1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
|
//===- ControlFlowInterfaces.cpp - ControlFlow Interfaces -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include <utility>
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/Interfaces/ControlFlowInterfaces.h"
#include "llvm/ADT/SmallPtrSet.h"
using namespace mlir;
//===----------------------------------------------------------------------===//
// ControlFlowInterfaces
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ControlFlowInterfaces.cpp.inc"
SuccessorOperands::SuccessorOperands(MutableOperandRange forwardedOperands)
: producedOperandCount(0), forwardedOperands(std::move(forwardedOperands)) {
}
SuccessorOperands::SuccessorOperands(unsigned int producedOperandCount,
MutableOperandRange forwardedOperands)
: producedOperandCount(producedOperandCount),
forwardedOperands(std::move(forwardedOperands)) {}
//===----------------------------------------------------------------------===//
// BranchOpInterface
//===----------------------------------------------------------------------===//
/// Returns the `BlockArgument` corresponding to operand `operandIndex` in some
/// successor if 'operandIndex' is within the range of 'operands', or
/// std::nullopt if `operandIndex` isn't a successor operand index.
std::optional<BlockArgument>
detail::getBranchSuccessorArgument(const SuccessorOperands &operands,
unsigned operandIndex, Block *successor) {
OperandRange forwardedOperands = operands.getForwardedOperands();
// Check that the operands are valid.
if (forwardedOperands.empty())
return std::nullopt;
// Check to ensure that this operand is within the range.
unsigned operandsStart = forwardedOperands.getBeginOperandIndex();
if (operandIndex < operandsStart ||
operandIndex >= (operandsStart + forwardedOperands.size()))
return std::nullopt;
// Index the successor.
unsigned argIndex =
operands.getProducedOperandCount() + operandIndex - operandsStart;
return successor->getArgument(argIndex);
}
/// Verify that the given operands match those of the given successor block.
LogicalResult
detail::verifyBranchSuccessorOperands(Operation *op, unsigned succNo,
const SuccessorOperands &operands) {
// Check the count.
unsigned operandCount = operands.size();
Block *destBB = op->getSuccessor(succNo);
if (operandCount != destBB->getNumArguments())
return op->emitError() << "branch has " << operandCount
<< " operands for successor #" << succNo
<< ", but target block has "
<< destBB->getNumArguments();
// Check the types.
for (unsigned i = operands.getProducedOperandCount(); i != operandCount;
++i) {
if (!cast<BranchOpInterface>(op).areTypesCompatible(
operands[i].getType(), destBB->getArgument(i).getType()))
return op->emitError() << "type mismatch for bb argument #" << i
<< " of successor #" << succNo;
}
return success();
}
//===----------------------------------------------------------------------===//
// RegionBranchOpInterface
//===----------------------------------------------------------------------===//
/// Verify that types match along all region control flow edges originating from
/// `sourceNo` (region # if source is a region, std::nullopt if source is parent
/// op). `getInputsTypesForRegion` is a function that returns the types of the
/// inputs that flow from `sourceIndex' to the given region, or std::nullopt if
/// the exact type match verification is not necessary (e.g., if the Op verifies
/// the match itself).
static LogicalResult verifyTypesAlongAllEdges(
Operation *op, std::optional<unsigned> sourceNo,
function_ref<std::optional<TypeRange>(std::optional<unsigned>)>
getInputsTypesForRegion) {
auto regionInterface = cast<RegionBranchOpInterface>(op);
SmallVector<RegionSuccessor, 2> successors;
regionInterface.getSuccessorRegions(sourceNo, successors);
for (RegionSuccessor &succ : successors) {
std::optional<unsigned> succRegionNo;
if (!succ.isParent())
succRegionNo = succ.getSuccessor()->getRegionNumber();
auto printEdgeName = [&](InFlightDiagnostic &diag) -> InFlightDiagnostic & {
diag << "from ";
if (sourceNo)
diag << "Region #" << sourceNo.value();
else
diag << "parent operands";
diag << " to ";
if (succRegionNo)
diag << "Region #" << succRegionNo.value();
else
diag << "parent results";
return diag;
};
std::optional<TypeRange> sourceTypes =
getInputsTypesForRegion(succRegionNo);
if (!sourceTypes.has_value())
continue;
TypeRange succInputsTypes = succ.getSuccessorInputs().getTypes();
if (sourceTypes->size() != succInputsTypes.size()) {
InFlightDiagnostic diag = op->emitOpError(" region control flow edge ");
return printEdgeName(diag) << ": source has " << sourceTypes->size()
<< " operands, but target successor needs "
<< succInputsTypes.size();
}
for (const auto &typesIdx :
llvm::enumerate(llvm::zip(*sourceTypes, succInputsTypes))) {
Type sourceType = std::get<0>(typesIdx.value());
Type inputType = std::get<1>(typesIdx.value());
if (!regionInterface.areTypesCompatible(sourceType, inputType)) {
InFlightDiagnostic diag = op->emitOpError(" along control flow edge ");
return printEdgeName(diag)
<< ": source type #" << typesIdx.index() << " " << sourceType
<< " should match input type #" << typesIdx.index() << " "
<< inputType;
}
}
}
return success();
}
/// Verify that types match along control flow edges described the given op.
LogicalResult detail::verifyTypesAlongControlFlowEdges(Operation *op) {
auto regionInterface = cast<RegionBranchOpInterface>(op);
auto inputTypesFromParent =
[&](std::optional<unsigned> regionNo) -> TypeRange {
return regionInterface.getSuccessorEntryOperands(regionNo).getTypes();
};
// Verify types along control flow edges originating from the parent.
if (failed(verifyTypesAlongAllEdges(op, std::nullopt, inputTypesFromParent)))
return failure();
auto areTypesCompatible = [&](TypeRange lhs, TypeRange rhs) {
if (lhs.size() != rhs.size())
return false;
for (auto types : llvm::zip(lhs, rhs)) {
if (!regionInterface.areTypesCompatible(std::get<0>(types),
std::get<1>(types))) {
return false;
}
}
return true;
};
// Verify types along control flow edges originating from each region.
for (unsigned regionNo : llvm::seq(0U, op->getNumRegions())) {
Region ®ion = op->getRegion(regionNo);
// Since there can be multiple `ReturnLike` terminators or others
// implementing the `RegionBranchTerminatorOpInterface`, all should have the
// same operand types when passing them to the same region.
std::optional<OperandRange> regionReturnOperands;
for (Block &block : region) {
Operation *terminator = block.getTerminator();
auto terminatorOperands =
getRegionBranchSuccessorOperands(terminator, regionNo);
if (!terminatorOperands)
continue;
if (!regionReturnOperands) {
regionReturnOperands = terminatorOperands;
continue;
}
// Found more than one ReturnLike terminator. Make sure the operand types
// match with the first one.
if (!areTypesCompatible(regionReturnOperands->getTypes(),
terminatorOperands->getTypes()))
return op->emitOpError("Region #")
<< regionNo
<< " operands mismatch between return-like terminators";
}
auto inputTypesFromRegion =
[&](std::optional<unsigned> regionNo) -> std::optional<TypeRange> {
// If there is no return-like terminator, the op itself should verify
// type consistency.
if (!regionReturnOperands)
return std::nullopt;
// All successors get the same set of operand types.
return TypeRange(regionReturnOperands->getTypes());
};
if (failed(verifyTypesAlongAllEdges(op, regionNo, inputTypesFromRegion)))
return failure();
}
return success();
}
/// Return `true` if region `r` is reachable from region `begin` according to
/// the RegionBranchOpInterface (by taking a branch).
static bool isRegionReachable(Region *begin, Region *r) {
assert(begin->getParentOp() == r->getParentOp() &&
"expected that both regions belong to the same op");
auto op = cast<RegionBranchOpInterface>(begin->getParentOp());
SmallVector<bool> visited(op->getNumRegions(), false);
visited[begin->getRegionNumber()] = true;
// Retrieve all successors of the region and enqueue them in the worklist.
SmallVector<unsigned> worklist;
auto enqueueAllSuccessors = [&](unsigned index) {
SmallVector<RegionSuccessor> successors;
op.getSuccessorRegions(index, successors);
for (RegionSuccessor successor : successors)
if (!successor.isParent())
worklist.push_back(successor.getSuccessor()->getRegionNumber());
};
enqueueAllSuccessors(begin->getRegionNumber());
// Process all regions in the worklist via DFS.
while (!worklist.empty()) {
unsigned nextRegion = worklist.pop_back_val();
if (nextRegion == r->getRegionNumber())
return true;
if (visited[nextRegion])
continue;
visited[nextRegion] = true;
enqueueAllSuccessors(nextRegion);
}
return false;
}
/// Return `true` if `a` and `b` are in mutually exclusive regions.
///
/// 1. Find the first common of `a` and `b` (ancestor) that implements
/// RegionBranchOpInterface.
/// 2. Determine the regions `regionA` and `regionB` in which `a` and `b` are
/// contained.
/// 3. Check if `regionA` and `regionB` are mutually exclusive. They are
/// mutually exclusive if they are not reachable from each other as per
/// RegionBranchOpInterface::getSuccessorRegions.
bool mlir::insideMutuallyExclusiveRegions(Operation *a, Operation *b) {
assert(a && "expected non-empty operation");
assert(b && "expected non-empty operation");
auto branchOp = a->getParentOfType<RegionBranchOpInterface>();
while (branchOp) {
// Check if b is inside branchOp. (We already know that a is.)
if (!branchOp->isProperAncestor(b)) {
// Check next enclosing RegionBranchOpInterface.
branchOp = branchOp->getParentOfType<RegionBranchOpInterface>();
continue;
}
// b is contained in branchOp. Retrieve the regions in which `a` and `b`
// are contained.
Region *regionA = nullptr, *regionB = nullptr;
for (Region &r : branchOp->getRegions()) {
if (r.findAncestorOpInRegion(*a)) {
assert(!regionA && "already found a region for a");
regionA = &r;
}
if (r.findAncestorOpInRegion(*b)) {
assert(!regionB && "already found a region for b");
regionB = &r;
}
}
assert(regionA && regionB && "could not find region of op");
// `a` and `b` are in mutually exclusive regions if both regions are
// distinct and neither region is reachable from the other region.
return regionA != regionB && !isRegionReachable(regionA, regionB) &&
!isRegionReachable(regionB, regionA);
}
// Could not find a common RegionBranchOpInterface among a's and b's
// ancestors.
return false;
}
bool RegionBranchOpInterface::isRepetitiveRegion(unsigned index) {
Region *region = &getOperation()->getRegion(index);
return isRegionReachable(region, region);
}
void RegionBranchOpInterface::getSuccessorRegions(
std::optional<unsigned> index, SmallVectorImpl<RegionSuccessor> ®ions) {
unsigned numInputs = 0;
if (index) {
// If the predecessor is a region, get the number of operands from an
// exiting terminator in the region.
for (Block &block : getOperation()->getRegion(*index)) {
Operation *terminator = block.getTerminator();
if (getRegionBranchSuccessorOperands(terminator, *index)) {
numInputs = terminator->getNumOperands();
break;
}
}
} else {
// Otherwise, use the number of parent operation operands.
numInputs = getOperation()->getNumOperands();
}
SmallVector<Attribute, 2> operands(numInputs, nullptr);
getSuccessorRegions(index, operands, regions);
}
Region *mlir::getEnclosingRepetitiveRegion(Operation *op) {
while (Region *region = op->getParentRegion()) {
op = region->getParentOp();
if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
}
return nullptr;
}
Region *mlir::getEnclosingRepetitiveRegion(Value value) {
Region *region = value.getParentRegion();
while (region) {
Operation *op = region->getParentOp();
if (auto branchOp = dyn_cast<RegionBranchOpInterface>(op))
if (branchOp.isRepetitiveRegion(region->getRegionNumber()))
return region;
region = op->getParentRegion();
}
return nullptr;
}
//===----------------------------------------------------------------------===//
// RegionBranchTerminatorOpInterface
//===----------------------------------------------------------------------===//
/// Returns true if the given operation is either annotated with the
/// `ReturnLike` trait or implements the `RegionBranchTerminatorOpInterface`.
bool mlir::isRegionReturnLike(Operation *operation) {
return dyn_cast<RegionBranchTerminatorOpInterface>(operation) ||
operation->hasTrait<OpTrait::ReturnLike>();
}
/// Returns the mutable operands that are passed to the region with the given
/// `regionIndex`. If the operation does not implement the
/// `RegionBranchTerminatorOpInterface` and is not marked as `ReturnLike`, the
/// result will be `std::nullopt`. In all other cases, the resulting
/// `OperandRange` represents all operands that are passed to the specified
/// successor region. If `regionIndex` is `std::nullopt`, all operands that are
/// passed to the parent operation will be returned.
std::optional<MutableOperandRange>
mlir::getMutableRegionBranchSuccessorOperands(
Operation *operation, std::optional<unsigned> regionIndex) {
// Try to query a RegionBranchTerminatorOpInterface to determine
// all successor operands that will be passed to the successor
// input arguments.
if (auto regionTerminatorInterface =
dyn_cast<RegionBranchTerminatorOpInterface>(operation))
return regionTerminatorInterface.getMutableSuccessorOperands(regionIndex);
// TODO: The ReturnLike trait should imply a default implementation of the
// RegionBranchTerminatorOpInterface. This would make this code significantly
// easier. Furthermore, this may even make this function obsolete.
if (operation->hasTrait<OpTrait::ReturnLike>())
return MutableOperandRange(operation);
return std::nullopt;
}
/// Returns the read only operands that are passed to the region with the given
/// `regionIndex`. See `getMutableRegionBranchSuccessorOperands` for more
/// information.
std::optional<OperandRange>
mlir::getRegionBranchSuccessorOperands(Operation *operation,
std::optional<unsigned> regionIndex) {
auto range = getMutableRegionBranchSuccessorOperands(operation, regionIndex);
if (range)
return range->operator OperandRange();
return std::nullopt;
}
|