1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
//===- InferTypeOpInterface.cpp - Infer Type Interfaces ---------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the definitions of the infer op interfaces defined in
// `InferTypeOpInterface.td`.
//
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/InferTypeOpInterface.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "llvm/Support/FormatVariadic.h"
using namespace mlir;
namespace mlir {
#include "mlir/Interfaces/InferTypeOpInterface.cpp.inc"
} // namespace mlir
LogicalResult
mlir::reifyResultShapes(OpBuilder &b, Operation *op,
ReifiedRankedShapedTypeDims &reifiedReturnShapes) {
auto reifiableOp = dyn_cast<ReifyRankedShapedTypeOpInterface>(op);
if (!reifiableOp)
return failure();
LogicalResult status = reifiableOp.reifyResultShapes(b, reifiedReturnShapes);
#ifndef NDEBUG
if (failed(status))
return failure();
// Assert that ReifyRankedShapedTypeOpInterface::reifyResultShapes produced
// a correct result.
int64_t resultIdx = 0;
for (OpResult result : op->getResults()) {
auto shapedType = dyn_cast<ShapedType>(result.getType());
if (!shapedType)
continue;
if (!shapedType.hasRank()) {
// Nothing to check for unranked shaped values.
++resultIdx;
continue;
}
// Assert one OpFoldResult per dimension.
assert(shapedType.getRank() ==
static_cast<int64_t>(reifiedReturnShapes[resultIdx].size()) &&
"incorrect implementation of ReifyRankedShapedTypeOpInterface");
for (int64_t dim = 0; dim < shapedType.getRank(); ++dim) {
// reifyResultShapes must return:
// * Attribute for static dimensions
// * Value for dynamic dimensions
assert(shapedType.isDynamicDim(dim) ==
reifiedReturnShapes[resultIdx][dim].is<Value>() &&
"incorrect implementation of ReifyRankedShapedTypeOpInterface");
}
++resultIdx;
}
// Assert that every shaped value result was reified.
assert(resultIdx == static_cast<int64_t>(reifiedReturnShapes.size()) &&
"incorrect implementation of ReifyRankedShapedTypeOpInterface");
#endif // NDEBUG
return status;
}
bool ShapeAdaptor::hasRank() const {
if (val.isNull())
return false;
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).hasRank();
if (val.is<Attribute>())
return true;
return val.get<ShapedTypeComponents *>()->hasRank();
}
Type ShapeAdaptor::getElementType() const {
if (val.isNull())
return nullptr;
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).getElementType();
if (val.is<Attribute>())
return nullptr;
return val.get<ShapedTypeComponents *>()->getElementType();
}
void ShapeAdaptor::getDims(SmallVectorImpl<int64_t> &res) const {
assert(hasRank());
if (auto t = llvm::dyn_cast_if_present<Type>(val)) {
ArrayRef<int64_t> vals = cast<ShapedType>(t).getShape();
res.assign(vals.begin(), vals.end());
} else if (auto attr = llvm::dyn_cast_if_present<Attribute>(val)) {
auto dattr = cast<DenseIntElementsAttr>(attr);
res.clear();
res.reserve(dattr.size());
for (auto it : dattr.getValues<APInt>())
res.push_back(it.getSExtValue());
} else {
auto vals = val.get<ShapedTypeComponents *>()->getDims();
res.assign(vals.begin(), vals.end());
}
}
void ShapeAdaptor::getDims(ShapedTypeComponents &res) const {
assert(hasRank());
res.ranked = true;
getDims(res.dims);
}
int64_t ShapeAdaptor::getDimSize(int index) const {
assert(hasRank());
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).getDimSize(index);
if (auto attr = llvm::dyn_cast_if_present<Attribute>(val))
return cast<DenseIntElementsAttr>(attr)
.getValues<APInt>()[index]
.getSExtValue();
auto *stc = val.get<ShapedTypeComponents *>();
return stc->getDims()[index];
}
int64_t ShapeAdaptor::getRank() const {
assert(hasRank());
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).getRank();
if (auto attr = llvm::dyn_cast_if_present<Attribute>(val))
return cast<DenseIntElementsAttr>(attr).size();
return val.get<ShapedTypeComponents *>()->getDims().size();
}
bool ShapeAdaptor::hasStaticShape() const {
if (!hasRank())
return false;
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).hasStaticShape();
if (auto attr = llvm::dyn_cast_if_present<Attribute>(val)) {
auto dattr = cast<DenseIntElementsAttr>(attr);
for (auto index : dattr.getValues<APInt>())
if (ShapedType::isDynamic(index.getSExtValue()))
return false;
return true;
}
auto *stc = val.get<ShapedTypeComponents *>();
return llvm::none_of(stc->getDims(), ShapedType::isDynamic);
}
int64_t ShapeAdaptor::getNumElements() const {
assert(hasStaticShape() && "cannot get element count of dynamic shaped type");
if (auto t = llvm::dyn_cast_if_present<Type>(val))
return cast<ShapedType>(t).getNumElements();
if (auto attr = llvm::dyn_cast_if_present<Attribute>(val)) {
auto dattr = cast<DenseIntElementsAttr>(attr);
int64_t num = 1;
for (auto index : dattr.getValues<APInt>()) {
num *= index.getZExtValue();
assert(num >= 0 && "integer overflow in element count computation");
}
return num;
}
auto *stc = val.get<ShapedTypeComponents *>();
int64_t num = 1;
for (int64_t dim : stc->getDims()) {
num *= dim;
assert(num >= 0 && "integer overflow in element count computation");
}
return num;
}
void ShapeAdaptor::dump() const {
if (!hasRank()) {
llvm::errs() << "<<unranked>>\n";
return;
}
SmallVector<int64_t> dims;
getDims(dims);
auto mapped = llvm::map_range(dims, [](int64_t dim) -> std::string {
if (ShapedType::isDynamic(dim))
return "?";
return llvm::formatv("{0}", dim).str();
});
llvm::errs() << "rank = " << getRank() << " dims = [";
llvm::interleave(mapped, llvm::errs(), "x");
llvm::errs() << "]\n";
}
ShapeAdaptor ValueShapeRange::getValueAsShape(int index) {
Value val = operator[](index);
if (valueToShape)
if (ShapeAdaptor ret = valueToShape(val))
return ret;
DenseIntElementsAttr attr;
if (!matchPattern(val, m_Constant(&attr)))
return nullptr;
if (attr.getType().getRank() != 1)
return nullptr;
return attr;
}
ShapeAdaptor ValueShapeRange::getShape(Value val) const {
if (operandShape)
if (ShapeAdaptor ret = operandShape(val))
return ret;
return val.getType();
}
ShapeAdaptor ValueShapeRange::getShape(int index) const {
if (index < 0 || static_cast<size_t>(index) >= size())
return nullptr;
return getShape(operator[](index));
}
LogicalResult mlir::detail::inferReturnTensorTypes(
ArrayRef<ShapedTypeComponents> retComponents,
SmallVectorImpl<Type> &inferredReturnTypes) {
for (const auto &shapeAndType : retComponents) {
Type elementTy = shapeAndType.getElementType();
assert(elementTy && "element type required to construct tensor");
Attribute attr = shapeAndType.getAttribute();
if (shapeAndType.hasRank()) {
inferredReturnTypes.push_back(
RankedTensorType::get(shapeAndType.getDims(), elementTy, attr));
} else {
assert(attr == nullptr && "attribute not supported");
inferredReturnTypes.push_back(UnrankedTensorType::get(elementTy));
}
}
return success();
}
LogicalResult mlir::detail::verifyInferredResultTypes(Operation *op) {
SmallVector<Type, 4> inferredReturnTypes(op->getResultTypes());
auto retTypeFn = cast<InferTypeOpInterface>(op);
auto result = retTypeFn.refineReturnTypes(
op->getContext(), op->getLoc(), op->getOperands(),
op->getDiscardableAttrDictionary(), op->getPropertiesStorage(),
op->getRegions(), inferredReturnTypes);
if (failed(result))
op->emitOpError() << "failed to infer returned types";
return result;
}
|