File: OperationSupport.cpp

package info (click to toggle)
swiftlang 6.0.3-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,519,992 kB
  • sloc: cpp: 9,107,863; ansic: 2,040,022; asm: 1,135,751; python: 296,500; objc: 82,456; f90: 60,502; lisp: 34,951; pascal: 19,946; sh: 18,133; perl: 7,482; ml: 4,937; javascript: 4,117; makefile: 3,840; awk: 3,535; xml: 914; fortran: 619; cs: 573; ruby: 573
file content (869 lines) | stat: -rw-r--r-- 32,001 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
//===- OperationSupport.cpp -----------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains out-of-line implementations of the support types that
// Operation and related classes build on top of.
//
//===----------------------------------------------------------------------===//

#include "mlir/IR/OperationSupport.h"
#include "mlir/IR/BuiltinAttributes.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/OpDefinition.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/Support/SHA1.h"
#include <numeric>
#include <optional>

using namespace mlir;

//===----------------------------------------------------------------------===//
// NamedAttrList
//===----------------------------------------------------------------------===//

NamedAttrList::NamedAttrList(ArrayRef<NamedAttribute> attributes) {
  assign(attributes.begin(), attributes.end());
}

NamedAttrList::NamedAttrList(DictionaryAttr attributes)
    : NamedAttrList(attributes ? attributes.getValue()
                               : ArrayRef<NamedAttribute>()) {
  dictionarySorted.setPointerAndInt(attributes, true);
}

NamedAttrList::NamedAttrList(const_iterator inStart, const_iterator inEnd) {
  assign(inStart, inEnd);
}

ArrayRef<NamedAttribute> NamedAttrList::getAttrs() const { return attrs; }

std::optional<NamedAttribute> NamedAttrList::findDuplicate() const {
  std::optional<NamedAttribute> duplicate =
      DictionaryAttr::findDuplicate(attrs, isSorted());
  // DictionaryAttr::findDuplicate will sort the list, so reset the sorted
  // state.
  if (!isSorted())
    dictionarySorted.setPointerAndInt(nullptr, true);
  return duplicate;
}

DictionaryAttr NamedAttrList::getDictionary(MLIRContext *context) const {
  if (!isSorted()) {
    DictionaryAttr::sortInPlace(attrs);
    dictionarySorted.setPointerAndInt(nullptr, true);
  }
  if (!dictionarySorted.getPointer())
    dictionarySorted.setPointer(DictionaryAttr::getWithSorted(context, attrs));
  return llvm::cast<DictionaryAttr>(dictionarySorted.getPointer());
}

/// Add an attribute with the specified name.
void NamedAttrList::append(StringRef name, Attribute attr) {
  append(StringAttr::get(attr.getContext(), name), attr);
}

/// Replaces the attributes with new list of attributes.
void NamedAttrList::assign(const_iterator inStart, const_iterator inEnd) {
  DictionaryAttr::sort(ArrayRef<NamedAttribute>{inStart, inEnd}, attrs);
  dictionarySorted.setPointerAndInt(nullptr, true);
}

void NamedAttrList::push_back(NamedAttribute newAttribute) {
  if (isSorted())
    dictionarySorted.setInt(attrs.empty() || attrs.back() < newAttribute);
  dictionarySorted.setPointer(nullptr);
  attrs.push_back(newAttribute);
}

/// Return the specified attribute if present, null otherwise.
Attribute NamedAttrList::get(StringRef name) const {
  auto it = findAttr(*this, name);
  return it.second ? it.first->getValue() : Attribute();
}
Attribute NamedAttrList::get(StringAttr name) const {
  auto it = findAttr(*this, name);
  return it.second ? it.first->getValue() : Attribute();
}

/// Return the specified named attribute if present, std::nullopt otherwise.
std::optional<NamedAttribute> NamedAttrList::getNamed(StringRef name) const {
  auto it = findAttr(*this, name);
  return it.second ? *it.first : std::optional<NamedAttribute>();
}
std::optional<NamedAttribute> NamedAttrList::getNamed(StringAttr name) const {
  auto it = findAttr(*this, name);
  return it.second ? *it.first : std::optional<NamedAttribute>();
}

/// If the an attribute exists with the specified name, change it to the new
/// value.  Otherwise, add a new attribute with the specified name/value.
Attribute NamedAttrList::set(StringAttr name, Attribute value) {
  assert(value && "attributes may never be null");

  // Look for an existing attribute with the given name, and set its value
  // in-place. Return the previous value of the attribute, if there was one.
  auto it = findAttr(*this, name);
  if (it.second) {
    // Update the existing attribute by swapping out the old value for the new
    // value. Return the old value.
    Attribute oldValue = it.first->getValue();
    if (it.first->getValue() != value) {
      it.first->setValue(value);

      // If the attributes have changed, the dictionary is invalidated.
      dictionarySorted.setPointer(nullptr);
    }
    return oldValue;
  }
  // Perform a string lookup to insert the new attribute into its sorted
  // position.
  if (isSorted())
    it = findAttr(*this, name.strref());
  attrs.insert(it.first, {name, value});
  // Invalidate the dictionary. Return null as there was no previous value.
  dictionarySorted.setPointer(nullptr);
  return Attribute();
}

Attribute NamedAttrList::set(StringRef name, Attribute value) {
  assert(value && "attributes may never be null");
  return set(mlir::StringAttr::get(value.getContext(), name), value);
}

Attribute
NamedAttrList::eraseImpl(SmallVectorImpl<NamedAttribute>::iterator it) {
  // Erasing does not affect the sorted property.
  Attribute attr = it->getValue();
  attrs.erase(it);
  dictionarySorted.setPointer(nullptr);
  return attr;
}

Attribute NamedAttrList::erase(StringAttr name) {
  auto it = findAttr(*this, name);
  return it.second ? eraseImpl(it.first) : Attribute();
}

Attribute NamedAttrList::erase(StringRef name) {
  auto it = findAttr(*this, name);
  return it.second ? eraseImpl(it.first) : Attribute();
}

NamedAttrList &
NamedAttrList::operator=(const SmallVectorImpl<NamedAttribute> &rhs) {
  assign(rhs.begin(), rhs.end());
  return *this;
}

NamedAttrList::operator ArrayRef<NamedAttribute>() const { return attrs; }

//===----------------------------------------------------------------------===//
// OperationState
//===----------------------------------------------------------------------===//

OperationState::OperationState(Location location, StringRef name)
    : location(location), name(name, location->getContext()) {}

OperationState::OperationState(Location location, OperationName name)
    : location(location), name(name) {}

OperationState::OperationState(Location location, OperationName name,
                               ValueRange operands, TypeRange types,
                               ArrayRef<NamedAttribute> attributes,
                               BlockRange successors,
                               MutableArrayRef<std::unique_ptr<Region>> regions)
    : location(location), name(name),
      operands(operands.begin(), operands.end()),
      types(types.begin(), types.end()),
      attributes(attributes.begin(), attributes.end()),
      successors(successors.begin(), successors.end()) {
  for (std::unique_ptr<Region> &r : regions)
    this->regions.push_back(std::move(r));
}
OperationState::OperationState(Location location, StringRef name,
                               ValueRange operands, TypeRange types,
                               ArrayRef<NamedAttribute> attributes,
                               BlockRange successors,
                               MutableArrayRef<std::unique_ptr<Region>> regions)
    : OperationState(location, OperationName(name, location.getContext()),
                     operands, types, attributes, successors, regions) {}

OperationState::~OperationState() {
  if (properties)
    propertiesDeleter(properties);
}

LogicalResult
OperationState::setProperties(Operation *op,
                              InFlightDiagnostic *diagnostic) const {
  if (LLVM_UNLIKELY(propertiesAttr)) {
    assert(!properties);
    return op->setPropertiesFromAttribute(propertiesAttr, diagnostic);
  }
  if (properties)
    propertiesSetter(op->getPropertiesStorage(), properties);
  return success();
}

void OperationState::addOperands(ValueRange newOperands) {
  operands.append(newOperands.begin(), newOperands.end());
}

void OperationState::addSuccessors(BlockRange newSuccessors) {
  successors.append(newSuccessors.begin(), newSuccessors.end());
}

Region *OperationState::addRegion() {
  regions.emplace_back(new Region);
  return regions.back().get();
}

void OperationState::addRegion(std::unique_ptr<Region> &&region) {
  regions.push_back(std::move(region));
}

void OperationState::addRegions(
    MutableArrayRef<std::unique_ptr<Region>> regions) {
  for (std::unique_ptr<Region> &region : regions)
    addRegion(std::move(region));
}

//===----------------------------------------------------------------------===//
// OperandStorage
//===----------------------------------------------------------------------===//

detail::OperandStorage::OperandStorage(Operation *owner,
                                       OpOperand *trailingOperands,
                                       ValueRange values)
    : isStorageDynamic(false), operandStorage(trailingOperands) {
  numOperands = capacity = values.size();
  for (unsigned i = 0; i < numOperands; ++i)
    new (&operandStorage[i]) OpOperand(owner, values[i]);
}

detail::OperandStorage::~OperandStorage() {
  for (auto &operand : getOperands())
    operand.~OpOperand();

  // If the storage is dynamic, deallocate it.
  if (isStorageDynamic)
    free(operandStorage);
}

/// Replace the operands contained in the storage with the ones provided in
/// 'values'.
void detail::OperandStorage::setOperands(Operation *owner, ValueRange values) {
  MutableArrayRef<OpOperand> storageOperands = resize(owner, values.size());
  for (unsigned i = 0, e = values.size(); i != e; ++i)
    storageOperands[i].set(values[i]);
}

/// Replace the operands beginning at 'start' and ending at 'start' + 'length'
/// with the ones provided in 'operands'. 'operands' may be smaller or larger
/// than the range pointed to by 'start'+'length'.
void detail::OperandStorage::setOperands(Operation *owner, unsigned start,
                                         unsigned length, ValueRange operands) {
  // If the new size is the same, we can update inplace.
  unsigned newSize = operands.size();
  if (newSize == length) {
    MutableArrayRef<OpOperand> storageOperands = getOperands();
    for (unsigned i = 0, e = length; i != e; ++i)
      storageOperands[start + i].set(operands[i]);
    return;
  }
  // If the new size is greater, remove the extra operands and set the rest
  // inplace.
  if (newSize < length) {
    eraseOperands(start + operands.size(), length - newSize);
    setOperands(owner, start, newSize, operands);
    return;
  }
  // Otherwise, the new size is greater so we need to grow the storage.
  auto storageOperands = resize(owner, size() + (newSize - length));

  // Shift operands to the right to make space for the new operands.
  unsigned rotateSize = storageOperands.size() - (start + length);
  auto rbegin = storageOperands.rbegin();
  std::rotate(rbegin, std::next(rbegin, newSize - length), rbegin + rotateSize);

  // Update the operands inplace.
  for (unsigned i = 0, e = operands.size(); i != e; ++i)
    storageOperands[start + i].set(operands[i]);
}

/// Erase an operand held by the storage.
void detail::OperandStorage::eraseOperands(unsigned start, unsigned length) {
  MutableArrayRef<OpOperand> operands = getOperands();
  assert((start + length) <= operands.size());
  numOperands -= length;

  // Shift all operands down if the operand to remove is not at the end.
  if (start != numOperands) {
    auto *indexIt = std::next(operands.begin(), start);
    std::rotate(indexIt, std::next(indexIt, length), operands.end());
  }
  for (unsigned i = 0; i != length; ++i)
    operands[numOperands + i].~OpOperand();
}

void detail::OperandStorage::eraseOperands(const BitVector &eraseIndices) {
  MutableArrayRef<OpOperand> operands = getOperands();
  assert(eraseIndices.size() == operands.size());

  // Check that at least one operand is erased.
  int firstErasedIndice = eraseIndices.find_first();
  if (firstErasedIndice == -1)
    return;

  // Shift all of the removed operands to the end, and destroy them.
  numOperands = firstErasedIndice;
  for (unsigned i = firstErasedIndice + 1, e = operands.size(); i < e; ++i)
    if (!eraseIndices.test(i))
      operands[numOperands++] = std::move(operands[i]);
  for (OpOperand &operand : operands.drop_front(numOperands))
    operand.~OpOperand();
}

/// Resize the storage to the given size. Returns the array containing the new
/// operands.
MutableArrayRef<OpOperand> detail::OperandStorage::resize(Operation *owner,
                                                          unsigned newSize) {
  // If the number of operands is less than or equal to the current amount, we
  // can just update in place.
  MutableArrayRef<OpOperand> origOperands = getOperands();
  if (newSize <= numOperands) {
    // If the number of new size is less than the current, remove any extra
    // operands.
    for (unsigned i = newSize; i != numOperands; ++i)
      origOperands[i].~OpOperand();
    numOperands = newSize;
    return origOperands.take_front(newSize);
  }

  // If the new size is within the original inline capacity, grow inplace.
  if (newSize <= capacity) {
    OpOperand *opBegin = origOperands.data();
    for (unsigned e = newSize; numOperands != e; ++numOperands)
      new (&opBegin[numOperands]) OpOperand(owner);
    return MutableArrayRef<OpOperand>(opBegin, newSize);
  }

  // Otherwise, we need to allocate a new storage.
  unsigned newCapacity =
      std::max(unsigned(llvm::NextPowerOf2(capacity + 2)), newSize);
  OpOperand *newOperandStorage =
      reinterpret_cast<OpOperand *>(malloc(sizeof(OpOperand) * newCapacity));

  // Move the current operands to the new storage.
  MutableArrayRef<OpOperand> newOperands(newOperandStorage, newSize);
  std::uninitialized_move(origOperands.begin(), origOperands.end(),
                          newOperands.begin());

  // Destroy the original operands.
  for (auto &operand : origOperands)
    operand.~OpOperand();

  // Initialize any new operands.
  for (unsigned e = newSize; numOperands != e; ++numOperands)
    new (&newOperands[numOperands]) OpOperand(owner);

  // If the current storage is dynamic, free it.
  if (isStorageDynamic)
    free(operandStorage);

  // Update the storage representation to use the new dynamic storage.
  operandStorage = newOperandStorage;
  capacity = newCapacity;
  isStorageDynamic = true;
  return newOperands;
}

//===----------------------------------------------------------------------===//
// Operation Value-Iterators
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// OperandRange

unsigned OperandRange::getBeginOperandIndex() const {
  assert(!empty() && "range must not be empty");
  return base->getOperandNumber();
}

OperandRangeRange OperandRange::split(DenseI32ArrayAttr segmentSizes) const {
  return OperandRangeRange(*this, segmentSizes);
}

//===----------------------------------------------------------------------===//
// OperandRangeRange

OperandRangeRange::OperandRangeRange(OperandRange operands,
                                     Attribute operandSegments)
    : OperandRangeRange(OwnerT(operands.getBase(), operandSegments), 0,
                        llvm::cast<DenseI32ArrayAttr>(operandSegments).size()) {
}

OperandRange OperandRangeRange::join() const {
  const OwnerT &owner = getBase();
  ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(owner.second);
  return OperandRange(owner.first,
                      std::accumulate(sizeData.begin(), sizeData.end(), 0));
}

OperandRange OperandRangeRange::dereference(const OwnerT &object,
                                            ptrdiff_t index) {
  ArrayRef<int32_t> sizeData = llvm::cast<DenseI32ArrayAttr>(object.second);
  uint32_t startIndex =
      std::accumulate(sizeData.begin(), sizeData.begin() + index, 0);
  return OperandRange(object.first + startIndex, *(sizeData.begin() + index));
}

//===----------------------------------------------------------------------===//
// MutableOperandRange

/// Construct a new mutable range from the given operand, operand start index,
/// and range length.
MutableOperandRange::MutableOperandRange(
    Operation *owner, unsigned start, unsigned length,
    ArrayRef<OperandSegment> operandSegments)
    : owner(owner), start(start), length(length),
      operandSegments(operandSegments.begin(), operandSegments.end()) {
  assert((start + length) <= owner->getNumOperands() && "invalid range");
}
MutableOperandRange::MutableOperandRange(Operation *owner)
    : MutableOperandRange(owner, /*start=*/0, owner->getNumOperands()) {}

/// Slice this range into a sub range, with the additional operand segment.
MutableOperandRange
MutableOperandRange::slice(unsigned subStart, unsigned subLen,
                           std::optional<OperandSegment> segment) const {
  assert((subStart + subLen) <= length && "invalid sub-range");
  MutableOperandRange subSlice(owner, start + subStart, subLen,
                               operandSegments);
  if (segment)
    subSlice.operandSegments.push_back(*segment);
  return subSlice;
}

/// Append the given values to the range.
void MutableOperandRange::append(ValueRange values) {
  if (values.empty())
    return;
  owner->insertOperands(start + length, values);
  updateLength(length + values.size());
}

/// Assign this range to the given values.
void MutableOperandRange::assign(ValueRange values) {
  owner->setOperands(start, length, values);
  if (length != values.size())
    updateLength(/*newLength=*/values.size());
}

/// Assign the range to the given value.
void MutableOperandRange::assign(Value value) {
  if (length == 1) {
    owner->setOperand(start, value);
  } else {
    owner->setOperands(start, length, value);
    updateLength(/*newLength=*/1);
  }
}

/// Erase the operands within the given sub-range.
void MutableOperandRange::erase(unsigned subStart, unsigned subLen) {
  assert((subStart + subLen) <= length && "invalid sub-range");
  if (length == 0)
    return;
  owner->eraseOperands(start + subStart, subLen);
  updateLength(length - subLen);
}

/// Clear this range and erase all of the operands.
void MutableOperandRange::clear() {
  if (length != 0) {
    owner->eraseOperands(start, length);
    updateLength(/*newLength=*/0);
  }
}

/// Allow implicit conversion to an OperandRange.
MutableOperandRange::operator OperandRange() const {
  return owner->getOperands().slice(start, length);
}

MutableOperandRangeRange
MutableOperandRange::split(NamedAttribute segmentSizes) const {
  return MutableOperandRangeRange(*this, segmentSizes);
}

/// Update the length of this range to the one provided.
void MutableOperandRange::updateLength(unsigned newLength) {
  int32_t diff = int32_t(newLength) - int32_t(length);
  length = newLength;

  // Update any of the provided segment attributes.
  for (OperandSegment &segment : operandSegments) {
    auto attr = llvm::cast<DenseI32ArrayAttr>(segment.second.getValue());
    SmallVector<int32_t, 8> segments(attr.asArrayRef());
    segments[segment.first] += diff;
    segment.second.setValue(
        DenseI32ArrayAttr::get(attr.getContext(), segments));
    owner->setAttr(segment.second.getName(), segment.second.getValue());
  }
}

//===----------------------------------------------------------------------===//
// MutableOperandRangeRange

MutableOperandRangeRange::MutableOperandRangeRange(
    const MutableOperandRange &operands, NamedAttribute operandSegmentAttr)
    : MutableOperandRangeRange(
          OwnerT(operands, operandSegmentAttr), 0,
          llvm::cast<DenseI32ArrayAttr>(operandSegmentAttr.getValue()).size()) {
}

MutableOperandRange MutableOperandRangeRange::join() const {
  return getBase().first;
}

MutableOperandRangeRange::operator OperandRangeRange() const {
  return OperandRangeRange(getBase().first, getBase().second.getValue());
}

MutableOperandRange MutableOperandRangeRange::dereference(const OwnerT &object,
                                                          ptrdiff_t index) {
  ArrayRef<int32_t> sizeData =
      llvm::cast<DenseI32ArrayAttr>(object.second.getValue());
  uint32_t startIndex =
      std::accumulate(sizeData.begin(), sizeData.begin() + index, 0);
  return object.first.slice(
      startIndex, *(sizeData.begin() + index),
      MutableOperandRange::OperandSegment(index, object.second));
}

//===----------------------------------------------------------------------===//
// ResultRange

ResultRange::ResultRange(OpResult result)
    : ResultRange(static_cast<detail::OpResultImpl *>(Value(result).getImpl()),
                  1) {}

ResultRange::use_range ResultRange::getUses() const {
  return {use_begin(), use_end()};
}
ResultRange::use_iterator ResultRange::use_begin() const {
  return use_iterator(*this);
}
ResultRange::use_iterator ResultRange::use_end() const {
  return use_iterator(*this, /*end=*/true);
}
ResultRange::user_range ResultRange::getUsers() {
  return {user_begin(), user_end()};
}
ResultRange::user_iterator ResultRange::user_begin() {
  return user_iterator(use_begin());
}
ResultRange::user_iterator ResultRange::user_end() {
  return user_iterator(use_end());
}

ResultRange::UseIterator::UseIterator(ResultRange results, bool end)
    : it(end ? results.end() : results.begin()), endIt(results.end()) {
  // Only initialize current use if there are results/can be uses.
  if (it != endIt)
    skipOverResultsWithNoUsers();
}

ResultRange::UseIterator &ResultRange::UseIterator::operator++() {
  // We increment over uses, if we reach the last use then move to next
  // result.
  if (use != (*it).use_end())
    ++use;
  if (use == (*it).use_end()) {
    ++it;
    skipOverResultsWithNoUsers();
  }
  return *this;
}

void ResultRange::UseIterator::skipOverResultsWithNoUsers() {
  while (it != endIt && (*it).use_empty())
    ++it;

  // If we are at the last result, then set use to first use of
  // first result (sentinel value used for end).
  if (it == endIt)
    use = {};
  else
    use = (*it).use_begin();
}

void ResultRange::replaceAllUsesWith(Operation *op) {
  replaceAllUsesWith(op->getResults());
}

void ResultRange::replaceUsesWithIf(
    Operation *op, function_ref<bool(OpOperand &)> shouldReplace) {
  replaceUsesWithIf(op->getResults(), shouldReplace);
}

//===----------------------------------------------------------------------===//
// ValueRange

ValueRange::ValueRange(ArrayRef<Value> values)
    : ValueRange(values.data(), values.size()) {}
ValueRange::ValueRange(OperandRange values)
    : ValueRange(values.begin().getBase(), values.size()) {}
ValueRange::ValueRange(ResultRange values)
    : ValueRange(values.getBase(), values.size()) {}

/// See `llvm::detail::indexed_accessor_range_base` for details.
ValueRange::OwnerT ValueRange::offset_base(const OwnerT &owner,
                                           ptrdiff_t index) {
  if (const auto *value = llvm::dyn_cast_if_present<const Value *>(owner))
    return {value + index};
  if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(owner))
    return {operand + index};
  return owner.get<detail::OpResultImpl *>()->getNextResultAtOffset(index);
}
/// See `llvm::detail::indexed_accessor_range_base` for details.
Value ValueRange::dereference_iterator(const OwnerT &owner, ptrdiff_t index) {
  if (const auto *value = llvm::dyn_cast_if_present<const Value *>(owner))
    return value[index];
  if (auto *operand = llvm::dyn_cast_if_present<OpOperand *>(owner))
    return operand[index].get();
  return owner.get<detail::OpResultImpl *>()->getNextResultAtOffset(index);
}

//===----------------------------------------------------------------------===//
// Operation Equivalency
//===----------------------------------------------------------------------===//

llvm::hash_code OperationEquivalence::computeHash(
    Operation *op, function_ref<llvm::hash_code(Value)> hashOperands,
    function_ref<llvm::hash_code(Value)> hashResults, Flags flags) {
  // Hash operations based upon their:
  //   - Operation Name
  //   - Attributes
  //   - Result Types
  llvm::hash_code hash =
      llvm::hash_combine(op->getName(), op->getDiscardableAttrDictionary(),
                         op->getResultTypes(), op->hashProperties());

  //   - Location if required
  if (!(flags & Flags::IgnoreLocations))
    hash = llvm::hash_combine(hash, op->getLoc());

  //   - Operands
  for (Value operand : op->getOperands())
    hash = llvm::hash_combine(hash, hashOperands(operand));

  //   - Results
  for (Value result : op->getResults())
    hash = llvm::hash_combine(hash, hashResults(result));
  return hash;
}

/*static*/ bool OperationEquivalence::isRegionEquivalentTo(
    Region *lhs, Region *rhs,
    function_ref<LogicalResult(Value, Value)> checkEquivalent,
    function_ref<void(Value, Value)> markEquivalent,
    OperationEquivalence::Flags flags) {
  DenseMap<Block *, Block *> blocksMap;
  auto blocksEquivalent = [&](Block &lBlock, Block &rBlock) {
    // Check block arguments.
    if (lBlock.getNumArguments() != rBlock.getNumArguments())
      return false;

    // Map the two blocks.
    auto insertion = blocksMap.insert({&lBlock, &rBlock});
    if (insertion.first->getSecond() != &rBlock)
      return false;

    for (auto argPair :
         llvm::zip(lBlock.getArguments(), rBlock.getArguments())) {
      Value curArg = std::get<0>(argPair);
      Value otherArg = std::get<1>(argPair);
      if (curArg.getType() != otherArg.getType())
        return false;
      if (!(flags & OperationEquivalence::IgnoreLocations) &&
          curArg.getLoc() != otherArg.getLoc())
        return false;
      // Corresponding bbArgs are equivalent.
      if (markEquivalent)
        markEquivalent(curArg, otherArg);
    }

    auto opsEquivalent = [&](Operation &lOp, Operation &rOp) {
      // Check for op equality (recursively).
      if (!OperationEquivalence::isEquivalentTo(&lOp, &rOp, checkEquivalent,
                                                markEquivalent, flags))
        return false;
      // Check successor mapping.
      for (auto successorsPair :
           llvm::zip(lOp.getSuccessors(), rOp.getSuccessors())) {
        Block *curSuccessor = std::get<0>(successorsPair);
        Block *otherSuccessor = std::get<1>(successorsPair);
        auto insertion = blocksMap.insert({curSuccessor, otherSuccessor});
        if (insertion.first->getSecond() != otherSuccessor)
          return false;
      }
      return true;
    };
    return llvm::all_of_zip(lBlock, rBlock, opsEquivalent);
  };
  return llvm::all_of_zip(*lhs, *rhs, blocksEquivalent);
}

// Value equivalence cache to be used with `isRegionEquivalentTo` and
// `isEquivalentTo`.
struct ValueEquivalenceCache {
  DenseMap<Value, Value> equivalentValues;
  LogicalResult checkEquivalent(Value lhsValue, Value rhsValue) {
    return success(lhsValue == rhsValue ||
                   equivalentValues.lookup(lhsValue) == rhsValue);
  }
  void markEquivalent(Value lhsResult, Value rhsResult) {
    auto insertion = equivalentValues.insert({lhsResult, rhsResult});
    // Make sure that the value was not already marked equivalent to some other
    // value.
    (void)insertion;
    assert(insertion.first->second == rhsResult &&
           "inconsistent OperationEquivalence state");
  }
};

/*static*/ bool
OperationEquivalence::isRegionEquivalentTo(Region *lhs, Region *rhs,
                                           OperationEquivalence::Flags flags) {
  ValueEquivalenceCache cache;
  return isRegionEquivalentTo(
      lhs, rhs,
      [&](Value lhsValue, Value rhsValue) -> LogicalResult {
        return cache.checkEquivalent(lhsValue, rhsValue);
      },
      [&](Value lhsResult, Value rhsResult) {
        cache.markEquivalent(lhsResult, rhsResult);
      },
      flags);
}

/*static*/ bool OperationEquivalence::isEquivalentTo(
    Operation *lhs, Operation *rhs,
    function_ref<LogicalResult(Value, Value)> checkEquivalent,
    function_ref<void(Value, Value)> markEquivalent, Flags flags) {
  if (lhs == rhs)
    return true;

  // 1. Compare the operation properties.
  if (lhs->getName() != rhs->getName() ||
      lhs->getDiscardableAttrDictionary() !=
          rhs->getDiscardableAttrDictionary() ||
      lhs->getNumRegions() != rhs->getNumRegions() ||
      lhs->getNumSuccessors() != rhs->getNumSuccessors() ||
      lhs->getNumOperands() != rhs->getNumOperands() ||
      lhs->getNumResults() != rhs->getNumResults() ||
      lhs->hashProperties() != rhs->hashProperties())
    return false;
  if (!(flags & IgnoreLocations) && lhs->getLoc() != rhs->getLoc())
    return false;

  // 2. Compare operands.
  for (auto operandPair : llvm::zip(lhs->getOperands(), rhs->getOperands())) {
    Value curArg = std::get<0>(operandPair);
    Value otherArg = std::get<1>(operandPair);
    if (curArg == otherArg)
      continue;
    if (curArg.getType() != otherArg.getType())
      return false;
    if (failed(checkEquivalent(curArg, otherArg)))
      return false;
  }

  // 3. Compare result types and mark results as equivalent.
  for (auto resultPair : llvm::zip(lhs->getResults(), rhs->getResults())) {
    Value curArg = std::get<0>(resultPair);
    Value otherArg = std::get<1>(resultPair);
    if (curArg.getType() != otherArg.getType())
      return false;
    if (markEquivalent)
      markEquivalent(curArg, otherArg);
  }

  // 4. Compare regions.
  for (auto regionPair : llvm::zip(lhs->getRegions(), rhs->getRegions()))
    if (!isRegionEquivalentTo(&std::get<0>(regionPair),
                              &std::get<1>(regionPair), checkEquivalent,
                              markEquivalent, flags))
      return false;

  return true;
}

/*static*/ bool OperationEquivalence::isEquivalentTo(Operation *lhs,
                                                     Operation *rhs,
                                                     Flags flags) {
  ValueEquivalenceCache cache;
  return OperationEquivalence::isEquivalentTo(
      lhs, rhs,
      [&](Value lhsValue, Value rhsValue) -> LogicalResult {
        return cache.checkEquivalent(lhsValue, rhsValue);
      },
      [&](Value lhsResult, Value rhsResult) {
        cache.markEquivalent(lhsResult, rhsResult);
      },
      flags);
}

//===----------------------------------------------------------------------===//
// OperationFingerPrint
//===----------------------------------------------------------------------===//

template <typename T>
static void addDataToHash(llvm::SHA1 &hasher, const T &data) {
  hasher.update(
      ArrayRef<uint8_t>(reinterpret_cast<const uint8_t *>(&data), sizeof(T)));
}

OperationFingerPrint::OperationFingerPrint(Operation *topOp) {
  llvm::SHA1 hasher;

  // Hash each of the operations based upon their mutable bits:
  topOp->walk([&](Operation *op) {
    //   - Operation pointer
    addDataToHash(hasher, op);
    //   - Parent operation pointer (to take into account the nesting structure)
    if (op != topOp)
      addDataToHash(hasher, op->getParentOp());
    //   - Attributes
    addDataToHash(hasher, op->getDiscardableAttrDictionary());
    //   - Properties
    addDataToHash(hasher, op->hashProperties());
    //   - Blocks in Regions
    for (Region &region : op->getRegions()) {
      for (Block &block : region) {
        addDataToHash(hasher, &block);
        for (BlockArgument arg : block.getArguments())
          addDataToHash(hasher, arg);
      }
    }
    //   - Location
    addDataToHash(hasher, op->getLoc().getAsOpaquePointer());
    //   - Operands
    for (Value operand : op->getOperands())
      addDataToHash(hasher, operand);
    //   - Successors
    for (unsigned i = 0, e = op->getNumSuccessors(); i != e; ++i)
      addDataToHash(hasher, op->getSuccessor(i));
    //   - Result types
    for (Type t : op->getResultTypes())
      addDataToHash(hasher, t);
  });
  hash = hasher.result();
}