File: BuiltinAttributes.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1802 lines) | stat: -rw-r--r-- 70,844 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
//===- BuiltinAttributes.cpp - MLIR Builtin Attribute Classes -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/BuiltinAttributes.h"
#include "AttributeDetail.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectResourceBlobManager.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/Operation.h"
#include "mlir/IR/SymbolTable.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Endian.h"
#include <optional>

using namespace mlir;
using namespace mlir::detail;

//===----------------------------------------------------------------------===//
/// Tablegen Attribute Definitions
//===----------------------------------------------------------------------===//

#define GET_ATTRDEF_CLASSES
#include "mlir/IR/BuiltinAttributes.cpp.inc"

//===----------------------------------------------------------------------===//
// BuiltinDialect
//===----------------------------------------------------------------------===//

void BuiltinDialect::registerAttributes() {
  addAttributes<
#define GET_ATTRDEF_LIST
#include "mlir/IR/BuiltinAttributes.cpp.inc"
      >();
  addAttributes<DistinctAttr>();
}

//===----------------------------------------------------------------------===//
// DictionaryAttr
//===----------------------------------------------------------------------===//

/// Helper function that does either an in place sort or sorts from source array
/// into destination. If inPlace then storage is both the source and the
/// destination, else value is the source and storage destination. Returns
/// whether source was sorted.
template <bool inPlace>
static bool dictionaryAttrSort(ArrayRef<NamedAttribute> value,
                               SmallVectorImpl<NamedAttribute> &storage) {
  // Specialize for the common case.
  switch (value.size()) {
  case 0:
    // Zero already sorted.
    if (!inPlace)
      storage.clear();
    break;
  case 1:
    // One already sorted but may need to be copied.
    if (!inPlace)
      storage.assign({value[0]});
    break;
  case 2: {
    bool isSorted = value[0] < value[1];
    if (inPlace) {
      if (!isSorted)
        std::swap(storage[0], storage[1]);
    } else if (isSorted) {
      storage.assign({value[0], value[1]});
    } else {
      storage.assign({value[1], value[0]});
    }
    return !isSorted;
  }
  default:
    if (!inPlace)
      storage.assign(value.begin(), value.end());
    // Check to see they are sorted already.
    bool isSorted = llvm::is_sorted(value);
    // If not, do a general sort.
    if (!isSorted)
      llvm::array_pod_sort(storage.begin(), storage.end());
    return !isSorted;
  }
  return false;
}

/// Returns an entry with a duplicate name from the given sorted array of named
/// attributes. Returns std::nullopt if all elements have unique names.
static std::optional<NamedAttribute>
findDuplicateElement(ArrayRef<NamedAttribute> value) {
  const std::optional<NamedAttribute> none{std::nullopt};
  if (value.size() < 2)
    return none;

  if (value.size() == 2)
    return value[0].getName() == value[1].getName() ? value[0] : none;

  const auto *it = std::adjacent_find(value.begin(), value.end(),
                                      [](NamedAttribute l, NamedAttribute r) {
                                        return l.getName() == r.getName();
                                      });
  return it != value.end() ? *it : none;
}

bool DictionaryAttr::sort(ArrayRef<NamedAttribute> value,
                          SmallVectorImpl<NamedAttribute> &storage) {
  bool isSorted = dictionaryAttrSort</*inPlace=*/false>(value, storage);
  assert(!findDuplicateElement(storage) &&
         "DictionaryAttr element names must be unique");
  return isSorted;
}

bool DictionaryAttr::sortInPlace(SmallVectorImpl<NamedAttribute> &array) {
  bool isSorted = dictionaryAttrSort</*inPlace=*/true>(array, array);
  assert(!findDuplicateElement(array) &&
         "DictionaryAttr element names must be unique");
  return isSorted;
}

std::optional<NamedAttribute>
DictionaryAttr::findDuplicate(SmallVectorImpl<NamedAttribute> &array,
                              bool isSorted) {
  if (!isSorted)
    dictionaryAttrSort</*inPlace=*/true>(array, array);
  return findDuplicateElement(array);
}

DictionaryAttr DictionaryAttr::get(MLIRContext *context,
                                   ArrayRef<NamedAttribute> value) {
  if (value.empty())
    return DictionaryAttr::getEmpty(context);

  // We need to sort the element list to canonicalize it.
  SmallVector<NamedAttribute, 8> storage;
  if (dictionaryAttrSort</*inPlace=*/false>(value, storage))
    value = storage;
  assert(!findDuplicateElement(value) &&
         "DictionaryAttr element names must be unique");
  return Base::get(context, value);
}
/// Construct a dictionary with an array of values that is known to already be
/// sorted by name and uniqued.
DictionaryAttr DictionaryAttr::getWithSorted(MLIRContext *context,
                                             ArrayRef<NamedAttribute> value) {
  if (value.empty())
    return DictionaryAttr::getEmpty(context);
  // Ensure that the attribute elements are unique and sorted.
  assert(llvm::is_sorted(
             value, [](NamedAttribute l, NamedAttribute r) { return l < r; }) &&
         "expected attribute values to be sorted");
  assert(!findDuplicateElement(value) &&
         "DictionaryAttr element names must be unique");
  return Base::get(context, value);
}

/// Return the specified attribute if present, null otherwise.
Attribute DictionaryAttr::get(StringRef name) const {
  auto it = impl::findAttrSorted(begin(), end(), name);
  return it.second ? it.first->getValue() : Attribute();
}
Attribute DictionaryAttr::get(StringAttr name) const {
  auto it = impl::findAttrSorted(begin(), end(), name);
  return it.second ? it.first->getValue() : Attribute();
}

/// Return the specified named attribute if present, std::nullopt otherwise.
std::optional<NamedAttribute> DictionaryAttr::getNamed(StringRef name) const {
  auto it = impl::findAttrSorted(begin(), end(), name);
  return it.second ? *it.first : std::optional<NamedAttribute>();
}
std::optional<NamedAttribute> DictionaryAttr::getNamed(StringAttr name) const {
  auto it = impl::findAttrSorted(begin(), end(), name);
  return it.second ? *it.first : std::optional<NamedAttribute>();
}

/// Return whether the specified attribute is present.
bool DictionaryAttr::contains(StringRef name) const {
  return impl::findAttrSorted(begin(), end(), name).second;
}
bool DictionaryAttr::contains(StringAttr name) const {
  return impl::findAttrSorted(begin(), end(), name).second;
}

DictionaryAttr::iterator DictionaryAttr::begin() const {
  return getValue().begin();
}
DictionaryAttr::iterator DictionaryAttr::end() const {
  return getValue().end();
}
size_t DictionaryAttr::size() const { return getValue().size(); }

DictionaryAttr DictionaryAttr::getEmptyUnchecked(MLIRContext *context) {
  return Base::get(context, ArrayRef<NamedAttribute>());
}

//===----------------------------------------------------------------------===//
// StridedLayoutAttr
//===----------------------------------------------------------------------===//

/// Prints a strided layout attribute.
void StridedLayoutAttr::print(llvm::raw_ostream &os) const {
  auto printIntOrQuestion = [&](int64_t value) {
    if (ShapedType::isDynamic(value))
      os << "?";
    else
      os << value;
  };

  os << "strided<[";
  llvm::interleaveComma(getStrides(), os, printIntOrQuestion);
  os << "]";

  if (getOffset() != 0) {
    os << ", offset: ";
    printIntOrQuestion(getOffset());
  }
  os << ">";
}

/// Returns the strided layout as an affine map.
AffineMap StridedLayoutAttr::getAffineMap() const {
  return makeStridedLinearLayoutMap(getStrides(), getOffset(), getContext());
}

/// Checks that the type-agnostic strided layout invariants are satisfied.
LogicalResult
StridedLayoutAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                          int64_t offset, ArrayRef<int64_t> strides) {
  if (llvm::any_of(strides, [&](int64_t stride) { return stride == 0; }))
    return emitError() << "strides must not be zero";

  return success();
}

/// Checks that the type-specific strided layout invariants are satisfied.
LogicalResult StridedLayoutAttr::verifyLayout(
    ArrayRef<int64_t> shape,
    function_ref<InFlightDiagnostic()> emitError) const {
  if (shape.size() != getStrides().size())
    return emitError() << "expected the number of strides to match the rank";

  return success();
}

//===----------------------------------------------------------------------===//
// StringAttr
//===----------------------------------------------------------------------===//

StringAttr StringAttr::getEmptyStringAttrUnchecked(MLIRContext *context) {
  return Base::get(context, "", NoneType::get(context));
}

/// Twine support for StringAttr.
StringAttr StringAttr::get(MLIRContext *context, const Twine &twine) {
  // Fast-path empty twine.
  if (twine.isTriviallyEmpty())
    return get(context);
  SmallVector<char, 32> tempStr;
  return Base::get(context, twine.toStringRef(tempStr), NoneType::get(context));
}

/// Twine support for StringAttr.
StringAttr StringAttr::get(const Twine &twine, Type type) {
  SmallVector<char, 32> tempStr;
  return Base::get(type.getContext(), twine.toStringRef(tempStr), type);
}

StringRef StringAttr::getValue() const { return getImpl()->value; }

Type StringAttr::getType() const { return getImpl()->type; }

Dialect *StringAttr::getReferencedDialect() const {
  return getImpl()->referencedDialect;
}

//===----------------------------------------------------------------------===//
// FloatAttr
//===----------------------------------------------------------------------===//

double FloatAttr::getValueAsDouble() const {
  return getValueAsDouble(getValue());
}
double FloatAttr::getValueAsDouble(APFloat value) {
  if (&value.getSemantics() != &APFloat::IEEEdouble()) {
    bool losesInfo = false;
    value.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven,
                  &losesInfo);
  }
  return value.convertToDouble();
}

LogicalResult FloatAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                                Type type, APFloat value) {
  // Verify that the type is correct.
  if (!llvm::isa<FloatType>(type))
    return emitError() << "expected floating point type";

  // Verify that the type semantics match that of the value.
  if (&llvm::cast<FloatType>(type).getFloatSemantics() !=
      &value.getSemantics()) {
    return emitError()
           << "FloatAttr type doesn't match the type implied by its value";
  }
  return success();
}

//===----------------------------------------------------------------------===//
// SymbolRefAttr
//===----------------------------------------------------------------------===//

SymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value,
                                 ArrayRef<FlatSymbolRefAttr> nestedRefs) {
  return get(StringAttr::get(ctx, value), nestedRefs);
}

FlatSymbolRefAttr SymbolRefAttr::get(MLIRContext *ctx, StringRef value) {
  return llvm::cast<FlatSymbolRefAttr>(get(ctx, value, {}));
}

FlatSymbolRefAttr SymbolRefAttr::get(StringAttr value) {
  return llvm::cast<FlatSymbolRefAttr>(get(value, {}));
}

FlatSymbolRefAttr SymbolRefAttr::get(Operation *symbol) {
  auto symName =
      symbol->getAttrOfType<StringAttr>(SymbolTable::getSymbolAttrName());
  assert(symName && "value does not have a valid symbol name");
  return SymbolRefAttr::get(symName);
}

StringAttr SymbolRefAttr::getLeafReference() const {
  ArrayRef<FlatSymbolRefAttr> nestedRefs = getNestedReferences();
  return nestedRefs.empty() ? getRootReference() : nestedRefs.back().getAttr();
}

//===----------------------------------------------------------------------===//
// IntegerAttr
//===----------------------------------------------------------------------===//

int64_t IntegerAttr::getInt() const {
  assert((getType().isIndex() || getType().isSignlessInteger()) &&
         "must be signless integer");
  return getValue().getSExtValue();
}

int64_t IntegerAttr::getSInt() const {
  assert(getType().isSignedInteger() && "must be signed integer");
  return getValue().getSExtValue();
}

uint64_t IntegerAttr::getUInt() const {
  assert(getType().isUnsignedInteger() && "must be unsigned integer");
  return getValue().getZExtValue();
}

/// Return the value as an APSInt which carries the signed from the type of
/// the attribute.  This traps on signless integers types!
APSInt IntegerAttr::getAPSInt() const {
  assert(!getType().isSignlessInteger() &&
         "Signless integers don't carry a sign for APSInt");
  return APSInt(getValue(), getType().isUnsignedInteger());
}

LogicalResult IntegerAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                                  Type type, APInt value) {
  if (IntegerType integerType = llvm::dyn_cast<IntegerType>(type)) {
    if (integerType.getWidth() != value.getBitWidth())
      return emitError() << "integer type bit width (" << integerType.getWidth()
                         << ") doesn't match value bit width ("
                         << value.getBitWidth() << ")";
    return success();
  }
  if (llvm::isa<IndexType>(type)) {
    if (value.getBitWidth() != IndexType::kInternalStorageBitWidth)
      return emitError()
             << "value bit width (" << value.getBitWidth()
             << ") doesn't match index type internal storage bit width ("
             << IndexType::kInternalStorageBitWidth << ")";
    return success();
  }
  return emitError() << "expected integer or index type";
}

BoolAttr IntegerAttr::getBoolAttrUnchecked(IntegerType type, bool value) {
  auto attr = Base::get(type.getContext(), type, APInt(/*numBits=*/1, value));
  return llvm::cast<BoolAttr>(attr);
}

//===----------------------------------------------------------------------===//
// BoolAttr
//===----------------------------------------------------------------------===//

bool BoolAttr::getValue() const {
  auto *storage = reinterpret_cast<IntegerAttrStorage *>(impl);
  return storage->value.getBoolValue();
}

bool BoolAttr::classof(Attribute attr) {
  IntegerAttr intAttr = llvm::dyn_cast<IntegerAttr>(attr);
  return intAttr && intAttr.getType().isSignlessInteger(1);
}

//===----------------------------------------------------------------------===//
// OpaqueAttr
//===----------------------------------------------------------------------===//

LogicalResult OpaqueAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                                 StringAttr dialect, StringRef attrData,
                                 Type type) {
  if (!Dialect::isValidNamespace(dialect.strref()))
    return emitError() << "invalid dialect namespace '" << dialect << "'";

  // Check that the dialect is actually registered.
  MLIRContext *context = dialect.getContext();
  if (!context->allowsUnregisteredDialects() &&
      !context->getLoadedDialect(dialect.strref())) {
    return emitError()
           << "#" << dialect << "<\"" << attrData << "\"> : " << type
           << " attribute created with unregistered dialect. If this is "
              "intended, please call allowUnregisteredDialects() on the "
              "MLIRContext, or use -allow-unregistered-dialect with "
              "the MLIR opt tool used";
  }

  return success();
}

//===----------------------------------------------------------------------===//
// DenseElementsAttr Utilities
//===----------------------------------------------------------------------===//

const char DenseIntOrFPElementsAttrStorage::kSplatTrue = ~0;
const char DenseIntOrFPElementsAttrStorage::kSplatFalse = 0;

/// Get the bitwidth of a dense element type within the buffer.
/// DenseElementsAttr requires bitwidths greater than 1 to be aligned by 8.
static size_t getDenseElementStorageWidth(size_t origWidth) {
  return origWidth == 1 ? origWidth : llvm::alignTo<8>(origWidth);
}
static size_t getDenseElementStorageWidth(Type elementType) {
  return getDenseElementStorageWidth(getDenseElementBitWidth(elementType));
}

/// Set a bit to a specific value.
static void setBit(char *rawData, size_t bitPos, bool value) {
  if (value)
    rawData[bitPos / CHAR_BIT] |= (1 << (bitPos % CHAR_BIT));
  else
    rawData[bitPos / CHAR_BIT] &= ~(1 << (bitPos % CHAR_BIT));
}

/// Return the value of the specified bit.
static bool getBit(const char *rawData, size_t bitPos) {
  return (rawData[bitPos / CHAR_BIT] & (1 << (bitPos % CHAR_BIT))) != 0;
}

/// Copy actual `numBytes` data from `value` (APInt) to char array(`result`) for
/// BE format.
static void copyAPIntToArrayForBEmachine(APInt value, size_t numBytes,
                                         char *result) {
  assert(llvm::support::endian::system_endianness() == // NOLINT
         llvm::support::endianness::big);              // NOLINT
  assert(value.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);

  // Copy the words filled with data.
  // For example, when `value` has 2 words, the first word is filled with data.
  // `value` (10 bytes, BE):|abcdefgh|------ij| ==> `result` (BE):|abcdefgh|--|
  size_t numFilledWords = (value.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
  std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
              numFilledWords, result);
  // Convert last word of APInt to LE format and store it in char
  // array(`valueLE`).
  // ex. last word of `value` (BE): |------ij|  ==> `valueLE` (LE): |ji------|
  size_t lastWordPos = numFilledWords;
  SmallVector<char, 8> valueLE(APInt::APINT_WORD_SIZE);
  DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
      reinterpret_cast<const char *>(value.getRawData()) + lastWordPos,
      valueLE.begin(), APInt::APINT_BITS_PER_WORD, 1);
  // Extract actual APInt data from `valueLE`, convert endianness to BE format,
  // and store it in `result`.
  // ex. `valueLE` (LE): |ji------|  ==> `result` (BE): |abcdefgh|ij|
  DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
      valueLE.begin(), result + lastWordPos,
      (numBytes - lastWordPos) * CHAR_BIT, 1);
}

/// Copy `numBytes` data from `inArray`(char array) to `result`(APINT) for BE
/// format.
static void copyArrayToAPIntForBEmachine(const char *inArray, size_t numBytes,
                                         APInt &result) {
  assert(llvm::support::endian::system_endianness() == // NOLINT
         llvm::support::endianness::big);              // NOLINT
  assert(result.getNumWords() * APInt::APINT_WORD_SIZE >= numBytes);

  // Copy the data that fills the word of `result` from `inArray`.
  // For example, when `result` has 2 words, the first word will be filled with
  // data. So, the first 8 bytes are copied from `inArray` here.
  // `inArray` (10 bytes, BE): |abcdefgh|ij|
  //                     ==> `result` (2 words, BE): |abcdefgh|--------|
  size_t numFilledWords = (result.getNumWords() - 1) * APInt::APINT_WORD_SIZE;
  std::copy_n(
      inArray, numFilledWords,
      const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())));

  // Convert array data which will be last word of `result` to LE format, and
  // store it in char array(`inArrayLE`).
  // ex. `inArray` (last two bytes, BE): |ij|  ==> `inArrayLE` (LE): |ji------|
  size_t lastWordPos = numFilledWords;
  SmallVector<char, 8> inArrayLE(APInt::APINT_WORD_SIZE);
  DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
      inArray + lastWordPos, inArrayLE.begin(),
      (numBytes - lastWordPos) * CHAR_BIT, 1);

  // Convert `inArrayLE` to BE format, and store it in last word of `result`.
  // ex. `inArrayLE` (LE): |ji------|  ==> `result` (BE): |abcdefgh|------ij|
  DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
      inArrayLE.begin(),
      const_cast<char *>(reinterpret_cast<const char *>(result.getRawData())) +
          lastWordPos,
      APInt::APINT_BITS_PER_WORD, 1);
}

/// Writes value to the bit position `bitPos` in array `rawData`.
static void writeBits(char *rawData, size_t bitPos, APInt value) {
  size_t bitWidth = value.getBitWidth();

  // If the bitwidth is 1 we just toggle the specific bit.
  if (bitWidth == 1)
    return setBit(rawData, bitPos, value.isOne());

  // Otherwise, the bit position is guaranteed to be byte aligned.
  assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
  if (llvm::support::endian::system_endianness() ==
      llvm::support::endianness::big) {
    // Copy from `value` to `rawData + (bitPos / CHAR_BIT)`.
    // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
    // work correctly in BE format.
    // ex. `value` (2 words including 10 bytes)
    // ==> BE: |abcdefgh|------ij|,  LE: |hgfedcba|ji------|
    copyAPIntToArrayForBEmachine(value, llvm::divideCeil(bitWidth, CHAR_BIT),
                                 rawData + (bitPos / CHAR_BIT));
  } else {
    std::copy_n(reinterpret_cast<const char *>(value.getRawData()),
                llvm::divideCeil(bitWidth, CHAR_BIT),
                rawData + (bitPos / CHAR_BIT));
  }
}

/// Reads the next `bitWidth` bits from the bit position `bitPos` in array
/// `rawData`.
static APInt readBits(const char *rawData, size_t bitPos, size_t bitWidth) {
  // Handle a boolean bit position.
  if (bitWidth == 1)
    return APInt(1, getBit(rawData, bitPos) ? 1 : 0);

  // Otherwise, the bit position must be 8-bit aligned.
  assert((bitPos % CHAR_BIT) == 0 && "expected bitPos to be 8-bit aligned");
  APInt result(bitWidth, 0);
  if (llvm::support::endian::system_endianness() ==
      llvm::support::endianness::big) {
    // Copy from `rawData + (bitPos / CHAR_BIT)` to `result`.
    // Copying the first `llvm::divideCeil(bitWidth, CHAR_BIT)` bytes doesn't
    // work correctly in BE format.
    // ex. `result` (2 words including 10 bytes)
    // ==> BE: |abcdefgh|------ij|,  LE: |hgfedcba|ji------| This function
    copyArrayToAPIntForBEmachine(rawData + (bitPos / CHAR_BIT),
                                 llvm::divideCeil(bitWidth, CHAR_BIT), result);
  } else {
    std::copy_n(rawData + (bitPos / CHAR_BIT),
                llvm::divideCeil(bitWidth, CHAR_BIT),
                const_cast<char *>(
                    reinterpret_cast<const char *>(result.getRawData())));
  }
  return result;
}

/// Returns true if 'values' corresponds to a splat, i.e. one element, or has
/// the same element count as 'type'.
template <typename Values>
static bool hasSameElementsOrSplat(ShapedType type, const Values &values) {
  return (values.size() == 1) ||
         (type.getNumElements() == static_cast<int64_t>(values.size()));
}

//===----------------------------------------------------------------------===//
// DenseElementsAttr Iterators
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// AttributeElementIterator

DenseElementsAttr::AttributeElementIterator::AttributeElementIterator(
    DenseElementsAttr attr, size_t index)
    : llvm::indexed_accessor_iterator<AttributeElementIterator, const void *,
                                      Attribute, Attribute, Attribute>(
          attr.getAsOpaquePointer(), index) {}

Attribute DenseElementsAttr::AttributeElementIterator::operator*() const {
  auto owner = llvm::cast<DenseElementsAttr>(getFromOpaquePointer(base));
  Type eltTy = owner.getElementType();
  if (auto intEltTy = llvm::dyn_cast<IntegerType>(eltTy))
    return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
  if (llvm::isa<IndexType>(eltTy))
    return IntegerAttr::get(eltTy, *IntElementIterator(owner, index));
  if (auto floatEltTy = llvm::dyn_cast<FloatType>(eltTy)) {
    IntElementIterator intIt(owner, index);
    FloatElementIterator floatIt(floatEltTy.getFloatSemantics(), intIt);
    return FloatAttr::get(eltTy, *floatIt);
  }
  if (auto complexTy = llvm::dyn_cast<ComplexType>(eltTy)) {
    auto complexEltTy = complexTy.getElementType();
    ComplexIntElementIterator complexIntIt(owner, index);
    if (llvm::isa<IntegerType>(complexEltTy)) {
      auto value = *complexIntIt;
      auto real = IntegerAttr::get(complexEltTy, value.real());
      auto imag = IntegerAttr::get(complexEltTy, value.imag());
      return ArrayAttr::get(complexTy.getContext(),
                            ArrayRef<Attribute>{real, imag});
    }

    ComplexFloatElementIterator complexFloatIt(
        llvm::cast<FloatType>(complexEltTy).getFloatSemantics(), complexIntIt);
    auto value = *complexFloatIt;
    auto real = FloatAttr::get(complexEltTy, value.real());
    auto imag = FloatAttr::get(complexEltTy, value.imag());
    return ArrayAttr::get(complexTy.getContext(),
                          ArrayRef<Attribute>{real, imag});
  }
  if (llvm::isa<DenseStringElementsAttr>(owner)) {
    ArrayRef<StringRef> vals = owner.getRawStringData();
    return StringAttr::get(owner.isSplat() ? vals.front() : vals[index], eltTy);
  }
  llvm_unreachable("unexpected element type");
}

//===----------------------------------------------------------------------===//
// BoolElementIterator

DenseElementsAttr::BoolElementIterator::BoolElementIterator(
    DenseElementsAttr attr, size_t dataIndex)
    : DenseElementIndexedIteratorImpl<BoolElementIterator, bool, bool, bool>(
          attr.getRawData().data(), attr.isSplat(), dataIndex) {}

bool DenseElementsAttr::BoolElementIterator::operator*() const {
  return getBit(getData(), getDataIndex());
}

//===----------------------------------------------------------------------===//
// IntElementIterator

DenseElementsAttr::IntElementIterator::IntElementIterator(
    DenseElementsAttr attr, size_t dataIndex)
    : DenseElementIndexedIteratorImpl<IntElementIterator, APInt, APInt, APInt>(
          attr.getRawData().data(), attr.isSplat(), dataIndex),
      bitWidth(getDenseElementBitWidth(attr.getElementType())) {}

APInt DenseElementsAttr::IntElementIterator::operator*() const {
  return readBits(getData(),
                  getDataIndex() * getDenseElementStorageWidth(bitWidth),
                  bitWidth);
}

//===----------------------------------------------------------------------===//
// ComplexIntElementIterator

DenseElementsAttr::ComplexIntElementIterator::ComplexIntElementIterator(
    DenseElementsAttr attr, size_t dataIndex)
    : DenseElementIndexedIteratorImpl<ComplexIntElementIterator,
                                      std::complex<APInt>, std::complex<APInt>,
                                      std::complex<APInt>>(
          attr.getRawData().data(), attr.isSplat(), dataIndex) {
  auto complexType = llvm::cast<ComplexType>(attr.getElementType());
  bitWidth = getDenseElementBitWidth(complexType.getElementType());
}

std::complex<APInt>
DenseElementsAttr::ComplexIntElementIterator::operator*() const {
  size_t storageWidth = getDenseElementStorageWidth(bitWidth);
  size_t offset = getDataIndex() * storageWidth * 2;
  return {readBits(getData(), offset, bitWidth),
          readBits(getData(), offset + storageWidth, bitWidth)};
}

//===----------------------------------------------------------------------===//
// DenseArrayAttr
//===----------------------------------------------------------------------===//

LogicalResult
DenseArrayAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                       Type elementType, int64_t size, ArrayRef<char> rawData) {
  if (!elementType.isIntOrIndexOrFloat())
    return emitError() << "expected integer or floating point element type";
  int64_t dataSize = rawData.size();
  int64_t elementSize =
      llvm::divideCeil(elementType.getIntOrFloatBitWidth(), CHAR_BIT);
  if (size * elementSize != dataSize) {
    return emitError() << "expected data size (" << size << " elements, "
                       << elementSize
                       << " bytes each) does not match: " << dataSize
                       << " bytes";
  }
  return success();
}

namespace {
/// Instantiations of this class provide utilities for interacting with native
/// data types in the context of DenseArrayAttr.
template <size_t width,
          IntegerType::SignednessSemantics signedness = IntegerType::Signless>
struct DenseArrayAttrIntUtil {
  static bool checkElementType(Type eltType) {
    auto type = llvm::dyn_cast<IntegerType>(eltType);
    if (!type || type.getWidth() != width)
      return false;
    return type.getSignedness() == signedness;
  }

  static Type getElementType(MLIRContext *ctx) {
    return IntegerType::get(ctx, width, signedness);
  }

  template <typename T>
  static void printElement(raw_ostream &os, T value) {
    os << value;
  }

  template <typename T>
  static ParseResult parseElement(AsmParser &parser, T &value) {
    return parser.parseInteger(value);
  }
};
template <typename T>
struct DenseArrayAttrUtil;

/// Specialization for boolean elements to print 'true' and 'false' literals for
/// elements.
template <>
struct DenseArrayAttrUtil<bool> : public DenseArrayAttrIntUtil<1> {
  static void printElement(raw_ostream &os, bool value) {
    os << (value ? "true" : "false");
  }
};

/// Specialization for 8-bit integers to ensure values are printed as integers
/// and not characters.
template <>
struct DenseArrayAttrUtil<int8_t> : public DenseArrayAttrIntUtil<8> {
  static void printElement(raw_ostream &os, int8_t value) {
    os << static_cast<int>(value);
  }
};
template <>
struct DenseArrayAttrUtil<int16_t> : public DenseArrayAttrIntUtil<16> {};
template <>
struct DenseArrayAttrUtil<int32_t> : public DenseArrayAttrIntUtil<32> {};
template <>
struct DenseArrayAttrUtil<int64_t> : public DenseArrayAttrIntUtil<64> {};

/// Specialization for 32-bit floats.
template <>
struct DenseArrayAttrUtil<float> {
  static bool checkElementType(Type eltType) { return eltType.isF32(); }
  static Type getElementType(MLIRContext *ctx) { return Float32Type::get(ctx); }
  static void printElement(raw_ostream &os, float value) { os << value; }

  /// Parse a double and cast it to a float.
  static ParseResult parseElement(AsmParser &parser, float &value) {
    double doubleVal;
    if (parser.parseFloat(doubleVal))
      return failure();
    value = doubleVal;
    return success();
  }
};

/// Specialization for 64-bit floats.
template <>
struct DenseArrayAttrUtil<double> {
  static bool checkElementType(Type eltType) { return eltType.isF64(); }
  static Type getElementType(MLIRContext *ctx) { return Float64Type::get(ctx); }
  static void printElement(raw_ostream &os, float value) { os << value; }
  static ParseResult parseElement(AsmParser &parser, double &value) {
    return parser.parseFloat(value);
  }
};
} // namespace

template <typename T>
void DenseArrayAttrImpl<T>::print(AsmPrinter &printer) const {
  print(printer.getStream());
}

template <typename T>
void DenseArrayAttrImpl<T>::printWithoutBraces(raw_ostream &os) const {
  llvm::interleaveComma(asArrayRef(), os, [&](T value) {
    DenseArrayAttrUtil<T>::printElement(os, value);
  });
}

template <typename T>
void DenseArrayAttrImpl<T>::print(raw_ostream &os) const {
  os << "[";
  printWithoutBraces(os);
  os << "]";
}

/// Parse a DenseArrayAttr without the braces: `1, 2, 3`
template <typename T>
Attribute DenseArrayAttrImpl<T>::parseWithoutBraces(AsmParser &parser,
                                                    Type odsType) {
  SmallVector<T> data;
  if (failed(parser.parseCommaSeparatedList([&]() {
        T value;
        if (DenseArrayAttrUtil<T>::parseElement(parser, value))
          return failure();
        data.push_back(value);
        return success();
      })))
    return {};
  return get(parser.getContext(), data);
}

/// Parse a DenseArrayAttr: `[ 1, 2, 3 ]`
template <typename T>
Attribute DenseArrayAttrImpl<T>::parse(AsmParser &parser, Type odsType) {
  if (parser.parseLSquare())
    return {};
  // Handle empty list case.
  if (succeeded(parser.parseOptionalRSquare()))
    return get(parser.getContext(), {});
  Attribute result = parseWithoutBraces(parser, odsType);
  if (parser.parseRSquare())
    return {};
  return result;
}

/// Conversion from DenseArrayAttr<T> to ArrayRef<T>.
template <typename T>
DenseArrayAttrImpl<T>::operator ArrayRef<T>() const {
  ArrayRef<char> raw = getRawData();
  assert((raw.size() % sizeof(T)) == 0);
  return ArrayRef<T>(reinterpret_cast<const T *>(raw.data()),
                     raw.size() / sizeof(T));
}

/// Builds a DenseArrayAttr<T> from an ArrayRef<T>.
template <typename T>
DenseArrayAttrImpl<T> DenseArrayAttrImpl<T>::get(MLIRContext *context,
                                                 ArrayRef<T> content) {
  Type elementType = DenseArrayAttrUtil<T>::getElementType(context);
  auto rawArray = ArrayRef<char>(reinterpret_cast<const char *>(content.data()),
                                 content.size() * sizeof(T));
  return llvm::cast<DenseArrayAttrImpl<T>>(
      Base::get(context, elementType, content.size(), rawArray));
}

template <typename T>
bool DenseArrayAttrImpl<T>::classof(Attribute attr) {
  if (auto denseArray = llvm::dyn_cast<DenseArrayAttr>(attr))
    return DenseArrayAttrUtil<T>::checkElementType(denseArray.getElementType());
  return false;
}

namespace mlir {
namespace detail {
// Explicit instantiation for all the supported DenseArrayAttr.
template class DenseArrayAttrImpl<bool>;
template class DenseArrayAttrImpl<int8_t>;
template class DenseArrayAttrImpl<int16_t>;
template class DenseArrayAttrImpl<int32_t>;
template class DenseArrayAttrImpl<int64_t>;
template class DenseArrayAttrImpl<float>;
template class DenseArrayAttrImpl<double>;
} // namespace detail
} // namespace mlir

//===----------------------------------------------------------------------===//
// DenseElementsAttr
//===----------------------------------------------------------------------===//

/// Method for support type inquiry through isa, cast and dyn_cast.
bool DenseElementsAttr::classof(Attribute attr) {
  return llvm::isa<DenseIntOrFPElementsAttr, DenseStringElementsAttr>(attr);
}

DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<Attribute> values) {
  assert(hasSameElementsOrSplat(type, values));

  Type eltType = type.getElementType();

  // Take care complex type case first.
  if (auto complexType = llvm::dyn_cast<ComplexType>(eltType)) {
    if (complexType.getElementType().isIntOrIndex()) {
      SmallVector<std::complex<APInt>> complexValues;
      complexValues.reserve(values.size());
      for (Attribute attr : values) {
        assert(llvm::isa<ArrayAttr>(attr) && "expected ArrayAttr for complex");
        auto arrayAttr = llvm::cast<ArrayAttr>(attr);
        assert(arrayAttr.size() == 2 && "expected 2 element for complex");
        auto attr0 = arrayAttr[0];
        auto attr1 = arrayAttr[1];
        complexValues.push_back(
            std::complex<APInt>(llvm::cast<IntegerAttr>(attr0).getValue(),
                                llvm::cast<IntegerAttr>(attr1).getValue()));
      }
      return DenseElementsAttr::get(type, complexValues);
    }
    // Must be float.
    SmallVector<std::complex<APFloat>> complexValues;
    complexValues.reserve(values.size());
    for (Attribute attr : values) {
      assert(llvm::isa<ArrayAttr>(attr) && "expected ArrayAttr for complex");
      auto arrayAttr = llvm::cast<ArrayAttr>(attr);
      assert(arrayAttr.size() == 2 && "expected 2 element for complex");
      auto attr0 = arrayAttr[0];
      auto attr1 = arrayAttr[1];
      complexValues.push_back(
          std::complex<APFloat>(llvm::cast<FloatAttr>(attr0).getValue(),
                                llvm::cast<FloatAttr>(attr1).getValue()));
    }
    return DenseElementsAttr::get(type, complexValues);
  }

  // If the element type is not based on int/float/index, assume it is a string
  // type.
  if (!eltType.isIntOrIndexOrFloat()) {
    SmallVector<StringRef, 8> stringValues;
    stringValues.reserve(values.size());
    for (Attribute attr : values) {
      assert(llvm::isa<StringAttr>(attr) &&
             "expected string value for non integer/index/float element");
      stringValues.push_back(llvm::cast<StringAttr>(attr).getValue());
    }
    return get(type, stringValues);
  }

  // Otherwise, get the raw storage width to use for the allocation.
  size_t bitWidth = getDenseElementBitWidth(eltType);
  size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);

  // Compress the attribute values into a character buffer.
  SmallVector<char, 8> data(
      llvm::divideCeil(storageBitWidth * values.size(), CHAR_BIT));
  APInt intVal;
  for (unsigned i = 0, e = values.size(); i < e; ++i) {
    if (auto floatAttr = llvm::dyn_cast<FloatAttr>(values[i])) {
      assert(floatAttr.getType() == eltType &&
             "expected float attribute type to equal element type");
      intVal = floatAttr.getValue().bitcastToAPInt();
    } else {
      auto intAttr = llvm::cast<IntegerAttr>(values[i]);
      assert(intAttr.getType() == eltType &&
             "expected integer attribute type to equal element type");
      intVal = intAttr.getValue();
    }

    assert(intVal.getBitWidth() == bitWidth &&
           "expected value to have same bitwidth as element type");
    writeBits(data.data(), i * storageBitWidth, intVal);
  }

  // Handle the special encoding of splat of bool.
  if (values.size() == 1 && eltType.isInteger(1))
    data[0] = data[0] ? -1 : 0;

  return DenseIntOrFPElementsAttr::getRaw(type, data);
}

DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<bool> values) {
  assert(hasSameElementsOrSplat(type, values));
  assert(type.getElementType().isInteger(1));

  std::vector<char> buff(llvm::divideCeil(values.size(), CHAR_BIT));

  if (!values.empty()) {
    bool isSplat = true;
    bool firstValue = values[0];
    for (int i = 0, e = values.size(); i != e; ++i) {
      isSplat &= values[i] == firstValue;
      setBit(buff.data(), i, values[i]);
    }

    // Splat of bool is encoded as a byte with all-ones in it.
    if (isSplat) {
      buff.resize(1);
      buff[0] = values[0] ? -1 : 0;
    }
  }

  return DenseIntOrFPElementsAttr::getRaw(type, buff);
}

DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<StringRef> values) {
  assert(!type.getElementType().isIntOrFloat());
  return DenseStringElementsAttr::get(type, values);
}

/// Constructs a dense integer elements attribute from an array of APInt
/// values. Each APInt value is expected to have the same bitwidth as the
/// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<APInt> values) {
  assert(type.getElementType().isIntOrIndex());
  assert(hasSameElementsOrSplat(type, values));
  size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values);
}
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<std::complex<APInt>> values) {
  ComplexType complex = llvm::cast<ComplexType>(type.getElementType());
  assert(llvm::isa<IntegerType>(complex.getElementType()));
  assert(hasSameElementsOrSplat(type, values));
  size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
  ArrayRef<APInt> intVals(reinterpret_cast<const APInt *>(values.data()),
                          values.size() * 2);
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, intVals);
}

// Constructs a dense float elements attribute from an array of APFloat
// values. Each APFloat value is expected to have the same bitwidth as the
// element type of 'type'.
DenseElementsAttr DenseElementsAttr::get(ShapedType type,
                                         ArrayRef<APFloat> values) {
  assert(llvm::isa<FloatType>(type.getElementType()));
  assert(hasSameElementsOrSplat(type, values));
  size_t storageBitWidth = getDenseElementStorageWidth(type.getElementType());
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, values);
}
DenseElementsAttr
DenseElementsAttr::get(ShapedType type,
                       ArrayRef<std::complex<APFloat>> values) {
  ComplexType complex = llvm::cast<ComplexType>(type.getElementType());
  assert(llvm::isa<FloatType>(complex.getElementType()));
  assert(hasSameElementsOrSplat(type, values));
  ArrayRef<APFloat> apVals(reinterpret_cast<const APFloat *>(values.data()),
                           values.size() * 2);
  size_t storageBitWidth = getDenseElementStorageWidth(complex) / 2;
  return DenseIntOrFPElementsAttr::getRaw(type, storageBitWidth, apVals);
}

/// Construct a dense elements attribute from a raw buffer representing the
/// data for this attribute. Users should generally not use this methods as
/// the expected buffer format may not be a form the user expects.
DenseElementsAttr
DenseElementsAttr::getFromRawBuffer(ShapedType type, ArrayRef<char> rawBuffer) {
  return DenseIntOrFPElementsAttr::getRaw(type, rawBuffer);
}

/// Returns true if the given buffer is a valid raw buffer for the given type.
bool DenseElementsAttr::isValidRawBuffer(ShapedType type,
                                         ArrayRef<char> rawBuffer,
                                         bool &detectedSplat) {
  size_t storageWidth = getDenseElementStorageWidth(type.getElementType());
  size_t rawBufferWidth = rawBuffer.size() * CHAR_BIT;
  int64_t numElements = type.getNumElements();

  // The initializer is always a splat if the result type has a single element.
  detectedSplat = numElements == 1;

  // Storage width of 1 is special as it is packed by the bit.
  if (storageWidth == 1) {
    // Check for a splat, or a buffer equal to the number of elements which
    // consists of either all 0's or all 1's.
    if (rawBuffer.size() == 1) {
      auto rawByte = static_cast<uint8_t>(rawBuffer[0]);
      if (rawByte == 0 || rawByte == 0xff) {
        detectedSplat = true;
        return true;
      }
    }

    // This is a valid non-splat buffer if it has the right size.
    return rawBufferWidth == llvm::alignTo<8>(numElements);
  }

  // All other types are 8-bit aligned, so we can just check the buffer width
  // to know if only a single initializer element was passed in.
  if (rawBufferWidth == storageWidth) {
    detectedSplat = true;
    return true;
  }

  // The raw buffer is valid if it has the right size.
  return rawBufferWidth == storageWidth * numElements;
}

/// Check the information for a C++ data type, check if this type is valid for
/// the current attribute. This method is used to verify specific type
/// invariants that the templatized 'getValues' method cannot.
static bool isValidIntOrFloat(Type type, int64_t dataEltSize, bool isInt,
                              bool isSigned) {
  // Make sure that the data element size is the same as the type element width.
  if (getDenseElementBitWidth(type) !=
      static_cast<size_t>(dataEltSize * CHAR_BIT))
    return false;

  // Check that the element type is either float or integer or index.
  if (!isInt)
    return llvm::isa<FloatType>(type);
  if (type.isIndex())
    return true;

  auto intType = llvm::dyn_cast<IntegerType>(type);
  if (!intType)
    return false;

  // Make sure signedness semantics is consistent.
  if (intType.isSignless())
    return true;
  return intType.isSigned() ? isSigned : !isSigned;
}

/// Defaults down the subclass implementation.
DenseElementsAttr DenseElementsAttr::getRawComplex(ShapedType type,
                                                   ArrayRef<char> data,
                                                   int64_t dataEltSize,
                                                   bool isInt, bool isSigned) {
  return DenseIntOrFPElementsAttr::getRawComplex(type, data, dataEltSize, isInt,
                                                 isSigned);
}
DenseElementsAttr DenseElementsAttr::getRawIntOrFloat(ShapedType type,
                                                      ArrayRef<char> data,
                                                      int64_t dataEltSize,
                                                      bool isInt,
                                                      bool isSigned) {
  return DenseIntOrFPElementsAttr::getRawIntOrFloat(type, data, dataEltSize,
                                                    isInt, isSigned);
}

bool DenseElementsAttr::isValidIntOrFloat(int64_t dataEltSize, bool isInt,
                                          bool isSigned) const {
  return ::isValidIntOrFloat(getElementType(), dataEltSize, isInt, isSigned);
}
bool DenseElementsAttr::isValidComplex(int64_t dataEltSize, bool isInt,
                                       bool isSigned) const {
  return ::isValidIntOrFloat(
      llvm::cast<ComplexType>(getElementType()).getElementType(),
      dataEltSize / 2, isInt, isSigned);
}

/// Returns true if this attribute corresponds to a splat, i.e. if all element
/// values are the same.
bool DenseElementsAttr::isSplat() const {
  return static_cast<DenseElementsAttributeStorage *>(impl)->isSplat;
}

/// Return if the given complex type has an integer element type.
static bool isComplexOfIntType(Type type) {
  return llvm::isa<IntegerType>(llvm::cast<ComplexType>(type).getElementType());
}

auto DenseElementsAttr::tryGetComplexIntValues() const
    -> FailureOr<iterator_range_impl<ComplexIntElementIterator>> {
  if (!isComplexOfIntType(getElementType()))
    return failure();
  return iterator_range_impl<ComplexIntElementIterator>(
      getType(), ComplexIntElementIterator(*this, 0),
      ComplexIntElementIterator(*this, getNumElements()));
}

auto DenseElementsAttr::tryGetFloatValues() const
    -> FailureOr<iterator_range_impl<FloatElementIterator>> {
  auto eltTy = llvm::dyn_cast<FloatType>(getElementType());
  if (!eltTy)
    return failure();
  const auto &elementSemantics = eltTy.getFloatSemantics();
  return iterator_range_impl<FloatElementIterator>(
      getType(), FloatElementIterator(elementSemantics, raw_int_begin()),
      FloatElementIterator(elementSemantics, raw_int_end()));
}

auto DenseElementsAttr::tryGetComplexFloatValues() const
    -> FailureOr<iterator_range_impl<ComplexFloatElementIterator>> {
  auto complexTy = llvm::dyn_cast<ComplexType>(getElementType());
  if (!complexTy)
    return failure();
  auto eltTy = llvm::dyn_cast<FloatType>(complexTy.getElementType());
  if (!eltTy)
    return failure();
  const auto &semantics = eltTy.getFloatSemantics();
  return iterator_range_impl<ComplexFloatElementIterator>(
      getType(), {semantics, {*this, 0}},
      {semantics, {*this, static_cast<size_t>(getNumElements())}});
}

/// Return the raw storage data held by this attribute.
ArrayRef<char> DenseElementsAttr::getRawData() const {
  return static_cast<DenseIntOrFPElementsAttrStorage *>(impl)->data;
}

ArrayRef<StringRef> DenseElementsAttr::getRawStringData() const {
  return static_cast<DenseStringElementsAttrStorage *>(impl)->data;
}

/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has been reshaped to 'newType'. The new type must have the
/// same total number of elements as well as element type.
DenseElementsAttr DenseElementsAttr::reshape(ShapedType newType) {
  ShapedType curType = getType();
  if (curType == newType)
    return *this;

  assert(newType.getElementType() == curType.getElementType() &&
         "expected the same element type");
  assert(newType.getNumElements() == curType.getNumElements() &&
         "expected the same number of elements");
  return DenseIntOrFPElementsAttr::getRaw(newType, getRawData());
}

DenseElementsAttr DenseElementsAttr::resizeSplat(ShapedType newType) {
  assert(isSplat() && "expected a splat type");

  ShapedType curType = getType();
  if (curType == newType)
    return *this;

  assert(newType.getElementType() == curType.getElementType() &&
         "expected the same element type");
  return DenseIntOrFPElementsAttr::getRaw(newType, getRawData());
}

/// Return a new DenseElementsAttr that has the same data as the current
/// attribute, but has bitcast elements such that it is now 'newType'. The new
/// type must have the same shape and element types of the same bitwidth as the
/// current type.
DenseElementsAttr DenseElementsAttr::bitcast(Type newElType) {
  ShapedType curType = getType();
  Type curElType = curType.getElementType();
  if (curElType == newElType)
    return *this;

  assert(getDenseElementBitWidth(newElType) ==
             getDenseElementBitWidth(curElType) &&
         "expected element types with the same bitwidth");
  return DenseIntOrFPElementsAttr::getRaw(curType.clone(newElType),
                                          getRawData());
}

DenseElementsAttr
DenseElementsAttr::mapValues(Type newElementType,
                             function_ref<APInt(const APInt &)> mapping) const {
  return llvm::cast<DenseIntElementsAttr>(*this).mapValues(newElementType, mapping);
}

DenseElementsAttr DenseElementsAttr::mapValues(
    Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
  return llvm::cast<DenseFPElementsAttr>(*this).mapValues(newElementType, mapping);
}

ShapedType DenseElementsAttr::getType() const {
  return static_cast<const DenseElementsAttributeStorage *>(impl)->type;
}

Type DenseElementsAttr::getElementType() const {
  return getType().getElementType();
}

int64_t DenseElementsAttr::getNumElements() const {
  return getType().getNumElements();
}

//===----------------------------------------------------------------------===//
// DenseIntOrFPElementsAttr
//===----------------------------------------------------------------------===//

/// Utility method to write a range of APInt values to a buffer.
template <typename APRangeT>
static void writeAPIntsToBuffer(size_t storageWidth, std::vector<char> &data,
                                APRangeT &&values) {
  size_t numValues = llvm::size(values);
  data.resize(llvm::divideCeil(storageWidth * numValues, CHAR_BIT));
  size_t offset = 0;
  for (auto it = values.begin(), e = values.end(); it != e;
       ++it, offset += storageWidth) {
    assert((*it).getBitWidth() <= storageWidth);
    writeBits(data.data(), offset, *it);
  }

  // Handle the special encoding of splat of a boolean.
  if (numValues == 1 && (*values.begin()).getBitWidth() == 1)
    data[0] = data[0] ? -1 : 0;
}

/// Constructs a dense elements attribute from an array of raw APFloat values.
/// Each APFloat value is expected to have the same bitwidth as the element
/// type of 'type'. 'type' must be a vector or tensor with static shape.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
                                                   size_t storageWidth,
                                                   ArrayRef<APFloat> values) {
  std::vector<char> data;
  auto unwrapFloat = [](const APFloat &val) { return val.bitcastToAPInt(); };
  writeAPIntsToBuffer(storageWidth, data, llvm::map_range(values, unwrapFloat));
  return DenseIntOrFPElementsAttr::getRaw(type, data);
}

/// Constructs a dense elements attribute from an array of raw APInt values.
/// Each APInt value is expected to have the same bitwidth as the element type
/// of 'type'.
DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
                                                   size_t storageWidth,
                                                   ArrayRef<APInt> values) {
  std::vector<char> data;
  writeAPIntsToBuffer(storageWidth, data, values);
  return DenseIntOrFPElementsAttr::getRaw(type, data);
}

DenseElementsAttr DenseIntOrFPElementsAttr::getRaw(ShapedType type,
                                                   ArrayRef<char> data) {
  assert(type.hasStaticShape() && "type must have static shape");
  bool isSplat = false;
  bool isValid = isValidRawBuffer(type, data, isSplat);
  assert(isValid);
  (void)isValid;
  return Base::get(type.getContext(), type, data, isSplat);
}

/// Overload of the raw 'get' method that asserts that the given type is of
/// complex type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr DenseIntOrFPElementsAttr::getRawComplex(ShapedType type,
                                                          ArrayRef<char> data,
                                                          int64_t dataEltSize,
                                                          bool isInt,
                                                          bool isSigned) {
  assert(::isValidIntOrFloat(
      llvm::cast<ComplexType>(type.getElementType()).getElementType(),
      dataEltSize / 2, isInt, isSigned));

  int64_t numElements = data.size() / dataEltSize;
  (void)numElements;
  assert(numElements == 1 || numElements == type.getNumElements());
  return getRaw(type, data);
}

/// Overload of the 'getRaw' method that asserts that the given type is of
/// integer type. This method is used to verify type invariants that the
/// templatized 'get' method cannot.
DenseElementsAttr
DenseIntOrFPElementsAttr::getRawIntOrFloat(ShapedType type, ArrayRef<char> data,
                                           int64_t dataEltSize, bool isInt,
                                           bool isSigned) {
  assert(
      ::isValidIntOrFloat(type.getElementType(), dataEltSize, isInt, isSigned));

  int64_t numElements = data.size() / dataEltSize;
  assert(numElements == 1 || numElements == type.getNumElements());
  (void)numElements;
  return getRaw(type, data);
}

void DenseIntOrFPElementsAttr::convertEndianOfCharForBEmachine(
    const char *inRawData, char *outRawData, size_t elementBitWidth,
    size_t numElements) {
  using llvm::support::ulittle16_t;
  using llvm::support::ulittle32_t;
  using llvm::support::ulittle64_t;

  assert(llvm::support::endian::system_endianness() == // NOLINT
         llvm::support::endianness::big);              // NOLINT
  // NOLINT to avoid warning message about replacing by static_assert()

  // Following std::copy_n always converts endianness on BE machine.
  switch (elementBitWidth) {
  case 16: {
    const ulittle16_t *inRawDataPos =
        reinterpret_cast<const ulittle16_t *>(inRawData);
    uint16_t *outDataPos = reinterpret_cast<uint16_t *>(outRawData);
    std::copy_n(inRawDataPos, numElements, outDataPos);
    break;
  }
  case 32: {
    const ulittle32_t *inRawDataPos =
        reinterpret_cast<const ulittle32_t *>(inRawData);
    uint32_t *outDataPos = reinterpret_cast<uint32_t *>(outRawData);
    std::copy_n(inRawDataPos, numElements, outDataPos);
    break;
  }
  case 64: {
    const ulittle64_t *inRawDataPos =
        reinterpret_cast<const ulittle64_t *>(inRawData);
    uint64_t *outDataPos = reinterpret_cast<uint64_t *>(outRawData);
    std::copy_n(inRawDataPos, numElements, outDataPos);
    break;
  }
  default: {
    size_t nBytes = elementBitWidth / CHAR_BIT;
    for (size_t i = 0; i < nBytes; i++)
      std::copy_n(inRawData + (nBytes - 1 - i), 1, outRawData + i);
    break;
  }
  }
}

void DenseIntOrFPElementsAttr::convertEndianOfArrayRefForBEmachine(
    ArrayRef<char> inRawData, MutableArrayRef<char> outRawData,
    ShapedType type) {
  size_t numElements = type.getNumElements();
  Type elementType = type.getElementType();
  if (ComplexType complexTy = llvm::dyn_cast<ComplexType>(elementType)) {
    elementType = complexTy.getElementType();
    numElements = numElements * 2;
  }
  size_t elementBitWidth = getDenseElementStorageWidth(elementType);
  assert(numElements * elementBitWidth == inRawData.size() * CHAR_BIT &&
         inRawData.size() <= outRawData.size());
  if (elementBitWidth <= CHAR_BIT)
    std::memcpy(outRawData.begin(), inRawData.begin(), inRawData.size());
  else
    convertEndianOfCharForBEmachine(inRawData.begin(), outRawData.begin(),
                                    elementBitWidth, numElements);
}

//===----------------------------------------------------------------------===//
// DenseFPElementsAttr
//===----------------------------------------------------------------------===//

template <typename Fn, typename Attr>
static ShapedType mappingHelper(Fn mapping, Attr &attr, ShapedType inType,
                                Type newElementType,
                                llvm::SmallVectorImpl<char> &data) {
  size_t bitWidth = getDenseElementBitWidth(newElementType);
  size_t storageBitWidth = getDenseElementStorageWidth(bitWidth);

  ShapedType newArrayType = inType.cloneWith(inType.getShape(), newElementType);

  size_t numRawElements = attr.isSplat() ? 1 : newArrayType.getNumElements();
  data.resize(llvm::divideCeil(storageBitWidth * numRawElements, CHAR_BIT));

  // Functor used to process a single element value of the attribute.
  auto processElt = [&](decltype(*attr.begin()) value, size_t index) {
    auto newInt = mapping(value);
    assert(newInt.getBitWidth() == bitWidth);
    writeBits(data.data(), index * storageBitWidth, newInt);
  };

  // Check for the splat case.
  if (attr.isSplat()) {
    if (bitWidth == 1) {
      // Handle the special encoding of splat of bool.
      data[0] = mapping(*attr.begin()).isZero() ? 0 : -1;
    } else {
      processElt(*attr.begin(), /*index=*/0);
    }
    return newArrayType;
  }

  // Otherwise, process all of the element values.
  uint64_t elementIdx = 0;
  for (auto value : attr)
    processElt(value, elementIdx++);
  return newArrayType;
}

DenseElementsAttr DenseFPElementsAttr::mapValues(
    Type newElementType, function_ref<APInt(const APFloat &)> mapping) const {
  llvm::SmallVector<char, 8> elementData;
  auto newArrayType =
      mappingHelper(mapping, *this, getType(), newElementType, elementData);

  return getRaw(newArrayType, elementData);
}

/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseFPElementsAttr::classof(Attribute attr) {
  if (auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(attr))
    return llvm::isa<FloatType>(denseAttr.getType().getElementType());
  return false;
}

//===----------------------------------------------------------------------===//
// DenseIntElementsAttr
//===----------------------------------------------------------------------===//

DenseElementsAttr DenseIntElementsAttr::mapValues(
    Type newElementType, function_ref<APInt(const APInt &)> mapping) const {
  llvm::SmallVector<char, 8> elementData;
  auto newArrayType =
      mappingHelper(mapping, *this, getType(), newElementType, elementData);
  return getRaw(newArrayType, elementData);
}

/// Method for supporting type inquiry through isa, cast and dyn_cast.
bool DenseIntElementsAttr::classof(Attribute attr) {
  if (auto denseAttr = llvm::dyn_cast<DenseElementsAttr>(attr))
    return denseAttr.getType().getElementType().isIntOrIndex();
  return false;
}

//===----------------------------------------------------------------------===//
// DenseResourceElementsAttr
//===----------------------------------------------------------------------===//

DenseResourceElementsAttr
DenseResourceElementsAttr::get(ShapedType type,
                               DenseResourceElementsHandle handle) {
  return Base::get(type.getContext(), type, handle);
}

DenseResourceElementsAttr DenseResourceElementsAttr::get(ShapedType type,
                                                         StringRef blobName,
                                                         AsmResourceBlob blob) {
  // Extract the builtin dialect resource manager from context and construct a
  // handle by inserting a new resource using the provided blob.
  auto &manager =
      DenseResourceElementsHandle::getManagerInterface(type.getContext());
  return get(type, manager.insert(blobName, std::move(blob)));
}

//===----------------------------------------------------------------------===//
// DenseResourceElementsAttrBase

namespace {
/// Instantiations of this class provide utilities for interacting with native
/// data types in the context of DenseResourceElementsAttr.
template <typename T>
struct DenseResourceAttrUtil;
template <size_t width, bool isSigned>
struct DenseResourceElementsAttrIntUtil {
  static bool checkElementType(Type eltType) {
    IntegerType type = llvm::dyn_cast<IntegerType>(eltType);
    if (!type || type.getWidth() != width)
      return false;
    return isSigned ? !type.isUnsigned() : !type.isSigned();
  }
};
template <>
struct DenseResourceAttrUtil<bool> {
  static bool checkElementType(Type eltType) {
    return eltType.isSignlessInteger(1);
  }
};
template <>
struct DenseResourceAttrUtil<int8_t>
    : public DenseResourceElementsAttrIntUtil<8, true> {};
template <>
struct DenseResourceAttrUtil<uint8_t>
    : public DenseResourceElementsAttrIntUtil<8, false> {};
template <>
struct DenseResourceAttrUtil<int16_t>
    : public DenseResourceElementsAttrIntUtil<16, true> {};
template <>
struct DenseResourceAttrUtil<uint16_t>
    : public DenseResourceElementsAttrIntUtil<16, false> {};
template <>
struct DenseResourceAttrUtil<int32_t>
    : public DenseResourceElementsAttrIntUtil<32, true> {};
template <>
struct DenseResourceAttrUtil<uint32_t>
    : public DenseResourceElementsAttrIntUtil<32, false> {};
template <>
struct DenseResourceAttrUtil<int64_t>
    : public DenseResourceElementsAttrIntUtil<64, true> {};
template <>
struct DenseResourceAttrUtil<uint64_t>
    : public DenseResourceElementsAttrIntUtil<64, false> {};
template <>
struct DenseResourceAttrUtil<float> {
  static bool checkElementType(Type eltType) { return eltType.isF32(); }
};
template <>
struct DenseResourceAttrUtil<double> {
  static bool checkElementType(Type eltType) { return eltType.isF64(); }
};
} // namespace

template <typename T>
DenseResourceElementsAttrBase<T>
DenseResourceElementsAttrBase<T>::get(ShapedType type, StringRef blobName,
                                      AsmResourceBlob blob) {
  // Check that the blob is in the form we were expecting.
  assert(blob.getDataAlignment() == alignof(T) &&
         "alignment mismatch between expected alignment and blob alignment");
  assert(((blob.getData().size() % sizeof(T)) == 0) &&
         "size mismatch between expected element width and blob size");
  assert(DenseResourceAttrUtil<T>::checkElementType(type.getElementType()) &&
         "invalid shape element type for provided type `T`");
  return llvm::cast<DenseResourceElementsAttrBase<T>>(
      DenseResourceElementsAttr::get(type, blobName, std::move(blob)));
}

template <typename T>
std::optional<ArrayRef<T>>
DenseResourceElementsAttrBase<T>::tryGetAsArrayRef() const {
  if (AsmResourceBlob *blob = this->getRawHandle().getBlob())
    return blob->template getDataAs<T>();
  return std::nullopt;
}

template <typename T>
bool DenseResourceElementsAttrBase<T>::classof(Attribute attr) {
  auto resourceAttr = llvm::dyn_cast<DenseResourceElementsAttr>(attr);
  return resourceAttr && DenseResourceAttrUtil<T>::checkElementType(
                             resourceAttr.getElementType());
}

namespace mlir {
namespace detail {
// Explicit instantiation for all the supported DenseResourceElementsAttr.
template class DenseResourceElementsAttrBase<bool>;
template class DenseResourceElementsAttrBase<int8_t>;
template class DenseResourceElementsAttrBase<int16_t>;
template class DenseResourceElementsAttrBase<int32_t>;
template class DenseResourceElementsAttrBase<int64_t>;
template class DenseResourceElementsAttrBase<uint8_t>;
template class DenseResourceElementsAttrBase<uint16_t>;
template class DenseResourceElementsAttrBase<uint32_t>;
template class DenseResourceElementsAttrBase<uint64_t>;
template class DenseResourceElementsAttrBase<float>;
template class DenseResourceElementsAttrBase<double>;
} // namespace detail
} // namespace mlir

//===----------------------------------------------------------------------===//
// SparseElementsAttr
//===----------------------------------------------------------------------===//

/// Get a zero APFloat for the given sparse attribute.
APFloat SparseElementsAttr::getZeroAPFloat() const {
  auto eltType = llvm::cast<FloatType>(getElementType());
  return APFloat(eltType.getFloatSemantics());
}

/// Get a zero APInt for the given sparse attribute.
APInt SparseElementsAttr::getZeroAPInt() const {
  auto eltType = llvm::cast<IntegerType>(getElementType());
  return APInt::getZero(eltType.getWidth());
}

/// Get a zero attribute for the given attribute type.
Attribute SparseElementsAttr::getZeroAttr() const {
  auto eltType = getElementType();

  // Handle floating point elements.
  if (llvm::isa<FloatType>(eltType))
    return FloatAttr::get(eltType, 0);

  // Handle complex elements.
  if (auto complexTy = llvm::dyn_cast<ComplexType>(eltType)) {
    auto eltType = complexTy.getElementType();
    Attribute zero;
    if (llvm::isa<FloatType>(eltType))
      zero = FloatAttr::get(eltType, 0);
    else // must be integer
      zero = IntegerAttr::get(eltType, 0);
    return ArrayAttr::get(complexTy.getContext(),
                          ArrayRef<Attribute>{zero, zero});
  }

  // Handle string type.
  if (llvm::isa<DenseStringElementsAttr>(getValues()))
    return StringAttr::get("", eltType);

  // Otherwise, this is an integer.
  return IntegerAttr::get(eltType, 0);
}

/// Flatten, and return, all of the sparse indices in this attribute in
/// row-major order.
std::vector<ptrdiff_t> SparseElementsAttr::getFlattenedSparseIndices() const {
  std::vector<ptrdiff_t> flatSparseIndices;

  // The sparse indices are 64-bit integers, so we can reinterpret the raw data
  // as a 1-D index array.
  auto sparseIndices = getIndices();
  auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
  if (sparseIndices.isSplat()) {
    SmallVector<uint64_t, 8> indices(getType().getRank(),
                                     *sparseIndexValues.begin());
    flatSparseIndices.push_back(getFlattenedIndex(indices));
    return flatSparseIndices;
  }

  // Otherwise, reinterpret each index as an ArrayRef when flattening.
  auto numSparseIndices = sparseIndices.getType().getDimSize(0);
  size_t rank = getType().getRank();
  for (size_t i = 0, e = numSparseIndices; i != e; ++i)
    flatSparseIndices.push_back(getFlattenedIndex(
        {&*std::next(sparseIndexValues.begin(), i * rank), rank}));
  return flatSparseIndices;
}

LogicalResult
SparseElementsAttr::verify(function_ref<InFlightDiagnostic()> emitError,
                           ShapedType type, DenseIntElementsAttr sparseIndices,
                           DenseElementsAttr values) {
  ShapedType valuesType = values.getType();
  if (valuesType.getRank() != 1)
    return emitError() << "expected 1-d tensor for sparse element values";

  // Verify the indices and values shape.
  ShapedType indicesType = sparseIndices.getType();
  auto emitShapeError = [&]() {
    return emitError() << "expected shape ([" << type.getShape()
                       << "]); inferred shape of indices literal (["
                       << indicesType.getShape()
                       << "]); inferred shape of values literal (["
                       << valuesType.getShape() << "])";
  };
  // Verify indices shape.
  size_t rank = type.getRank(), indicesRank = indicesType.getRank();
  if (indicesRank == 2) {
    if (indicesType.getDimSize(1) != static_cast<int64_t>(rank))
      return emitShapeError();
  } else if (indicesRank != 1 || rank != 1) {
    return emitShapeError();
  }
  // Verify the values shape.
  int64_t numSparseIndices = indicesType.getDimSize(0);
  if (numSparseIndices != valuesType.getDimSize(0))
    return emitShapeError();

  // Verify that the sparse indices are within the value shape.
  auto emitIndexError = [&](unsigned indexNum, ArrayRef<uint64_t> index) {
    return emitError()
           << "sparse index #" << indexNum
           << " is not contained within the value shape, with index=[" << index
           << "], and type=" << type;
  };

  // Handle the case where the index values are a splat.
  auto sparseIndexValues = sparseIndices.getValues<uint64_t>();
  if (sparseIndices.isSplat()) {
    SmallVector<uint64_t> indices(rank, *sparseIndexValues.begin());
    if (!ElementsAttr::isValidIndex(type, indices))
      return emitIndexError(0, indices);
    return success();
  }

  // Otherwise, reinterpret each index as an ArrayRef.
  for (size_t i = 0, e = numSparseIndices; i != e; ++i) {
    ArrayRef<uint64_t> index(&*std::next(sparseIndexValues.begin(), i * rank),
                             rank);
    if (!ElementsAttr::isValidIndex(type, index))
      return emitIndexError(i, index);
  }

  return success();
}

//===----------------------------------------------------------------------===//
// DistinctAttr
//===----------------------------------------------------------------------===//

DistinctAttr DistinctAttr::create(Attribute referencedAttr) {
  return Base::get(referencedAttr.getContext(), referencedAttr);
}

Attribute DistinctAttr::getReferencedAttr() const {
  return getImpl()->referencedAttr;
}

//===----------------------------------------------------------------------===//
// Attribute Utilities
//===----------------------------------------------------------------------===//

AffineMap mlir::makeStridedLinearLayoutMap(ArrayRef<int64_t> strides,
                                           int64_t offset,
                                           MLIRContext *context) {
  AffineExpr expr;
  unsigned nSymbols = 0;

  // AffineExpr for offset.
  // Static case.
  if (!ShapedType::isDynamic(offset)) {
    auto cst = getAffineConstantExpr(offset, context);
    expr = cst;
  } else {
    // Dynamic case, new symbol for the offset.
    auto sym = getAffineSymbolExpr(nSymbols++, context);
    expr = sym;
  }

  // AffineExpr for strides.
  for (const auto &en : llvm::enumerate(strides)) {
    auto dim = en.index();
    auto stride = en.value();
    assert(stride != 0 && "Invalid stride specification");
    auto d = getAffineDimExpr(dim, context);
    AffineExpr mult;
    // Static case.
    if (!ShapedType::isDynamic(stride))
      mult = getAffineConstantExpr(stride, context);
    else
      // Dynamic case, new symbol for each new stride.
      mult = getAffineSymbolExpr(nSymbols++, context);
    expr = expr + d * mult;
  }

  return AffineMap::get(strides.size(), nSymbols, expr);
}