1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
//===- BuiltinTypes.cpp - MLIR Builtin Type Classes -----------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/IR/BuiltinTypes.h"
#include "TypeDetail.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/FunctionInterfaces.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/TensorEncoding.h"
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/ADT/Twine.h"
#include "llvm/ADT/TypeSwitch.h"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
/// Tablegen Type Definitions
//===----------------------------------------------------------------------===//
#define GET_TYPEDEF_CLASSES
#include "mlir/IR/BuiltinTypes.cpp.inc"
//===----------------------------------------------------------------------===//
// BuiltinDialect
//===----------------------------------------------------------------------===//
void BuiltinDialect::registerTypes() {
addTypes<
#define GET_TYPEDEF_LIST
#include "mlir/IR/BuiltinTypes.cpp.inc"
>();
}
//===----------------------------------------------------------------------===//
/// ComplexType
//===----------------------------------------------------------------------===//
/// Verify the construction of an integer type.
LogicalResult ComplexType::verify(function_ref<InFlightDiagnostic()> emitError,
Type elementType) {
if (!elementType.isIntOrFloat())
return emitError() << "invalid element type for complex";
return success();
}
//===----------------------------------------------------------------------===//
// Integer Type
//===----------------------------------------------------------------------===//
/// Verify the construction of an integer type.
LogicalResult IntegerType::verify(function_ref<InFlightDiagnostic()> emitError,
unsigned width,
SignednessSemantics signedness) {
if (width > IntegerType::kMaxWidth) {
return emitError() << "integer bitwidth is limited to "
<< IntegerType::kMaxWidth << " bits";
}
return success();
}
unsigned IntegerType::getWidth() const { return getImpl()->width; }
IntegerType::SignednessSemantics IntegerType::getSignedness() const {
return getImpl()->signedness;
}
IntegerType IntegerType::scaleElementBitwidth(unsigned scale) {
if (!scale)
return IntegerType();
return IntegerType::get(getContext(), scale * getWidth(), getSignedness());
}
//===----------------------------------------------------------------------===//
// Float Type
//===----------------------------------------------------------------------===//
unsigned FloatType::getWidth() {
if (llvm::isa<Float8E5M2Type, Float8E4M3FNType, Float8E5M2FNUZType,
Float8E4M3FNUZType, Float8E4M3B11FNUZType>(*this))
return 8;
if (llvm::isa<Float16Type, BFloat16Type>(*this))
return 16;
if (llvm::isa<Float32Type, FloatTF32Type>(*this))
return 32;
if (llvm::isa<Float64Type>(*this))
return 64;
if (llvm::isa<Float80Type>(*this))
return 80;
if (llvm::isa<Float128Type>(*this))
return 128;
llvm_unreachable("unexpected float type");
}
/// Returns the floating semantics for the given type.
const llvm::fltSemantics &FloatType::getFloatSemantics() {
if (llvm::isa<Float8E5M2Type>(*this))
return APFloat::Float8E5M2();
if (llvm::isa<Float8E4M3FNType>(*this))
return APFloat::Float8E4M3FN();
if (llvm::isa<Float8E5M2FNUZType>(*this))
return APFloat::Float8E5M2FNUZ();
if (llvm::isa<Float8E4M3FNUZType>(*this))
return APFloat::Float8E4M3FNUZ();
if (llvm::isa<Float8E4M3B11FNUZType>(*this))
return APFloat::Float8E4M3B11FNUZ();
if (llvm::isa<BFloat16Type>(*this))
return APFloat::BFloat();
if (llvm::isa<Float16Type>(*this))
return APFloat::IEEEhalf();
if (llvm::isa<FloatTF32Type>(*this))
return APFloat::FloatTF32();
if (llvm::isa<Float32Type>(*this))
return APFloat::IEEEsingle();
if (llvm::isa<Float64Type>(*this))
return APFloat::IEEEdouble();
if (llvm::isa<Float80Type>(*this))
return APFloat::x87DoubleExtended();
if (llvm::isa<Float128Type>(*this))
return APFloat::IEEEquad();
llvm_unreachable("non-floating point type used");
}
FloatType FloatType::scaleElementBitwidth(unsigned scale) {
if (!scale)
return FloatType();
MLIRContext *ctx = getContext();
if (isF16() || isBF16()) {
if (scale == 2)
return FloatType::getF32(ctx);
if (scale == 4)
return FloatType::getF64(ctx);
}
if (isF32())
if (scale == 2)
return FloatType::getF64(ctx);
return FloatType();
}
unsigned FloatType::getFPMantissaWidth() {
return APFloat::semanticsPrecision(getFloatSemantics());
}
//===----------------------------------------------------------------------===//
// FunctionType
//===----------------------------------------------------------------------===//
unsigned FunctionType::getNumInputs() const { return getImpl()->numInputs; }
ArrayRef<Type> FunctionType::getInputs() const {
return getImpl()->getInputs();
}
unsigned FunctionType::getNumResults() const { return getImpl()->numResults; }
ArrayRef<Type> FunctionType::getResults() const {
return getImpl()->getResults();
}
FunctionType FunctionType::clone(TypeRange inputs, TypeRange results) const {
return get(getContext(), inputs, results);
}
/// Returns a new function type with the specified arguments and results
/// inserted.
FunctionType FunctionType::getWithArgsAndResults(
ArrayRef<unsigned> argIndices, TypeRange argTypes,
ArrayRef<unsigned> resultIndices, TypeRange resultTypes) {
SmallVector<Type> argStorage, resultStorage;
TypeRange newArgTypes = function_interface_impl::insertTypesInto(
getInputs(), argIndices, argTypes, argStorage);
TypeRange newResultTypes = function_interface_impl::insertTypesInto(
getResults(), resultIndices, resultTypes, resultStorage);
return clone(newArgTypes, newResultTypes);
}
/// Returns a new function type without the specified arguments and results.
FunctionType
FunctionType::getWithoutArgsAndResults(const BitVector &argIndices,
const BitVector &resultIndices) {
SmallVector<Type> argStorage, resultStorage;
TypeRange newArgTypes = function_interface_impl::filterTypesOut(
getInputs(), argIndices, argStorage);
TypeRange newResultTypes = function_interface_impl::filterTypesOut(
getResults(), resultIndices, resultStorage);
return clone(newArgTypes, newResultTypes);
}
//===----------------------------------------------------------------------===//
// OpaqueType
//===----------------------------------------------------------------------===//
/// Verify the construction of an opaque type.
LogicalResult OpaqueType::verify(function_ref<InFlightDiagnostic()> emitError,
StringAttr dialect, StringRef typeData) {
if (!Dialect::isValidNamespace(dialect.strref()))
return emitError() << "invalid dialect namespace '" << dialect << "'";
// Check that the dialect is actually registered.
MLIRContext *context = dialect.getContext();
if (!context->allowsUnregisteredDialects() &&
!context->getLoadedDialect(dialect.strref())) {
return emitError()
<< "`!" << dialect << "<\"" << typeData << "\">"
<< "` type created with unregistered dialect. If this is "
"intended, please call allowUnregisteredDialects() on the "
"MLIRContext, or use -allow-unregistered-dialect with "
"the MLIR opt tool used";
}
return success();
}
//===----------------------------------------------------------------------===//
// VectorType
//===----------------------------------------------------------------------===//
LogicalResult VectorType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
ArrayRef<bool> scalableDims) {
if (!isValidElementType(elementType))
return emitError()
<< "vector elements must be int/index/float type but got "
<< elementType;
if (any_of(shape, [](int64_t i) { return i <= 0; }))
return emitError()
<< "vector types must have positive constant sizes but got "
<< shape;
if (scalableDims.size() != shape.size())
return emitError() << "number of dims must match, got "
<< scalableDims.size() << " and " << shape.size();
return success();
}
VectorType VectorType::scaleElementBitwidth(unsigned scale) {
if (!scale)
return VectorType();
if (auto et = llvm::dyn_cast<IntegerType>(getElementType()))
if (auto scaledEt = et.scaleElementBitwidth(scale))
return VectorType::get(getShape(), scaledEt, getScalableDims());
if (auto et = llvm::dyn_cast<FloatType>(getElementType()))
if (auto scaledEt = et.scaleElementBitwidth(scale))
return VectorType::get(getShape(), scaledEt, getScalableDims());
return VectorType();
}
VectorType VectorType::cloneWith(std::optional<ArrayRef<int64_t>> shape,
Type elementType) const {
return VectorType::get(shape.value_or(getShape()), elementType,
getScalableDims());
}
//===----------------------------------------------------------------------===//
// TensorType
//===----------------------------------------------------------------------===//
Type TensorType::getElementType() const {
return llvm::TypeSwitch<TensorType, Type>(*this)
.Case<RankedTensorType, UnrankedTensorType>(
[](auto type) { return type.getElementType(); });
}
bool TensorType::hasRank() const { return !llvm::isa<UnrankedTensorType>(*this); }
ArrayRef<int64_t> TensorType::getShape() const {
return llvm::cast<RankedTensorType>(*this).getShape();
}
TensorType TensorType::cloneWith(std::optional<ArrayRef<int64_t>> shape,
Type elementType) const {
if (auto unrankedTy = llvm::dyn_cast<UnrankedTensorType>(*this)) {
if (shape)
return RankedTensorType::get(*shape, elementType);
return UnrankedTensorType::get(elementType);
}
auto rankedTy = llvm::cast<RankedTensorType>(*this);
if (!shape)
return RankedTensorType::get(rankedTy.getShape(), elementType,
rankedTy.getEncoding());
return RankedTensorType::get(shape.value_or(rankedTy.getShape()), elementType,
rankedTy.getEncoding());
}
RankedTensorType TensorType::clone(::llvm::ArrayRef<int64_t> shape,
Type elementType) const {
return ::llvm::cast<RankedTensorType>(cloneWith(shape, elementType));
}
RankedTensorType TensorType::clone(::llvm::ArrayRef<int64_t> shape) const {
return ::llvm::cast<RankedTensorType>(cloneWith(shape, getElementType()));
}
// Check if "elementType" can be an element type of a tensor.
static LogicalResult
checkTensorElementType(function_ref<InFlightDiagnostic()> emitError,
Type elementType) {
if (!TensorType::isValidElementType(elementType))
return emitError() << "invalid tensor element type: " << elementType;
return success();
}
/// Return true if the specified element type is ok in a tensor.
bool TensorType::isValidElementType(Type type) {
// Note: Non standard/builtin types are allowed to exist within tensor
// types. Dialects are expected to verify that tensor types have a valid
// element type within that dialect.
return llvm::isa<ComplexType, FloatType, IntegerType, OpaqueType, VectorType,
IndexType>(type) ||
!llvm::isa<BuiltinDialect>(type.getDialect());
}
//===----------------------------------------------------------------------===//
// RankedTensorType
//===----------------------------------------------------------------------===//
LogicalResult
RankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
Attribute encoding) {
for (int64_t s : shape)
if (s < 0 && !ShapedType::isDynamic(s))
return emitError() << "invalid tensor dimension size";
if (auto v = llvm::dyn_cast_or_null<VerifiableTensorEncoding>(encoding))
if (failed(v.verifyEncoding(shape, elementType, emitError)))
return failure();
return checkTensorElementType(emitError, elementType);
}
//===----------------------------------------------------------------------===//
// UnrankedTensorType
//===----------------------------------------------------------------------===//
LogicalResult
UnrankedTensorType::verify(function_ref<InFlightDiagnostic()> emitError,
Type elementType) {
return checkTensorElementType(emitError, elementType);
}
//===----------------------------------------------------------------------===//
// BaseMemRefType
//===----------------------------------------------------------------------===//
Type BaseMemRefType::getElementType() const {
return llvm::TypeSwitch<BaseMemRefType, Type>(*this)
.Case<MemRefType, UnrankedMemRefType>(
[](auto type) { return type.getElementType(); });
}
bool BaseMemRefType::hasRank() const { return !llvm::isa<UnrankedMemRefType>(*this); }
ArrayRef<int64_t> BaseMemRefType::getShape() const {
return llvm::cast<MemRefType>(*this).getShape();
}
BaseMemRefType BaseMemRefType::cloneWith(std::optional<ArrayRef<int64_t>> shape,
Type elementType) const {
if (auto unrankedTy = llvm::dyn_cast<UnrankedMemRefType>(*this)) {
if (!shape)
return UnrankedMemRefType::get(elementType, getMemorySpace());
MemRefType::Builder builder(*shape, elementType);
builder.setMemorySpace(getMemorySpace());
return builder;
}
MemRefType::Builder builder(llvm::cast<MemRefType>(*this));
if (shape)
builder.setShape(*shape);
builder.setElementType(elementType);
return builder;
}
MemRefType BaseMemRefType::clone(::llvm::ArrayRef<int64_t> shape,
Type elementType) const {
return ::llvm::cast<MemRefType>(cloneWith(shape, elementType));
}
MemRefType BaseMemRefType::clone(::llvm::ArrayRef<int64_t> shape) const {
return ::llvm::cast<MemRefType>(cloneWith(shape, getElementType()));
}
Attribute BaseMemRefType::getMemorySpace() const {
if (auto rankedMemRefTy = llvm::dyn_cast<MemRefType>(*this))
return rankedMemRefTy.getMemorySpace();
return llvm::cast<UnrankedMemRefType>(*this).getMemorySpace();
}
unsigned BaseMemRefType::getMemorySpaceAsInt() const {
if (auto rankedMemRefTy = llvm::dyn_cast<MemRefType>(*this))
return rankedMemRefTy.getMemorySpaceAsInt();
return llvm::cast<UnrankedMemRefType>(*this).getMemorySpaceAsInt();
}
//===----------------------------------------------------------------------===//
// MemRefType
//===----------------------------------------------------------------------===//
/// Given an `originalShape` and a `reducedShape` assumed to be a subset of
/// `originalShape` with some `1` entries erased, return the set of indices
/// that specifies which of the entries of `originalShape` are dropped to obtain
/// `reducedShape`. The returned mask can be applied as a projection to
/// `originalShape` to obtain the `reducedShape`. This mask is useful to track
/// which dimensions must be kept when e.g. compute MemRef strides under
/// rank-reducing operations. Return std::nullopt if reducedShape cannot be
/// obtained by dropping only `1` entries in `originalShape`.
std::optional<llvm::SmallDenseSet<unsigned>>
mlir::computeRankReductionMask(ArrayRef<int64_t> originalShape,
ArrayRef<int64_t> reducedShape) {
size_t originalRank = originalShape.size(), reducedRank = reducedShape.size();
llvm::SmallDenseSet<unsigned> unusedDims;
unsigned reducedIdx = 0;
for (unsigned originalIdx = 0; originalIdx < originalRank; ++originalIdx) {
// Greedily insert `originalIdx` if match.
if (reducedIdx < reducedRank &&
originalShape[originalIdx] == reducedShape[reducedIdx]) {
reducedIdx++;
continue;
}
unusedDims.insert(originalIdx);
// If no match on `originalIdx`, the `originalShape` at this dimension
// must be 1, otherwise we bail.
if (originalShape[originalIdx] != 1)
return std::nullopt;
}
// The whole reducedShape must be scanned, otherwise we bail.
if (reducedIdx != reducedRank)
return std::nullopt;
return unusedDims;
}
SliceVerificationResult
mlir::isRankReducedType(ShapedType originalType,
ShapedType candidateReducedType) {
if (originalType == candidateReducedType)
return SliceVerificationResult::Success;
ShapedType originalShapedType = llvm::cast<ShapedType>(originalType);
ShapedType candidateReducedShapedType =
llvm::cast<ShapedType>(candidateReducedType);
// Rank and size logic is valid for all ShapedTypes.
ArrayRef<int64_t> originalShape = originalShapedType.getShape();
ArrayRef<int64_t> candidateReducedShape =
candidateReducedShapedType.getShape();
unsigned originalRank = originalShape.size(),
candidateReducedRank = candidateReducedShape.size();
if (candidateReducedRank > originalRank)
return SliceVerificationResult::RankTooLarge;
auto optionalUnusedDimsMask =
computeRankReductionMask(originalShape, candidateReducedShape);
// Sizes cannot be matched in case empty vector is returned.
if (!optionalUnusedDimsMask)
return SliceVerificationResult::SizeMismatch;
if (originalShapedType.getElementType() !=
candidateReducedShapedType.getElementType())
return SliceVerificationResult::ElemTypeMismatch;
return SliceVerificationResult::Success;
}
bool mlir::detail::isSupportedMemorySpace(Attribute memorySpace) {
// Empty attribute is allowed as default memory space.
if (!memorySpace)
return true;
// Supported built-in attributes.
if (llvm::isa<IntegerAttr, StringAttr, DictionaryAttr>(memorySpace))
return true;
// Allow custom dialect attributes.
if (!isa<BuiltinDialect>(memorySpace.getDialect()))
return true;
return false;
}
Attribute mlir::detail::wrapIntegerMemorySpace(unsigned memorySpace,
MLIRContext *ctx) {
if (memorySpace == 0)
return nullptr;
return IntegerAttr::get(IntegerType::get(ctx, 64), memorySpace);
}
Attribute mlir::detail::skipDefaultMemorySpace(Attribute memorySpace) {
IntegerAttr intMemorySpace = llvm::dyn_cast_or_null<IntegerAttr>(memorySpace);
if (intMemorySpace && intMemorySpace.getValue() == 0)
return nullptr;
return memorySpace;
}
unsigned mlir::detail::getMemorySpaceAsInt(Attribute memorySpace) {
if (!memorySpace)
return 0;
assert(llvm::isa<IntegerAttr>(memorySpace) &&
"Using `getMemorySpaceInteger` with non-Integer attribute");
return static_cast<unsigned>(llvm::cast<IntegerAttr>(memorySpace).getInt());
}
unsigned MemRefType::getMemorySpaceAsInt() const {
return detail::getMemorySpaceAsInt(getMemorySpace());
}
MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
MemRefLayoutAttrInterface layout,
Attribute memorySpace) {
// Use default layout for empty attribute.
if (!layout)
layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap(
shape.size(), elementType.getContext()));
// Drop default memory space value and replace it with empty attribute.
memorySpace = skipDefaultMemorySpace(memorySpace);
return Base::get(elementType.getContext(), shape, elementType, layout,
memorySpace);
}
MemRefType MemRefType::getChecked(
function_ref<InFlightDiagnostic()> emitErrorFn, ArrayRef<int64_t> shape,
Type elementType, MemRefLayoutAttrInterface layout, Attribute memorySpace) {
// Use default layout for empty attribute.
if (!layout)
layout = AffineMapAttr::get(AffineMap::getMultiDimIdentityMap(
shape.size(), elementType.getContext()));
// Drop default memory space value and replace it with empty attribute.
memorySpace = skipDefaultMemorySpace(memorySpace);
return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
elementType, layout, memorySpace);
}
MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
AffineMap map, Attribute memorySpace) {
// Use default layout for empty map.
if (!map)
map = AffineMap::getMultiDimIdentityMap(shape.size(),
elementType.getContext());
// Wrap AffineMap into Attribute.
auto layout = AffineMapAttr::get(map);
// Drop default memory space value and replace it with empty attribute.
memorySpace = skipDefaultMemorySpace(memorySpace);
return Base::get(elementType.getContext(), shape, elementType, layout,
memorySpace);
}
MemRefType
MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn,
ArrayRef<int64_t> shape, Type elementType, AffineMap map,
Attribute memorySpace) {
// Use default layout for empty map.
if (!map)
map = AffineMap::getMultiDimIdentityMap(shape.size(),
elementType.getContext());
// Wrap AffineMap into Attribute.
auto layout = AffineMapAttr::get(map);
// Drop default memory space value and replace it with empty attribute.
memorySpace = skipDefaultMemorySpace(memorySpace);
return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
elementType, layout, memorySpace);
}
MemRefType MemRefType::get(ArrayRef<int64_t> shape, Type elementType,
AffineMap map, unsigned memorySpaceInd) {
// Use default layout for empty map.
if (!map)
map = AffineMap::getMultiDimIdentityMap(shape.size(),
elementType.getContext());
// Wrap AffineMap into Attribute.
auto layout = AffineMapAttr::get(map);
// Convert deprecated integer-like memory space to Attribute.
Attribute memorySpace =
wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext());
return Base::get(elementType.getContext(), shape, elementType, layout,
memorySpace);
}
MemRefType
MemRefType::getChecked(function_ref<InFlightDiagnostic()> emitErrorFn,
ArrayRef<int64_t> shape, Type elementType, AffineMap map,
unsigned memorySpaceInd) {
// Use default layout for empty map.
if (!map)
map = AffineMap::getMultiDimIdentityMap(shape.size(),
elementType.getContext());
// Wrap AffineMap into Attribute.
auto layout = AffineMapAttr::get(map);
// Convert deprecated integer-like memory space to Attribute.
Attribute memorySpace =
wrapIntegerMemorySpace(memorySpaceInd, elementType.getContext());
return Base::getChecked(emitErrorFn, elementType.getContext(), shape,
elementType, layout, memorySpace);
}
LogicalResult MemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
ArrayRef<int64_t> shape, Type elementType,
MemRefLayoutAttrInterface layout,
Attribute memorySpace) {
if (!BaseMemRefType::isValidElementType(elementType))
return emitError() << "invalid memref element type";
// Negative sizes are not allowed except for `kDynamic`.
for (int64_t s : shape)
if (s < 0 && !ShapedType::isDynamic(s))
return emitError() << "invalid memref size";
assert(layout && "missing layout specification");
if (failed(layout.verifyLayout(shape, emitError)))
return failure();
if (!isSupportedMemorySpace(memorySpace))
return emitError() << "unsupported memory space Attribute";
return success();
}
//===----------------------------------------------------------------------===//
// UnrankedMemRefType
//===----------------------------------------------------------------------===//
unsigned UnrankedMemRefType::getMemorySpaceAsInt() const {
return detail::getMemorySpaceAsInt(getMemorySpace());
}
LogicalResult
UnrankedMemRefType::verify(function_ref<InFlightDiagnostic()> emitError,
Type elementType, Attribute memorySpace) {
if (!BaseMemRefType::isValidElementType(elementType))
return emitError() << "invalid memref element type";
if (!isSupportedMemorySpace(memorySpace))
return emitError() << "unsupported memory space Attribute";
return success();
}
// Fallback cases for terminal dim/sym/cst that are not part of a binary op (
// i.e. single term). Accumulate the AffineExpr into the existing one.
static void extractStridesFromTerm(AffineExpr e,
AffineExpr multiplicativeFactor,
MutableArrayRef<AffineExpr> strides,
AffineExpr &offset) {
if (auto dim = e.dyn_cast<AffineDimExpr>())
strides[dim.getPosition()] =
strides[dim.getPosition()] + multiplicativeFactor;
else
offset = offset + e * multiplicativeFactor;
}
/// Takes a single AffineExpr `e` and populates the `strides` array with the
/// strides expressions for each dim position.
/// The convention is that the strides for dimensions d0, .. dn appear in
/// order to make indexing intuitive into the result.
static LogicalResult extractStrides(AffineExpr e,
AffineExpr multiplicativeFactor,
MutableArrayRef<AffineExpr> strides,
AffineExpr &offset) {
auto bin = e.dyn_cast<AffineBinaryOpExpr>();
if (!bin) {
extractStridesFromTerm(e, multiplicativeFactor, strides, offset);
return success();
}
if (bin.getKind() == AffineExprKind::CeilDiv ||
bin.getKind() == AffineExprKind::FloorDiv ||
bin.getKind() == AffineExprKind::Mod)
return failure();
if (bin.getKind() == AffineExprKind::Mul) {
auto dim = bin.getLHS().dyn_cast<AffineDimExpr>();
if (dim) {
strides[dim.getPosition()] =
strides[dim.getPosition()] + bin.getRHS() * multiplicativeFactor;
return success();
}
// LHS and RHS may both contain complex expressions of dims. Try one path
// and if it fails try the other. This is guaranteed to succeed because
// only one path may have a `dim`, otherwise this is not an AffineExpr in
// the first place.
if (bin.getLHS().isSymbolicOrConstant())
return extractStrides(bin.getRHS(), multiplicativeFactor * bin.getLHS(),
strides, offset);
return extractStrides(bin.getLHS(), multiplicativeFactor * bin.getRHS(),
strides, offset);
}
if (bin.getKind() == AffineExprKind::Add) {
auto res1 =
extractStrides(bin.getLHS(), multiplicativeFactor, strides, offset);
auto res2 =
extractStrides(bin.getRHS(), multiplicativeFactor, strides, offset);
return success(succeeded(res1) && succeeded(res2));
}
llvm_unreachable("unexpected binary operation");
}
/// A stride specification is a list of integer values that are either static
/// or dynamic (encoded with ShapedType::kDynamic). Strides encode
/// the distance in the number of elements between successive entries along a
/// particular dimension.
///
/// For example, `memref<42x16xf32, (64 * d0 + d1)>` specifies a view into a
/// non-contiguous memory region of `42` by `16` `f32` elements in which the
/// distance between two consecutive elements along the outer dimension is `1`
/// and the distance between two consecutive elements along the inner dimension
/// is `64`.
///
/// The convention is that the strides for dimensions d0, .. dn appear in
/// order to make indexing intuitive into the result.
static LogicalResult getStridesAndOffset(MemRefType t,
SmallVectorImpl<AffineExpr> &strides,
AffineExpr &offset) {
AffineMap m = t.getLayout().getAffineMap();
if (m.getNumResults() != 1 && !m.isIdentity())
return failure();
auto zero = getAffineConstantExpr(0, t.getContext());
auto one = getAffineConstantExpr(1, t.getContext());
offset = zero;
strides.assign(t.getRank(), zero);
// Canonical case for empty map.
if (m.isIdentity()) {
// 0-D corner case, offset is already 0.
if (t.getRank() == 0)
return success();
auto stridedExpr =
makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
if (succeeded(extractStrides(stridedExpr, one, strides, offset)))
return success();
assert(false && "unexpected failure: extract strides in canonical layout");
}
// Non-canonical case requires more work.
auto stridedExpr =
simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
if (failed(extractStrides(stridedExpr, one, strides, offset))) {
offset = AffineExpr();
strides.clear();
return failure();
}
// Simplify results to allow folding to constants and simple checks.
unsigned numDims = m.getNumDims();
unsigned numSymbols = m.getNumSymbols();
offset = simplifyAffineExpr(offset, numDims, numSymbols);
for (auto &stride : strides)
stride = simplifyAffineExpr(stride, numDims, numSymbols);
// In practice, a strided memref must be internally non-aliasing. Test
// against 0 as a proxy.
// TODO: static cases can have more advanced checks.
// TODO: dynamic cases would require a way to compare symbolic
// expressions and would probably need an affine set context propagated
// everywhere.
if (llvm::any_of(strides, [](AffineExpr e) {
return e == getAffineConstantExpr(0, e.getContext());
})) {
offset = AffineExpr();
strides.clear();
return failure();
}
return success();
}
LogicalResult mlir::getStridesAndOffset(MemRefType t,
SmallVectorImpl<int64_t> &strides,
int64_t &offset) {
// Happy path: the type uses the strided layout directly.
if (auto strided = llvm::dyn_cast<StridedLayoutAttr>(t.getLayout())) {
llvm::append_range(strides, strided.getStrides());
offset = strided.getOffset();
return success();
}
// Otherwise, defer to the affine fallback as layouts are supposed to be
// convertible to affine maps.
AffineExpr offsetExpr;
SmallVector<AffineExpr, 4> strideExprs;
if (failed(::getStridesAndOffset(t, strideExprs, offsetExpr)))
return failure();
if (auto cst = offsetExpr.dyn_cast<AffineConstantExpr>())
offset = cst.getValue();
else
offset = ShapedType::kDynamic;
for (auto e : strideExprs) {
if (auto c = e.dyn_cast<AffineConstantExpr>())
strides.push_back(c.getValue());
else
strides.push_back(ShapedType::kDynamic);
}
return success();
}
std::pair<SmallVector<int64_t>, int64_t>
mlir::getStridesAndOffset(MemRefType t) {
SmallVector<int64_t> strides;
int64_t offset;
LogicalResult status = getStridesAndOffset(t, strides, offset);
(void)status;
assert(succeeded(status) && "Invalid use of check-free getStridesAndOffset");
return {strides, offset};
}
//===----------------------------------------------------------------------===//
/// TupleType
//===----------------------------------------------------------------------===//
/// Return the elements types for this tuple.
ArrayRef<Type> TupleType::getTypes() const { return getImpl()->getTypes(); }
/// Accumulate the types contained in this tuple and tuples nested within it.
/// Note that this only flattens nested tuples, not any other container type,
/// e.g. a tuple<i32, tensor<i32>, tuple<f32, tuple<i64>>> is flattened to
/// (i32, tensor<i32>, f32, i64)
void TupleType::getFlattenedTypes(SmallVectorImpl<Type> &types) {
for (Type type : getTypes()) {
if (auto nestedTuple = llvm::dyn_cast<TupleType>(type))
nestedTuple.getFlattenedTypes(types);
else
types.push_back(type);
}
}
/// Return the number of element types.
size_t TupleType::size() const { return getImpl()->size(); }
//===----------------------------------------------------------------------===//
// Type Utilities
//===----------------------------------------------------------------------===//
/// Return a version of `t` with identity layout if it can be determined
/// statically that the layout is the canonical contiguous strided layout.
/// Otherwise pass `t`'s layout into `simplifyAffineMap` and return a copy of
/// `t` with simplified layout.
/// If `t` has multiple layout maps or a multi-result layout, just return `t`.
MemRefType mlir::canonicalizeStridedLayout(MemRefType t) {
AffineMap m = t.getLayout().getAffineMap();
// Already in canonical form.
if (m.isIdentity())
return t;
// Can't reduce to canonical identity form, return in canonical form.
if (m.getNumResults() > 1)
return t;
// Corner-case for 0-D affine maps.
if (m.getNumDims() == 0 && m.getNumSymbols() == 0) {
if (auto cst = m.getResult(0).dyn_cast<AffineConstantExpr>())
if (cst.getValue() == 0)
return MemRefType::Builder(t).setLayout({});
return t;
}
// 0-D corner case for empty shape that still have an affine map. Example:
// `memref<f32, affine_map<()[s0] -> (s0)>>`. This is a 1 element memref whose
// offset needs to remain, just return t.
if (t.getShape().empty())
return t;
// If the canonical strided layout for the sizes of `t` is equal to the
// simplified layout of `t` we can just return an empty layout. Otherwise,
// just simplify the existing layout.
AffineExpr expr =
makeCanonicalStridedLayoutExpr(t.getShape(), t.getContext());
auto simplifiedLayoutExpr =
simplifyAffineExpr(m.getResult(0), m.getNumDims(), m.getNumSymbols());
if (expr != simplifiedLayoutExpr)
return MemRefType::Builder(t).setLayout(AffineMapAttr::get(AffineMap::get(
m.getNumDims(), m.getNumSymbols(), simplifiedLayoutExpr)));
return MemRefType::Builder(t).setLayout({});
}
AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
ArrayRef<AffineExpr> exprs,
MLIRContext *context) {
// Size 0 corner case is useful for canonicalizations.
if (sizes.empty())
return getAffineConstantExpr(0, context);
assert(!exprs.empty() && "expected exprs");
auto maps = AffineMap::inferFromExprList(exprs);
assert(!maps.empty() && "Expected one non-empty map");
unsigned numDims = maps[0].getNumDims(), nSymbols = maps[0].getNumSymbols();
AffineExpr expr;
bool dynamicPoisonBit = false;
int64_t runningSize = 1;
for (auto en : llvm::zip(llvm::reverse(exprs), llvm::reverse(sizes))) {
int64_t size = std::get<1>(en);
AffineExpr dimExpr = std::get<0>(en);
AffineExpr stride = dynamicPoisonBit
? getAffineSymbolExpr(nSymbols++, context)
: getAffineConstantExpr(runningSize, context);
expr = expr ? expr + dimExpr * stride : dimExpr * stride;
if (size > 0) {
runningSize *= size;
assert(runningSize > 0 && "integer overflow in size computation");
} else {
dynamicPoisonBit = true;
}
}
return simplifyAffineExpr(expr, numDims, nSymbols);
}
AffineExpr mlir::makeCanonicalStridedLayoutExpr(ArrayRef<int64_t> sizes,
MLIRContext *context) {
SmallVector<AffineExpr, 4> exprs;
exprs.reserve(sizes.size());
for (auto dim : llvm::seq<unsigned>(0, sizes.size()))
exprs.push_back(getAffineDimExpr(dim, context));
return makeCanonicalStridedLayoutExpr(sizes, exprs, context);
}
bool mlir::isStrided(MemRefType t) {
int64_t offset;
SmallVector<int64_t, 4> strides;
auto res = getStridesAndOffset(t, strides, offset);
return succeeded(res);
}
bool mlir::isLastMemrefDimUnitStride(MemRefType type) {
int64_t offset;
SmallVector<int64_t> strides;
auto successStrides = getStridesAndOffset(type, strides, offset);
return succeeded(successStrides) && (strides.empty() || strides.back() == 1);
}
|