}
int numEntries = key.isSplat ? 1 : data.size();
// Compute the amount data needed to store the ArrayRef and StringRef
// contents.
size_t dataSize = sizeof(StringRef) * numEntries;
for (int i = 0; i < numEntries; i++)
dataSize += data[i].size();
char *rawData = reinterpret_cast<char *>(
allocator.allocate(dataSize, alignof(uint64_t)));
// Setup a mutable array ref of our string refs so that we can update their
// contents.
auto mutableCopy = MutableArrayRef<StringRef>(
reinterpret_cast<StringRef *>(rawData), numEntries);
auto *stringData = rawData + numEntries * sizeof(StringRef);
for (int i = 0; i < numEntries; i++) {
memcpy(stringData, data[i].data(), data[i].size());
mutableCopy[i] = StringRef(stringData, data[i].size());
stringData += data[i].size();
}
copy =
ArrayRef<StringRef>(reinterpret_cast<StringRef *>(rawData), numEntries);
return new (allocator.allocate<DenseStringElementsAttrStorage>())
DenseStringElementsAttrStorage(key.type, copy, key.isSplat);
}
ArrayRef<StringRef> data;
};
//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//
struct StringAttrStorage : public AttributeStorage {
StringAttrStorage(StringRef value, Type type)
: type(type), value(value), referencedDialect(nullptr) {}
/// The hash key is a tuple of the parameter types.
using KeyTy = std::pair<StringRef, Type>;
bool operator==(const KeyTy &key) const {
return value == key.first && type == key.second;
}
static ::llvm::hash_code hashKey(const KeyTy &key) {
return DenseMapInfo<KeyTy>::getHashValue(key);
}
/// Define a construction method for creating a new instance of this
/// storage.
static StringAttrStorage *construct(AttributeStorageAllocator &allocator,
const KeyTy &key) {
return new (allocator.allocate<StringAttrStorage>())
StringAttrStorage(allocator.copyInto(key.first), key.second);
}
/// Initialize the storage given an MLIRContext.
void initialize(MLIRContext *context);
/// The type of the string.
Type type;
/// The raw string value.
StringRef value;
/// If the string value contains a dialect namespace prefix (e.g.
/// dialect.blah), this is the dialect referenced.
Dialect *referencedDialect;
};
//===----------------------------------------------------------------------===//
// DistinctAttr
//===----------------------------------------------------------------------===//
/// An attribute to store a distinct reference to another attribute.
struct DistinctAttrStorage : public AttributeStorage {
using KeyTy = Attribute;
DistinctAttrStorage(Attribute referencedAttr)
: referencedAttr(referencedAttr) {}
/// Returns the referenced attribute as key.
KeyTy getAsKey() const { return KeyTy(referencedAttr); }
/// The referenced attribute.
Attribute referencedAttr;
};
/// A specialized attribute uniquer for distinct attributes that always
/// allocates since the distinct attribute instances use the address of their
/// storage as unique identifier.
class DistinctAttributeUniquer {
public:
/// Creates a distinct attribute storage. Allocates every time since the
/// address of the storage serves as unique identifier.
template <typename T, typename... Args>
static T get(MLIRContext *context, Args &&...args) {
static_assert(std::is_same_v<typename T::ImplType, DistinctAttrStorage>,
"expects a distinct attribute storage");
DistinctAttrStorage *storage = DistinctAttributeUniquer::allocateStorage(
context, std::forward<Args>(args)...);
storage->initializeAbstractAttribute(
AbstractAttribute::lookup(DistinctAttr::getTypeID(), context));
return storage;
}
private:
/// Allocates a distinct attribute storage.
static DistinctAttrStorage *allocateStorage(MLIRContext *context,
Attribute referencedAttr);
};
/// An allocator for distinct attribute storage instances. It uses thread local
/// bump pointer allocators stored in a thread local cache to ensure the storage
/// is freed after the destruction of the distinct attribute allocator.
class DistinctAttributeAllocator {
public:
DistinctAttributeAllocator() = default;
DistinctAttributeAllocator(DistinctAttributeAllocator &&) = delete;
DistinctAttributeAllocator(const DistinctAttributeAllocator &) = delete;
DistinctAttributeAllocator &
operator=(const DistinctAttributeAllocator &) = delete;
/// Allocates a distinct attribute storage using a thread local bump pointer
/// allocator to enable synchronization free parallel allocations.
DistinctAttrStorage *allocate(Attribute referencedAttr) {
return new (allocatorCache.get().Allocate<DistinctAttrStorage>())
DistinctAttrStorage(referencedAttr);
}
private:
ThreadLocalCache<llvm::BumpPtrAllocator> allocatorCache;
};
} // namespace detail
} // namespace mlir
#endif // ATTRIBUTEDETAIL_H_
|