File: MLIRContext.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (1203 lines) | stat: -rw-r--r-- 46,881 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
//===- MLIRContext.cpp - MLIR Type Classes --------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/MLIRContext.h"
#include "AffineExprDetail.h"
#include "AffineMapDetail.h"
#include "AttributeDetail.h"
#include "IntegerSetDetail.h"
#include "TypeDetail.h"
#include "mlir/IR/Action.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/AffineMap.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinDialect.h"
#include "mlir/IR/Diagnostics.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/ExtensibleDialect.h"
#include "mlir/IR/IntegerSet.h"
#include "mlir/IR/Location.h"
#include "mlir/IR/OpImplementation.h"
#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/Types.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Support/raw_ostream.h"
#include <memory>
#include <optional>

#define DEBUG_TYPE "mlircontext"

using namespace mlir;
using namespace mlir::detail;

//===----------------------------------------------------------------------===//
// MLIRContext CommandLine Options
//===----------------------------------------------------------------------===//

namespace {
/// This struct contains command line options that can be used to initialize
/// various bits of an MLIRContext. This uses a struct wrapper to avoid the need
/// for global command line options.
struct MLIRContextOptions {
  llvm::cl::opt<bool> disableThreading{
      "mlir-disable-threading",
      llvm::cl::desc("Disable multi-threading within MLIR, overrides any "
                     "further call to MLIRContext::enableMultiThreading()")};

  llvm::cl::opt<bool> printOpOnDiagnostic{
      "mlir-print-op-on-diagnostic",
      llvm::cl::desc("When a diagnostic is emitted on an operation, also print "
                     "the operation as an attached note"),
      llvm::cl::init(true)};

  llvm::cl::opt<bool> printStackTraceOnDiagnostic{
      "mlir-print-stacktrace-on-diagnostic",
      llvm::cl::desc("When a diagnostic is emitted, also print the stack trace "
                     "as an attached note")};
};
} // namespace

static llvm::ManagedStatic<MLIRContextOptions> clOptions;

static bool isThreadingGloballyDisabled() {
#if LLVM_ENABLE_THREADS != 0
  return clOptions.isConstructed() && clOptions->disableThreading;
#else
  return true;
#endif
}

/// Register a set of useful command-line options that can be used to configure
/// various flags within the MLIRContext. These flags are used when constructing
/// an MLIR context for initialization.
void mlir::registerMLIRContextCLOptions() {
  // Make sure that the options struct has been initialized.
  *clOptions;
}

//===----------------------------------------------------------------------===//
// Locking Utilities
//===----------------------------------------------------------------------===//

namespace {
/// Utility writer lock that takes a runtime flag that specifies if we really
/// need to lock.
struct ScopedWriterLock {
  ScopedWriterLock(llvm::sys::SmartRWMutex<true> &mutexParam, bool shouldLock)
      : mutex(shouldLock ? &mutexParam : nullptr) {
    if (mutex)
      mutex->lock();
  }
  ~ScopedWriterLock() {
    if (mutex)
      mutex->unlock();
  }
  llvm::sys::SmartRWMutex<true> *mutex;
};
} // namespace

//===----------------------------------------------------------------------===//
// MLIRContextImpl
//===----------------------------------------------------------------------===//

namespace mlir {
/// This is the implementation of the MLIRContext class, using the pImpl idiom.
/// This class is completely private to this file, so everything is public.
class MLIRContextImpl {
public:
  //===--------------------------------------------------------------------===//
  // Debugging
  //===--------------------------------------------------------------------===//

  /// An action handler for handling actions that are dispatched through this
  /// context.
  std::function<void(function_ref<void()>, const tracing::Action &)>
      actionHandler;

  //===--------------------------------------------------------------------===//
  // Diagnostics
  //===--------------------------------------------------------------------===//
  DiagnosticEngine diagEngine;

  //===--------------------------------------------------------------------===//
  // Options
  //===--------------------------------------------------------------------===//

  /// In most cases, creating operation in unregistered dialect is not desired
  /// and indicate a misconfiguration of the compiler. This option enables to
  /// detect such use cases
  bool allowUnregisteredDialects = false;

  /// Enable support for multi-threading within MLIR.
  bool threadingIsEnabled = true;

  /// Track if we are currently executing in a threaded execution environment
  /// (like the pass-manager): this is only a debugging feature to help reducing
  /// the chances of data races one some context APIs.
#ifndef NDEBUG
  std::atomic<int> multiThreadedExecutionContext{0};
#endif

  /// If the operation should be attached to diagnostics printed via the
  /// Operation::emit methods.
  bool printOpOnDiagnostic = true;

  /// If the current stack trace should be attached when emitting diagnostics.
  bool printStackTraceOnDiagnostic = false;

  //===--------------------------------------------------------------------===//
  // Other
  //===--------------------------------------------------------------------===//

  /// This points to the ThreadPool used when processing MLIR tasks in parallel.
  /// It can't be nullptr when multi-threading is enabled. Otherwise if
  /// multi-threading is disabled, and the threadpool wasn't externally provided
  /// using `setThreadPool`, this will be nullptr.
  llvm::ThreadPool *threadPool = nullptr;

  /// In case where the thread pool is owned by the context, this ensures
  /// destruction with the context.
  std::unique_ptr<llvm::ThreadPool> ownedThreadPool;

  /// An allocator used for AbstractAttribute and AbstractType objects.
  llvm::BumpPtrAllocator abstractDialectSymbolAllocator;

  /// This is a mapping from operation name to the operation info describing it.
  llvm::StringMap<std::unique_ptr<OperationName::Impl>> operations;

  /// A vector of operation info specifically for registered operations.
  llvm::StringMap<RegisteredOperationName> registeredOperations;

  /// This is a sorted container of registered operations for a deterministic
  /// and efficient `getRegisteredOperations` implementation.
  SmallVector<RegisteredOperationName, 0> sortedRegisteredOperations;

  /// This is a list of dialects that are created referring to this context.
  /// The MLIRContext owns the objects. These need to be declared after the
  /// registered operations to ensure correct destruction order.
  DenseMap<StringRef, std::unique_ptr<Dialect>> loadedDialects;
  DialectRegistry dialectsRegistry;

  /// A mutex used when accessing operation information.
  llvm::sys::SmartRWMutex<true> operationInfoMutex;

  //===--------------------------------------------------------------------===//
  // Affine uniquing
  //===--------------------------------------------------------------------===//

  // Affine expression, map and integer set uniquing.
  StorageUniquer affineUniquer;

  //===--------------------------------------------------------------------===//
  // Type uniquing
  //===--------------------------------------------------------------------===//

  DenseMap<TypeID, AbstractType *> registeredTypes;
  StorageUniquer typeUniquer;

  /// Cached Type Instances.
  Float8E5M2Type f8E5M2Ty;
  Float8E4M3FNType f8E4M3FNTy;
  Float8E5M2FNUZType f8E5M2FNUZTy;
  Float8E4M3FNUZType f8E4M3FNUZTy;
  Float8E4M3B11FNUZType f8E4M3B11FNUZTy;
  BFloat16Type bf16Ty;
  Float16Type f16Ty;
  FloatTF32Type tf32Ty;
  Float32Type f32Ty;
  Float64Type f64Ty;
  Float80Type f80Ty;
  Float128Type f128Ty;
  IndexType indexTy;
  IntegerType int1Ty, int8Ty, int16Ty, int32Ty, int64Ty, int128Ty;
  NoneType noneType;

  //===--------------------------------------------------------------------===//
  // Attribute uniquing
  //===--------------------------------------------------------------------===//

  DenseMap<TypeID, AbstractAttribute *> registeredAttributes;
  StorageUniquer attributeUniquer;

  /// Cached Attribute Instances.
  BoolAttr falseAttr, trueAttr;
  UnitAttr unitAttr;
  UnknownLoc unknownLocAttr;
  DictionaryAttr emptyDictionaryAttr;
  StringAttr emptyStringAttr;

  /// Map of string attributes that may reference a dialect, that are awaiting
  /// that dialect to be loaded.
  llvm::sys::SmartMutex<true> dialectRefStrAttrMutex;
  DenseMap<StringRef, SmallVector<StringAttrStorage *>>
      dialectReferencingStrAttrs;

  /// A distinct attribute allocator that allocates every time since the
  /// address of the distinct attribute storage serves as unique identifier. The
  /// allocator is thread safe and frees the allocated storage after its
  /// destruction.
  DistinctAttributeAllocator distinctAttributeAllocator;

public:
  MLIRContextImpl(bool threadingIsEnabled)
      : threadingIsEnabled(threadingIsEnabled) {
    if (threadingIsEnabled) {
      ownedThreadPool = std::make_unique<llvm::ThreadPool>();
      threadPool = ownedThreadPool.get();
    }
  }
  ~MLIRContextImpl() {
    for (auto typeMapping : registeredTypes)
      typeMapping.second->~AbstractType();
    for (auto attrMapping : registeredAttributes)
      attrMapping.second->~AbstractAttribute();
  }
};
} // namespace mlir

MLIRContext::MLIRContext(Threading setting)
    : MLIRContext(DialectRegistry(), setting) {}

MLIRContext::MLIRContext(const DialectRegistry &registry, Threading setting)
    : impl(new MLIRContextImpl(setting == Threading::ENABLED &&
                               !isThreadingGloballyDisabled())) {
  // Initialize values based on the command line flags if they were provided.
  if (clOptions.isConstructed()) {
    printOpOnDiagnostic(clOptions->printOpOnDiagnostic);
    printStackTraceOnDiagnostic(clOptions->printStackTraceOnDiagnostic);
  }

  // Pre-populate the registry.
  registry.appendTo(impl->dialectsRegistry);

  // Ensure the builtin dialect is always pre-loaded.
  getOrLoadDialect<BuiltinDialect>();

  // Initialize several common attributes and types to avoid the need to lock
  // the context when accessing them.

  //// Types.
  /// Floating-point Types.
  impl->f8E5M2Ty = TypeUniquer::get<Float8E5M2Type>(this);
  impl->f8E4M3FNTy = TypeUniquer::get<Float8E4M3FNType>(this);
  impl->f8E5M2FNUZTy = TypeUniquer::get<Float8E5M2FNUZType>(this);
  impl->f8E4M3FNUZTy = TypeUniquer::get<Float8E4M3FNUZType>(this);
  impl->f8E4M3B11FNUZTy = TypeUniquer::get<Float8E4M3B11FNUZType>(this);
  impl->bf16Ty = TypeUniquer::get<BFloat16Type>(this);
  impl->f16Ty = TypeUniquer::get<Float16Type>(this);
  impl->tf32Ty = TypeUniquer::get<FloatTF32Type>(this);
  impl->f32Ty = TypeUniquer::get<Float32Type>(this);
  impl->f64Ty = TypeUniquer::get<Float64Type>(this);
  impl->f80Ty = TypeUniquer::get<Float80Type>(this);
  impl->f128Ty = TypeUniquer::get<Float128Type>(this);
  /// Index Type.
  impl->indexTy = TypeUniquer::get<IndexType>(this);
  /// Integer Types.
  impl->int1Ty = TypeUniquer::get<IntegerType>(this, 1, IntegerType::Signless);
  impl->int8Ty = TypeUniquer::get<IntegerType>(this, 8, IntegerType::Signless);
  impl->int16Ty =
      TypeUniquer::get<IntegerType>(this, 16, IntegerType::Signless);
  impl->int32Ty =
      TypeUniquer::get<IntegerType>(this, 32, IntegerType::Signless);
  impl->int64Ty =
      TypeUniquer::get<IntegerType>(this, 64, IntegerType::Signless);
  impl->int128Ty =
      TypeUniquer::get<IntegerType>(this, 128, IntegerType::Signless);
  /// None Type.
  impl->noneType = TypeUniquer::get<NoneType>(this);

  //// Attributes.
  //// Note: These must be registered after the types as they may generate one
  //// of the above types internally.
  /// Unknown Location Attribute.
  impl->unknownLocAttr = AttributeUniquer::get<UnknownLoc>(this);
  /// Bool Attributes.
  impl->falseAttr = IntegerAttr::getBoolAttrUnchecked(impl->int1Ty, false);
  impl->trueAttr = IntegerAttr::getBoolAttrUnchecked(impl->int1Ty, true);
  /// Unit Attribute.
  impl->unitAttr = AttributeUniquer::get<UnitAttr>(this);
  /// The empty dictionary attribute.
  impl->emptyDictionaryAttr = DictionaryAttr::getEmptyUnchecked(this);
  /// The empty string attribute.
  impl->emptyStringAttr = StringAttr::getEmptyStringAttrUnchecked(this);

  // Register the affine storage objects with the uniquer.
  impl->affineUniquer
      .registerParametricStorageType<AffineBinaryOpExprStorage>();
  impl->affineUniquer
      .registerParametricStorageType<AffineConstantExprStorage>();
  impl->affineUniquer.registerParametricStorageType<AffineDimExprStorage>();
  impl->affineUniquer.registerParametricStorageType<AffineMapStorage>();
  impl->affineUniquer.registerParametricStorageType<IntegerSetStorage>();
}

MLIRContext::~MLIRContext() = default;

/// Copy the specified array of elements into memory managed by the provided
/// bump pointer allocator.  This assumes the elements are all PODs.
template <typename T>
static ArrayRef<T> copyArrayRefInto(llvm::BumpPtrAllocator &allocator,
                                    ArrayRef<T> elements) {
  auto result = allocator.Allocate<T>(elements.size());
  std::uninitialized_copy(elements.begin(), elements.end(), result);
  return ArrayRef<T>(result, elements.size());
}

//===----------------------------------------------------------------------===//
// Action Handling
//===----------------------------------------------------------------------===//

void MLIRContext::registerActionHandler(HandlerTy handler) {
  getImpl().actionHandler = std::move(handler);
}

/// Dispatch the provided action to the handler if any, or just execute it.
void MLIRContext::executeActionInternal(function_ref<void()> actionFn,
                                        const tracing::Action &action) {
  assert(getImpl().actionHandler);
  getImpl().actionHandler(actionFn, action);
}

bool MLIRContext::hasActionHandler() { return (bool)getImpl().actionHandler; }

//===----------------------------------------------------------------------===//
// Diagnostic Handlers
//===----------------------------------------------------------------------===//

/// Returns the diagnostic engine for this context.
DiagnosticEngine &MLIRContext::getDiagEngine() { return getImpl().diagEngine; }

//===----------------------------------------------------------------------===//
// Dialect and Operation Registration
//===----------------------------------------------------------------------===//

void MLIRContext::appendDialectRegistry(const DialectRegistry &registry) {
  if (registry.isSubsetOf(impl->dialectsRegistry))
    return;

  assert(impl->multiThreadedExecutionContext == 0 &&
         "appending to the MLIRContext dialect registry while in a "
         "multi-threaded execution context");
  registry.appendTo(impl->dialectsRegistry);

  // For the already loaded dialects, apply any possible extensions immediately.
  registry.applyExtensions(this);
}

const DialectRegistry &MLIRContext::getDialectRegistry() {
  return impl->dialectsRegistry;
}

/// Return information about all registered IR dialects.
std::vector<Dialect *> MLIRContext::getLoadedDialects() {
  std::vector<Dialect *> result;
  result.reserve(impl->loadedDialects.size());
  for (auto &dialect : impl->loadedDialects)
    result.push_back(dialect.second.get());
  llvm::array_pod_sort(result.begin(), result.end(),
                       [](Dialect *const *lhs, Dialect *const *rhs) -> int {
                         return (*lhs)->getNamespace() < (*rhs)->getNamespace();
                       });
  return result;
}
std::vector<StringRef> MLIRContext::getAvailableDialects() {
  std::vector<StringRef> result;
  for (auto dialect : impl->dialectsRegistry.getDialectNames())
    result.push_back(dialect);
  return result;
}

/// Get a registered IR dialect with the given namespace. If none is found,
/// then return nullptr.
Dialect *MLIRContext::getLoadedDialect(StringRef name) {
  // Dialects are sorted by name, so we can use binary search for lookup.
  auto it = impl->loadedDialects.find(name);
  return (it != impl->loadedDialects.end()) ? it->second.get() : nullptr;
}

Dialect *MLIRContext::getOrLoadDialect(StringRef name) {
  Dialect *dialect = getLoadedDialect(name);
  if (dialect)
    return dialect;
  DialectAllocatorFunctionRef allocator =
      impl->dialectsRegistry.getDialectAllocator(name);
  return allocator ? allocator(this) : nullptr;
}

/// Get a dialect for the provided namespace and TypeID: abort the program if a
/// dialect exist for this namespace with different TypeID. Returns a pointer to
/// the dialect owned by the context.
Dialect *
MLIRContext::getOrLoadDialect(StringRef dialectNamespace, TypeID dialectID,
                              function_ref<std::unique_ptr<Dialect>()> ctor) {
  auto &impl = getImpl();
  // Get the correct insertion position sorted by namespace.
  auto dialectIt = impl.loadedDialects.try_emplace(dialectNamespace, nullptr);

  if (dialectIt.second) {
    LLVM_DEBUG(llvm::dbgs()
               << "Load new dialect in Context " << dialectNamespace << "\n");
#ifndef NDEBUG
    if (impl.multiThreadedExecutionContext != 0)
      llvm::report_fatal_error(
          "Loading a dialect (" + dialectNamespace +
          ") while in a multi-threaded execution context (maybe "
          "the PassManager): this can indicate a "
          "missing `dependentDialects` in a pass for example.");
#endif // NDEBUG
    // loadedDialects entry is initialized to nullptr, indicating that the
    // dialect is currently being loaded. Re-lookup the address in
    // loadedDialects because the table might have been rehashed by recursive
    // dialect loading in ctor().
    std::unique_ptr<Dialect> &dialectOwned =
        impl.loadedDialects[dialectNamespace] = ctor();
    Dialect *dialect = dialectOwned.get();
    assert(dialect && "dialect ctor failed");

    // Refresh all the identifiers dialect field, this catches cases where a
    // dialect may be loaded after identifier prefixed with this dialect name
    // were already created.
    auto stringAttrsIt = impl.dialectReferencingStrAttrs.find(dialectNamespace);
    if (stringAttrsIt != impl.dialectReferencingStrAttrs.end()) {
      for (StringAttrStorage *storage : stringAttrsIt->second)
        storage->referencedDialect = dialect;
      impl.dialectReferencingStrAttrs.erase(stringAttrsIt);
    }

    // Apply any extensions to this newly loaded dialect.
    impl.dialectsRegistry.applyExtensions(dialect);
    return dialect;
  }

#ifndef NDEBUG
  if (dialectIt.first->second == nullptr)
    llvm::report_fatal_error(
        "Loading (and getting) a dialect (" + dialectNamespace +
        ") while the same dialect is still loading: use loadDialect instead "
        "of getOrLoadDialect.");
#endif // NDEBUG

  // Abort if dialect with namespace has already been registered.
  std::unique_ptr<Dialect> &dialect = dialectIt.first->second;
  if (dialect->getTypeID() != dialectID)
    llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
                             "' has already been registered");

  return dialect.get();
}

bool MLIRContext::isDialectLoading(StringRef dialectNamespace) {
  auto it = getImpl().loadedDialects.find(dialectNamespace);
  // nullptr indicates that the dialect is currently being loaded.
  return it != getImpl().loadedDialects.end() && it->second == nullptr;
}

DynamicDialect *MLIRContext::getOrLoadDynamicDialect(
    StringRef dialectNamespace, function_ref<void(DynamicDialect *)> ctor) {
  auto &impl = getImpl();
  // Get the correct insertion position sorted by namespace.
  auto dialectIt = impl.loadedDialects.find(dialectNamespace);

  if (dialectIt != impl.loadedDialects.end()) {
    if (auto *dynDialect = dyn_cast<DynamicDialect>(dialectIt->second.get()))
      return dynDialect;
    llvm::report_fatal_error("a dialect with namespace '" + dialectNamespace +
                             "' has already been registered");
  }

  LLVM_DEBUG(llvm::dbgs() << "Load new dynamic dialect in Context "
                          << dialectNamespace << "\n");
#ifndef NDEBUG
  if (impl.multiThreadedExecutionContext != 0)
    llvm::report_fatal_error(
        "Loading a dynamic dialect (" + dialectNamespace +
        ") while in a multi-threaded execution context (maybe "
        "the PassManager): this can indicate a "
        "missing `dependentDialects` in a pass for example.");
#endif

  auto name = StringAttr::get(this, dialectNamespace);
  auto *dialect = new DynamicDialect(name, this);
  (void)getOrLoadDialect(name, dialect->getTypeID(), [dialect, ctor]() {
    ctor(dialect);
    return std::unique_ptr<DynamicDialect>(dialect);
  });
  // This is the same result as `getOrLoadDialect` (if it didn't failed),
  // since it has the same TypeID, and TypeIDs are unique.
  return dialect;
}

void MLIRContext::loadAllAvailableDialects() {
  for (StringRef name : getAvailableDialects())
    getOrLoadDialect(name);
}

llvm::hash_code MLIRContext::getRegistryHash() {
  llvm::hash_code hash(0);
  // Factor in number of loaded dialects, attributes, operations, types.
  hash = llvm::hash_combine(hash, impl->loadedDialects.size());
  hash = llvm::hash_combine(hash, impl->registeredAttributes.size());
  hash = llvm::hash_combine(hash, impl->registeredOperations.size());
  hash = llvm::hash_combine(hash, impl->registeredTypes.size());
  return hash;
}

bool MLIRContext::allowsUnregisteredDialects() {
  return impl->allowUnregisteredDialects;
}

void MLIRContext::allowUnregisteredDialects(bool allowing) {
  assert(impl->multiThreadedExecutionContext == 0 &&
         "changing MLIRContext `allow-unregistered-dialects` configuration "
         "while in a multi-threaded execution context");
  impl->allowUnregisteredDialects = allowing;
}

/// Return true if multi-threading is enabled by the context.
bool MLIRContext::isMultithreadingEnabled() {
  return impl->threadingIsEnabled && llvm::llvm_is_multithreaded();
}

/// Set the flag specifying if multi-threading is disabled by the context.
void MLIRContext::disableMultithreading(bool disable) {
  // This API can be overridden by the global debugging flag
  // --mlir-disable-threading
  if (isThreadingGloballyDisabled())
    return;
  assert(impl->multiThreadedExecutionContext == 0 &&
         "changing MLIRContext `disable-threading` configuration while "
         "in a multi-threaded execution context");

  impl->threadingIsEnabled = !disable;

  // Update the threading mode for each of the uniquers.
  impl->affineUniquer.disableMultithreading(disable);
  impl->attributeUniquer.disableMultithreading(disable);
  impl->typeUniquer.disableMultithreading(disable);

  // Destroy thread pool (stop all threads) if it is no longer needed, or create
  // a new one if multithreading was re-enabled.
  if (disable) {
    // If the thread pool is owned, explicitly set it to nullptr to avoid
    // keeping a dangling pointer around. If the thread pool is externally
    // owned, we don't do anything.
    if (impl->ownedThreadPool) {
      assert(impl->threadPool);
      impl->threadPool = nullptr;
      impl->ownedThreadPool.reset();
    }
  } else if (!impl->threadPool) {
    // The thread pool isn't externally provided.
    assert(!impl->ownedThreadPool);
    impl->ownedThreadPool = std::make_unique<llvm::ThreadPool>();
    impl->threadPool = impl->ownedThreadPool.get();
  }
}

void MLIRContext::setThreadPool(llvm::ThreadPool &pool) {
  assert(!isMultithreadingEnabled() &&
         "expected multi-threading to be disabled when setting a ThreadPool");
  impl->threadPool = &pool;
  impl->ownedThreadPool.reset();
  enableMultithreading();
}

unsigned MLIRContext::getNumThreads() {
  if (isMultithreadingEnabled()) {
    assert(impl->threadPool &&
           "multi-threading is enabled but threadpool not set");
    return impl->threadPool->getThreadCount();
  }
  // No multithreading or active thread pool. Return 1 thread.
  return 1;
}

llvm::ThreadPool &MLIRContext::getThreadPool() {
  assert(isMultithreadingEnabled() &&
         "expected multi-threading to be enabled within the context");
  assert(impl->threadPool &&
         "multi-threading is enabled but threadpool not set");
  return *impl->threadPool;
}

void MLIRContext::enterMultiThreadedExecution() {
#ifndef NDEBUG
  ++impl->multiThreadedExecutionContext;
#endif
}
void MLIRContext::exitMultiThreadedExecution() {
#ifndef NDEBUG
  --impl->multiThreadedExecutionContext;
#endif
}

/// Return true if we should attach the operation to diagnostics emitted via
/// Operation::emit.
bool MLIRContext::shouldPrintOpOnDiagnostic() {
  return impl->printOpOnDiagnostic;
}

/// Set the flag specifying if we should attach the operation to diagnostics
/// emitted via Operation::emit.
void MLIRContext::printOpOnDiagnostic(bool enable) {
  assert(impl->multiThreadedExecutionContext == 0 &&
         "changing MLIRContext `print-op-on-diagnostic` configuration while in "
         "a multi-threaded execution context");
  impl->printOpOnDiagnostic = enable;
}

/// Return true if we should attach the current stacktrace to diagnostics when
/// emitted.
bool MLIRContext::shouldPrintStackTraceOnDiagnostic() {
  return impl->printStackTraceOnDiagnostic;
}

/// Set the flag specifying if we should attach the current stacktrace when
/// emitting diagnostics.
void MLIRContext::printStackTraceOnDiagnostic(bool enable) {
  assert(impl->multiThreadedExecutionContext == 0 &&
         "changing MLIRContext `print-stacktrace-on-diagnostic` configuration "
         "while in a multi-threaded execution context");
  impl->printStackTraceOnDiagnostic = enable;
}

/// Return information about all registered operations.
ArrayRef<RegisteredOperationName> MLIRContext::getRegisteredOperations() {
  return impl->sortedRegisteredOperations;
}

bool MLIRContext::isOperationRegistered(StringRef name) {
  return RegisteredOperationName::lookup(name, this).has_value();
}

void Dialect::addType(TypeID typeID, AbstractType &&typeInfo) {
  auto &impl = context->getImpl();
  assert(impl.multiThreadedExecutionContext == 0 &&
         "Registering a new type kind while in a multi-threaded execution "
         "context");
  auto *newInfo =
      new (impl.abstractDialectSymbolAllocator.Allocate<AbstractType>())
          AbstractType(std::move(typeInfo));
  if (!impl.registeredTypes.insert({typeID, newInfo}).second)
    llvm::report_fatal_error("Dialect Type already registered.");
}

void Dialect::addAttribute(TypeID typeID, AbstractAttribute &&attrInfo) {
  auto &impl = context->getImpl();
  assert(impl.multiThreadedExecutionContext == 0 &&
         "Registering a new attribute kind while in a multi-threaded execution "
         "context");
  auto *newInfo =
      new (impl.abstractDialectSymbolAllocator.Allocate<AbstractAttribute>())
          AbstractAttribute(std::move(attrInfo));
  if (!impl.registeredAttributes.insert({typeID, newInfo}).second)
    llvm::report_fatal_error("Dialect Attribute already registered.");
}

//===----------------------------------------------------------------------===//
// AbstractAttribute
//===----------------------------------------------------------------------===//

/// Get the dialect that registered the attribute with the provided typeid.
const AbstractAttribute &AbstractAttribute::lookup(TypeID typeID,
                                                   MLIRContext *context) {
  const AbstractAttribute *abstract = lookupMutable(typeID, context);
  if (!abstract)
    llvm::report_fatal_error("Trying to create an Attribute that was not "
                             "registered in this MLIRContext.");
  return *abstract;
}

AbstractAttribute *AbstractAttribute::lookupMutable(TypeID typeID,
                                                    MLIRContext *context) {
  auto &impl = context->getImpl();
  return impl.registeredAttributes.lookup(typeID);
}

//===----------------------------------------------------------------------===//
// OperationName
//===----------------------------------------------------------------------===//

OperationName::Impl::Impl(StringRef name, Dialect *dialect, TypeID typeID,
                          detail::InterfaceMap interfaceMap)
    : Impl(StringAttr::get(dialect->getContext(), name), dialect, typeID,
           std::move(interfaceMap)) {}

OperationName::OperationName(StringRef name, MLIRContext *context) {
  MLIRContextImpl &ctxImpl = context->getImpl();

  // Check for an existing name in read-only mode.
  bool isMultithreadingEnabled = context->isMultithreadingEnabled();
  if (isMultithreadingEnabled) {
    // Check the registered info map first. In the overwhelmingly common case,
    // the entry will be in here and it also removes the need to acquire any
    // locks.
    auto registeredIt = ctxImpl.registeredOperations.find(name);
    if (LLVM_LIKELY(registeredIt != ctxImpl.registeredOperations.end())) {
      impl = registeredIt->second.impl;
      return;
    }

    llvm::sys::SmartScopedReader<true> contextLock(ctxImpl.operationInfoMutex);
    auto it = ctxImpl.operations.find(name);
    if (it != ctxImpl.operations.end()) {
      impl = it->second.get();
      return;
    }
  }

  // Acquire a writer-lock so that we can safely create the new instance.
  ScopedWriterLock lock(ctxImpl.operationInfoMutex, isMultithreadingEnabled);

  auto it = ctxImpl.operations.insert({name, nullptr});
  if (it.second) {
    auto nameAttr = StringAttr::get(context, name);
    it.first->second = std::make_unique<UnregisteredOpModel>(
        nameAttr, nameAttr.getReferencedDialect(), TypeID::get<void>(),
        detail::InterfaceMap());
  }
  impl = it.first->second.get();
}

StringRef OperationName::getDialectNamespace() const {
  if (Dialect *dialect = getDialect())
    return dialect->getNamespace();
  return getStringRef().split('.').first;
}

LogicalResult
OperationName::UnregisteredOpModel::foldHook(Operation *, ArrayRef<Attribute>,
                                             SmallVectorImpl<OpFoldResult> &) {
  return failure();
}
void OperationName::UnregisteredOpModel::getCanonicalizationPatterns(
    RewritePatternSet &, MLIRContext *) {}
bool OperationName::UnregisteredOpModel::hasTrait(TypeID) { return false; }

OperationName::ParseAssemblyFn
OperationName::UnregisteredOpModel::getParseAssemblyFn() {
  llvm::report_fatal_error("getParseAssemblyFn hook called on unregistered op");
}
void OperationName::UnregisteredOpModel::populateDefaultAttrs(
    const OperationName &, NamedAttrList &) {}
void OperationName::UnregisteredOpModel::printAssembly(
    Operation *op, OpAsmPrinter &p, StringRef defaultDialect) {
  p.printGenericOp(op);
}
LogicalResult
OperationName::UnregisteredOpModel::verifyInvariants(Operation *) {
  return success();
}
LogicalResult
OperationName::UnregisteredOpModel::verifyRegionInvariants(Operation *) {
  return success();
}

std::optional<Attribute>
OperationName::UnregisteredOpModel::getInherentAttr(Operation *op,
                                                    StringRef name) {
  auto dict = dyn_cast_or_null<DictionaryAttr>(getPropertiesAsAttr(op));
  if (!dict)
    return std::nullopt;
  if (Attribute attr = dict.get(name))
    return attr;
  return std::nullopt;
}
void OperationName::UnregisteredOpModel::setInherentAttr(Operation *op,
                                                         StringAttr name,
                                                         Attribute value) {
  auto dict = dyn_cast_or_null<DictionaryAttr>(getPropertiesAsAttr(op));
  assert(dict);
  NamedAttrList attrs(dict);
  attrs.set(name, value);
  *op->getPropertiesStorage().as<Attribute *>() =
      attrs.getDictionary(op->getContext());
}
void OperationName::UnregisteredOpModel::populateInherentAttrs(
    Operation *op, NamedAttrList &attrs) {}
LogicalResult OperationName::UnregisteredOpModel::verifyInherentAttrs(
    OperationName opName, NamedAttrList &attributes,
    function_ref<InFlightDiagnostic()> getDiag) {
  return success();
}
int OperationName::UnregisteredOpModel::getOpPropertyByteSize() {
  return sizeof(Attribute);
}
void OperationName::UnregisteredOpModel::initProperties(
    OperationName opName, OpaqueProperties storage, OpaqueProperties init) {
  new (storage.as<Attribute *>()) Attribute();
}
void OperationName::UnregisteredOpModel::deleteProperties(
    OpaqueProperties prop) {
  prop.as<Attribute *>()->~Attribute();
}
void OperationName::UnregisteredOpModel::populateDefaultProperties(
    OperationName opName, OpaqueProperties properties) {}
LogicalResult OperationName::UnregisteredOpModel::setPropertiesFromAttr(
    OperationName opName, OpaqueProperties properties, Attribute attr,
    InFlightDiagnostic *diag) {
  *properties.as<Attribute *>() = attr;
  return success();
}
Attribute
OperationName::UnregisteredOpModel::getPropertiesAsAttr(Operation *op) {
  return *op->getPropertiesStorage().as<Attribute *>();
}
void OperationName::UnregisteredOpModel::copyProperties(OpaqueProperties lhs,
                                                        OpaqueProperties rhs) {
  *lhs.as<Attribute *>() = *rhs.as<Attribute *>();
}
llvm::hash_code
OperationName::UnregisteredOpModel::hashProperties(OpaqueProperties prop) {
  return llvm::hash_combine(*prop.as<Attribute *>());
}

//===----------------------------------------------------------------------===//
// RegisteredOperationName
//===----------------------------------------------------------------------===//

std::optional<RegisteredOperationName>
RegisteredOperationName::lookup(StringRef name, MLIRContext *ctx) {
  auto &impl = ctx->getImpl();
  auto it = impl.registeredOperations.find(name);
  if (it != impl.registeredOperations.end())
    return it->getValue();
  return std::nullopt;
}

void RegisteredOperationName::insert(
    std::unique_ptr<RegisteredOperationName::Impl> ownedImpl,
    ArrayRef<StringRef> attrNames) {
  RegisteredOperationName::Impl *impl = ownedImpl.get();
  MLIRContext *ctx = impl->getDialect()->getContext();
  auto &ctxImpl = ctx->getImpl();
  assert(ctxImpl.multiThreadedExecutionContext == 0 &&
         "registering a new operation kind while in a multi-threaded execution "
         "context");

  // Register the attribute names of this operation.
  MutableArrayRef<StringAttr> cachedAttrNames;
  if (!attrNames.empty()) {
    cachedAttrNames = MutableArrayRef<StringAttr>(
        ctxImpl.abstractDialectSymbolAllocator.Allocate<StringAttr>(
            attrNames.size()),
        attrNames.size());
    for (unsigned i : llvm::seq<unsigned>(0, attrNames.size()))
      new (&cachedAttrNames[i]) StringAttr(StringAttr::get(ctx, attrNames[i]));
    impl->attributeNames = cachedAttrNames;
  }
  StringRef name = impl->getName().strref();
  // Insert the operation info if it doesn't exist yet.
  auto it = ctxImpl.operations.insert({name, nullptr});
  it.first->second = std::move(ownedImpl);

  // Update the registered info for this operation.
  auto emplaced = ctxImpl.registeredOperations.try_emplace(
      name, RegisteredOperationName(impl));
  assert(emplaced.second && "operation name registration must be successful");

  // Add emplaced operation name to the sorted operations container.
  RegisteredOperationName &value = emplaced.first->getValue();
  ctxImpl.sortedRegisteredOperations.insert(
      llvm::upper_bound(ctxImpl.sortedRegisteredOperations, value,
                        [](auto &lhs, auto &rhs) {
                          return lhs.getIdentifier().compare(
                              rhs.getIdentifier());
                        }),
      value);
}

//===----------------------------------------------------------------------===//
// AbstractType
//===----------------------------------------------------------------------===//

const AbstractType &AbstractType::lookup(TypeID typeID, MLIRContext *context) {
  const AbstractType *type = lookupMutable(typeID, context);
  if (!type)
    llvm::report_fatal_error(
        "Trying to create a Type that was not registered in this MLIRContext.");
  return *type;
}

AbstractType *AbstractType::lookupMutable(TypeID typeID, MLIRContext *context) {
  auto &impl = context->getImpl();
  return impl.registeredTypes.lookup(typeID);
}

//===----------------------------------------------------------------------===//
// Type uniquing
//===----------------------------------------------------------------------===//

/// Returns the storage uniquer used for constructing type storage instances.
/// This should not be used directly.
StorageUniquer &MLIRContext::getTypeUniquer() { return getImpl().typeUniquer; }

Float8E5M2Type Float8E5M2Type::get(MLIRContext *context) {
  return context->getImpl().f8E5M2Ty;
}
Float8E4M3FNType Float8E4M3FNType::get(MLIRContext *context) {
  return context->getImpl().f8E4M3FNTy;
}
Float8E5M2FNUZType Float8E5M2FNUZType::get(MLIRContext *context) {
  return context->getImpl().f8E5M2FNUZTy;
}
Float8E4M3FNUZType Float8E4M3FNUZType::get(MLIRContext *context) {
  return context->getImpl().f8E4M3FNUZTy;
}
Float8E4M3B11FNUZType Float8E4M3B11FNUZType::get(MLIRContext *context) {
  return context->getImpl().f8E4M3B11FNUZTy;
}
BFloat16Type BFloat16Type::get(MLIRContext *context) {
  return context->getImpl().bf16Ty;
}
Float16Type Float16Type::get(MLIRContext *context) {
  return context->getImpl().f16Ty;
}
FloatTF32Type FloatTF32Type::get(MLIRContext *context) {
  return context->getImpl().tf32Ty;
}
Float32Type Float32Type::get(MLIRContext *context) {
  return context->getImpl().f32Ty;
}
Float64Type Float64Type::get(MLIRContext *context) {
  return context->getImpl().f64Ty;
}
Float80Type Float80Type::get(MLIRContext *context) {
  return context->getImpl().f80Ty;
}
Float128Type Float128Type::get(MLIRContext *context) {
  return context->getImpl().f128Ty;
}

/// Get an instance of the IndexType.
IndexType IndexType::get(MLIRContext *context) {
  return context->getImpl().indexTy;
}

/// Return an existing integer type instance if one is cached within the
/// context.
static IntegerType
getCachedIntegerType(unsigned width,
                     IntegerType::SignednessSemantics signedness,
                     MLIRContext *context) {
  if (signedness != IntegerType::Signless)
    return IntegerType();

  switch (width) {
  case 1:
    return context->getImpl().int1Ty;
  case 8:
    return context->getImpl().int8Ty;
  case 16:
    return context->getImpl().int16Ty;
  case 32:
    return context->getImpl().int32Ty;
  case 64:
    return context->getImpl().int64Ty;
  case 128:
    return context->getImpl().int128Ty;
  default:
    return IntegerType();
  }
}

IntegerType IntegerType::get(MLIRContext *context, unsigned width,
                             IntegerType::SignednessSemantics signedness) {
  if (auto cached = getCachedIntegerType(width, signedness, context))
    return cached;
  return Base::get(context, width, signedness);
}

IntegerType
IntegerType::getChecked(function_ref<InFlightDiagnostic()> emitError,
                        MLIRContext *context, unsigned width,
                        SignednessSemantics signedness) {
  if (auto cached = getCachedIntegerType(width, signedness, context))
    return cached;
  return Base::getChecked(emitError, context, width, signedness);
}

/// Get an instance of the NoneType.
NoneType NoneType::get(MLIRContext *context) {
  if (NoneType cachedInst = context->getImpl().noneType)
    return cachedInst;
  // Note: May happen when initializing the singleton attributes of the builtin
  // dialect.
  return Base::get(context);
}

//===----------------------------------------------------------------------===//
// Attribute uniquing
//===----------------------------------------------------------------------===//

/// Returns the storage uniquer used for constructing attribute storage
/// instances. This should not be used directly.
StorageUniquer &MLIRContext::getAttributeUniquer() {
  return getImpl().attributeUniquer;
}

/// Initialize the given attribute storage instance.
void AttributeUniquer::initializeAttributeStorage(AttributeStorage *storage,
                                                  MLIRContext *ctx,
                                                  TypeID attrID) {
  storage->initializeAbstractAttribute(AbstractAttribute::lookup(attrID, ctx));
}

BoolAttr BoolAttr::get(MLIRContext *context, bool value) {
  return value ? context->getImpl().trueAttr : context->getImpl().falseAttr;
}

UnitAttr UnitAttr::get(MLIRContext *context) {
  return context->getImpl().unitAttr;
}

UnknownLoc UnknownLoc::get(MLIRContext *context) {
  return context->getImpl().unknownLocAttr;
}

DistinctAttrStorage *
detail::DistinctAttributeUniquer::allocateStorage(MLIRContext *context,
                                                  Attribute referencedAttr) {
  return context->getImpl().distinctAttributeAllocator.allocate(referencedAttr);
}

/// Return empty dictionary.
DictionaryAttr DictionaryAttr::getEmpty(MLIRContext *context) {
  return context->getImpl().emptyDictionaryAttr;
}

void StringAttrStorage::initialize(MLIRContext *context) {
  // Check for a dialect namespace prefix, if there isn't one we don't need to
  // do any additional initialization.
  auto dialectNamePair = value.split('.');
  if (dialectNamePair.first.empty() || dialectNamePair.second.empty())
    return;

  // If one exists, we check to see if this dialect is loaded. If it is, we set
  // the dialect now, if it isn't we record this storage for initialization
  // later if the dialect ever gets loaded.
  if ((referencedDialect = context->getLoadedDialect(dialectNamePair.first)))
    return;

  MLIRContextImpl &impl = context->getImpl();
  llvm::sys::SmartScopedLock<true> lock(impl.dialectRefStrAttrMutex);
  impl.dialectReferencingStrAttrs[dialectNamePair.first].push_back(this);
}

/// Return an empty string.
StringAttr StringAttr::get(MLIRContext *context) {
  return context->getImpl().emptyStringAttr;
}

//===----------------------------------------------------------------------===//
// AffineMap uniquing
//===----------------------------------------------------------------------===//

StorageUniquer &MLIRContext::getAffineUniquer() {
  return getImpl().affineUniquer;
}

AffineMap AffineMap::getImpl(unsigned dimCount, unsigned symbolCount,
                             ArrayRef<AffineExpr> results,
                             MLIRContext *context) {
  auto &impl = context->getImpl();
  auto *storage = impl.affineUniquer.get<AffineMapStorage>(
      [&](AffineMapStorage *storage) { storage->context = context; }, dimCount,
      symbolCount, results);
  return AffineMap(storage);
}

/// Check whether the arguments passed to the AffineMap::get() are consistent.
/// This method checks whether the highest index of dimensional identifier
/// present in result expressions is less than `dimCount` and the highest index
/// of symbolic identifier present in result expressions is less than
/// `symbolCount`.
LLVM_ATTRIBUTE_UNUSED static bool
willBeValidAffineMap(unsigned dimCount, unsigned symbolCount,
                     ArrayRef<AffineExpr> results) {
  int64_t maxDimPosition = -1;
  int64_t maxSymbolPosition = -1;
  getMaxDimAndSymbol(ArrayRef<ArrayRef<AffineExpr>>(results), maxDimPosition,
                     maxSymbolPosition);
  if ((maxDimPosition >= dimCount) || (maxSymbolPosition >= symbolCount)) {
    LLVM_DEBUG(
        llvm::dbgs()
        << "maximum dimensional identifier position in result expression must "
           "be less than `dimCount` and maximum symbolic identifier position "
           "in result expression must be less than `symbolCount`\n");
    return false;
  }
  return true;
}

AffineMap AffineMap::get(MLIRContext *context) {
  return getImpl(/*dimCount=*/0, /*symbolCount=*/0, /*results=*/{}, context);
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         MLIRContext *context) {
  return getImpl(dimCount, symbolCount, /*results=*/{}, context);
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         AffineExpr result) {
  assert(willBeValidAffineMap(dimCount, symbolCount, {result}));
  return getImpl(dimCount, symbolCount, {result}, result.getContext());
}

AffineMap AffineMap::get(unsigned dimCount, unsigned symbolCount,
                         ArrayRef<AffineExpr> results, MLIRContext *context) {
  assert(willBeValidAffineMap(dimCount, symbolCount, results));
  return getImpl(dimCount, symbolCount, results, context);
}

//===----------------------------------------------------------------------===//
// Integer Sets: these are allocated into the bump pointer, and are immutable.
// Unlike AffineMap's, these are uniqued only if they are small.
//===----------------------------------------------------------------------===//

IntegerSet IntegerSet::get(unsigned dimCount, unsigned symbolCount,
                           ArrayRef<AffineExpr> constraints,
                           ArrayRef<bool> eqFlags) {
  // The number of constraints can't be zero.
  assert(!constraints.empty());
  assert(constraints.size() == eqFlags.size());

  auto &impl = constraints[0].getContext()->getImpl();
  auto *storage = impl.affineUniquer.get<IntegerSetStorage>(
      [](IntegerSetStorage *) {}, dimCount, symbolCount, constraints, eqFlags);
  return IntegerSet(storage);
}

//===----------------------------------------------------------------------===//
// StorageUniquerSupport
//===----------------------------------------------------------------------===//

/// Utility method to generate a callback that can be used to generate a
/// diagnostic when checking the construction invariants of a storage object.
/// This is defined out-of-line to avoid the need to include Location.h.
llvm::unique_function<InFlightDiagnostic()>
mlir::detail::getDefaultDiagnosticEmitFn(MLIRContext *ctx) {
  return [ctx] { return emitError(UnknownLoc::get(ctx)); };
}
llvm::unique_function<InFlightDiagnostic()>
mlir::detail::getDefaultDiagnosticEmitFn(const Location &loc) {
  return [=] { return emitError(loc); };
}