1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
|
//===- ValueBoundsOpInterface.cpp - Value Bounds -------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Interfaces/ValueBoundsOpInterface.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/APSInt.h"
#include "llvm/Support/Debug.h"
#define DEBUG_TYPE "value-bounds-op-interface"
using namespace mlir;
using presburger::BoundType;
using presburger::VarKind;
namespace mlir {
#include "mlir/Interfaces/ValueBoundsOpInterface.cpp.inc"
} // namespace mlir
/// If ofr is a constant integer or an IntegerAttr, return the integer.
static std::optional<int64_t> getConstantIntValue(OpFoldResult ofr) {
// Case 1: Check for Constant integer.
if (auto val = llvm::dyn_cast_if_present<Value>(ofr)) {
APSInt intVal;
if (matchPattern(val, m_ConstantInt(&intVal)))
return intVal.getSExtValue();
return std::nullopt;
}
// Case 2: Check for IntegerAttr.
Attribute attr = llvm::dyn_cast_if_present<Attribute>(ofr);
if (auto intAttr = dyn_cast_or_null<IntegerAttr>(attr))
return intAttr.getValue().getSExtValue();
return std::nullopt;
}
ValueBoundsConstraintSet::ValueBoundsConstraintSet(MLIRContext *ctx)
: builder(ctx) {}
#ifndef NDEBUG
static void assertValidValueDim(Value value, std::optional<int64_t> dim) {
if (value.getType().isIndex()) {
assert(!dim.has_value() && "invalid dim value");
} else if (auto shapedType = dyn_cast<ShapedType>(value.getType())) {
assert(*dim >= 0 && "invalid dim value");
if (shapedType.hasRank())
assert(*dim < shapedType.getRank() && "invalid dim value");
} else {
llvm_unreachable("unsupported type");
}
}
#endif // NDEBUG
void ValueBoundsConstraintSet::addBound(BoundType type, int64_t pos,
AffineExpr expr) {
LogicalResult status = cstr.addBound(
type, pos,
AffineMap::get(cstr.getNumDimVars(), cstr.getNumSymbolVars(), expr));
if (failed(status)) {
// Non-pure (e.g., semi-affine) expressions are not yet supported by
// FlatLinearConstraints. However, we can just ignore such failures here.
// Even without this bound, there may be enough information in the
// constraint system to compute the requested bound. In case this bound is
// actually needed, `computeBound` will return `failure`.
LLVM_DEBUG(llvm::dbgs() << "Failed to add bound: " << expr << "\n");
}
}
AffineExpr ValueBoundsConstraintSet::getExpr(Value value,
std::optional<int64_t> dim) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
auto shapedType = dyn_cast<ShapedType>(value.getType());
if (shapedType) {
// Static dimension: return constant directly.
if (shapedType.hasRank() && !shapedType.isDynamicDim(*dim))
return builder.getAffineConstantExpr(shapedType.getDimSize(*dim));
} else {
// Constant index value: return directly.
if (auto constInt = getConstantIntValue(value))
return builder.getAffineConstantExpr(*constInt);
}
// Dynamic value: add to constraint set.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
if (!valueDimToPosition.contains(valueDim))
(void)insert(value, dim);
int64_t pos = getPos(value, dim);
return pos < cstr.getNumDimVars()
? builder.getAffineDimExpr(pos)
: builder.getAffineSymbolExpr(pos - cstr.getNumDimVars());
}
AffineExpr ValueBoundsConstraintSet::getExpr(OpFoldResult ofr) {
if (Value value = llvm::dyn_cast_if_present<Value>(ofr))
return getExpr(value, /*dim=*/std::nullopt);
auto constInt = getConstantIntValue(ofr);
assert(constInt.has_value() && "expected Integer constant");
return builder.getAffineConstantExpr(*constInt);
}
AffineExpr ValueBoundsConstraintSet::getExpr(int64_t constant) {
return builder.getAffineConstantExpr(constant);
}
int64_t ValueBoundsConstraintSet::insert(Value value,
std::optional<int64_t> dim,
bool isSymbol) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
assert(!valueDimToPosition.contains(valueDim) && "already mapped");
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
positionToValueDim.insert(positionToValueDim.begin() + pos, valueDim);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
worklist.push(pos);
return pos;
}
int64_t ValueBoundsConstraintSet::insert(bool isSymbol) {
int64_t pos = isSymbol ? cstr.appendVar(VarKind::Symbol)
: cstr.appendVar(VarKind::SetDim);
positionToValueDim.insert(positionToValueDim.begin() + pos, std::nullopt);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
return pos;
}
int64_t ValueBoundsConstraintSet::getPos(Value value,
std::optional<int64_t> dim) const {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert((isa<OpResult>(value) ||
cast<BlockArgument>(value).getOwner()->isEntryBlock()) &&
"unstructured control flow is not supported");
#endif // NDEBUG
auto it =
valueDimToPosition.find(std::make_pair(value, dim.value_or(kIndexValue)));
assert(it != valueDimToPosition.end() && "expected mapped entry");
return it->second;
}
static Operation *getOwnerOfValue(Value value) {
if (auto bbArg = dyn_cast<BlockArgument>(value))
return bbArg.getOwner()->getParentOp();
return value.getDefiningOp();
}
void ValueBoundsConstraintSet::processWorklist(StopConditionFn stopCondition) {
while (!worklist.empty()) {
int64_t pos = worklist.front();
worklist.pop();
assert(positionToValueDim[pos].has_value() &&
"did not expect std::nullopt on worklist");
ValueDim valueDim = *positionToValueDim[pos];
Value value = valueDim.first;
int64_t dim = valueDim.second;
// Check for static dim size.
if (dim != kIndexValue) {
auto shapedType = cast<ShapedType>(value.getType());
if (shapedType.hasRank() && !shapedType.isDynamicDim(dim)) {
bound(value)[dim] == getExpr(shapedType.getDimSize(dim));
continue;
}
}
// Do not process any further if the stop condition is met.
auto maybeDim = dim == kIndexValue ? std::nullopt : std::make_optional(dim);
if (stopCondition(value, maybeDim))
continue;
// Query `ValueBoundsOpInterface` for constraints. New items may be added to
// the worklist.
auto valueBoundsOp =
dyn_cast<ValueBoundsOpInterface>(getOwnerOfValue(value));
if (!valueBoundsOp)
continue;
if (dim == kIndexValue) {
valueBoundsOp.populateBoundsForIndexValue(value, *this);
} else {
valueBoundsOp.populateBoundsForShapedValueDim(value, dim, *this);
}
}
}
void ValueBoundsConstraintSet::projectOut(int64_t pos) {
assert(pos >= 0 && pos < static_cast<int64_t>(positionToValueDim.size()) &&
"invalid position");
cstr.projectOut(pos);
if (positionToValueDim[pos].has_value()) {
bool erased = valueDimToPosition.erase(*positionToValueDim[pos]);
(void)erased;
assert(erased && "inconsistent reverse mapping");
}
positionToValueDim.erase(positionToValueDim.begin() + pos);
// Update reverse mapping.
for (int64_t i = pos, e = positionToValueDim.size(); i < e; ++i)
if (positionToValueDim[i].has_value())
valueDimToPosition[*positionToValueDim[i]] = i;
}
void ValueBoundsConstraintSet::projectOut(
function_ref<bool(ValueDim)> condition) {
int64_t nextPos = 0;
while (nextPos < static_cast<int64_t>(positionToValueDim.size())) {
if (positionToValueDim[nextPos].has_value() &&
condition(*positionToValueDim[nextPos])) {
projectOut(nextPos);
// The column was projected out so another column is now at that position.
// Do not increase the counter.
} else {
++nextPos;
}
}
}
LogicalResult ValueBoundsConstraintSet::computeBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, StopConditionFn stopCondition,
bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
assert(!stopCondition(value, dim) &&
"stop condition should not be satisfied for starting point");
#endif // NDEBUG
int64_t ubAdjustment = closedUB ? 0 : 1;
Builder b(value.getContext());
mapOperands.clear();
if (stopCondition(value, dim)) {
// Special case: If the stop condition is satisfied for the input
// value/dimension, directly return it.
mapOperands.push_back(std::make_pair(value, dim));
AffineExpr bound = b.getAffineDimExpr(0);
if (type == BoundType::UB)
bound = bound + ubAdjustment;
resultMap = AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
b.getAffineDimExpr(0));
return success();
}
// Process the backward slice of `value` (i.e., reverse use-def chain) until
// `stopCondition` is met.
ValueDim valueDim = std::make_pair(value, dim.value_or(kIndexValue));
ValueBoundsConstraintSet cstr(value.getContext());
int64_t pos = cstr.insert(value, dim, /*isSymbol=*/false);
cstr.processWorklist(stopCondition);
// Project out all variables (apart from `valueDim`) that do not match the
// stop condition.
cstr.projectOut([&](ValueDim p) {
// Do not project out `valueDim`.
if (valueDim == p)
return false;
auto maybeDim =
p.second == kIndexValue ? std::nullopt : std::make_optional(p.second);
return !stopCondition(p.first, maybeDim);
});
// Compute lower and upper bounds for `valueDim`.
SmallVector<AffineMap> lb(1), ub(1);
cstr.cstr.getSliceBounds(pos, 1, value.getContext(), &lb, &ub,
/*getClosedUB=*/true);
// Note: There are TODOs in the implementation of `getSliceBounds`. In such a
// case, no lower/upper bound can be computed at the moment.
// EQ, UB bounds: upper bound is needed.
if ((type != BoundType::LB) &&
(ub.empty() || !ub[0] || ub[0].getNumResults() == 0))
return failure();
// EQ, LB bounds: lower bound is needed.
if ((type != BoundType::UB) &&
(lb.empty() || !lb[0] || lb[0].getNumResults() == 0))
return failure();
// TODO: Generate an affine map with multiple results.
if (type != BoundType::LB)
assert(ub.size() == 1 && ub[0].getNumResults() == 1 &&
"multiple bounds not supported");
if (type != BoundType::UB)
assert(lb.size() == 1 && lb[0].getNumResults() == 1 &&
"multiple bounds not supported");
// EQ bound: lower and upper bound must match.
if (type == BoundType::EQ && ub[0] != lb[0])
return failure();
AffineMap bound;
if (type == BoundType::EQ || type == BoundType::LB) {
bound = lb[0];
} else {
// Computed UB is a closed bound.
bound = AffineMap::get(ub[0].getNumDims(), ub[0].getNumSymbols(),
ub[0].getResult(0) + ubAdjustment);
}
// Gather all SSA values that are used in the computed bound.
assert(cstr.cstr.getNumDimAndSymbolVars() == cstr.positionToValueDim.size() &&
"inconsistent mapping state");
SmallVector<AffineExpr> replacementDims, replacementSymbols;
int64_t numDims = 0, numSymbols = 0;
for (int64_t i = 0; i < cstr.cstr.getNumDimAndSymbolVars(); ++i) {
// Skip `value`.
if (i == pos)
continue;
// Check if the position `i` is used in the generated bound. If so, it must
// be included in the generated affine.apply op.
bool used = false;
bool isDim = i < cstr.cstr.getNumDimVars();
if (isDim) {
if (bound.isFunctionOfDim(i))
used = true;
} else {
if (bound.isFunctionOfSymbol(i - cstr.cstr.getNumDimVars()))
used = true;
}
if (!used) {
// Not used: Remove dim/symbol from the result.
if (isDim) {
replacementDims.push_back(b.getAffineConstantExpr(0));
} else {
replacementSymbols.push_back(b.getAffineConstantExpr(0));
}
continue;
}
if (isDim) {
replacementDims.push_back(b.getAffineDimExpr(numDims++));
} else {
replacementSymbols.push_back(b.getAffineSymbolExpr(numSymbols++));
}
assert(cstr.positionToValueDim[i].has_value() &&
"cannot build affine map in terms of anonymous column");
ValueBoundsConstraintSet::ValueDim valueDim = *cstr.positionToValueDim[i];
Value value = valueDim.first;
int64_t dim = valueDim.second;
if (dim == ValueBoundsConstraintSet::kIndexValue) {
// An index-type value is used: can be used directly in the affine.apply
// op.
assert(value.getType().isIndex() && "expected index type");
mapOperands.push_back(std::make_pair(value, std::nullopt));
continue;
}
assert(cast<ShapedType>(value.getType()).isDynamicDim(dim) &&
"expected dynamic dim");
mapOperands.push_back(std::make_pair(value, dim));
}
resultMap = bound.replaceDimsAndSymbols(replacementDims, replacementSymbols,
numDims, numSymbols);
return success();
}
LogicalResult ValueBoundsConstraintSet::computeDependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueDimList dependencies,
bool closedUB) {
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) {
return llvm::is_contained(dependencies, std::make_pair(v, d));
},
closedUB);
}
LogicalResult ValueBoundsConstraintSet::computeIndependentBound(
AffineMap &resultMap, ValueDimList &mapOperands, presburger::BoundType type,
Value value, std::optional<int64_t> dim, ValueRange independencies,
bool closedUB) {
// Return "true" if the given value is independent of all values in
// `independencies`. I.e., neither the value itself nor any value in the
// backward slice (reverse use-def chain) is contained in `independencies`.
auto isIndependent = [&](Value v) {
SmallVector<Value> worklist;
DenseSet<Value> visited;
worklist.push_back(v);
while (!worklist.empty()) {
Value next = worklist.pop_back_val();
if (visited.contains(next))
continue;
visited.insert(next);
if (llvm::is_contained(independencies, next))
return false;
// TODO: DominanceInfo could be used to stop the traversal early.
Operation *op = next.getDefiningOp();
if (!op)
continue;
worklist.append(op->getOperands().begin(), op->getOperands().end());
}
return true;
};
// Reify bounds in terms of any independent values.
return computeBound(
resultMap, mapOperands, type, value, dim,
[&](Value v, std::optional<int64_t> d) { return isIndependent(v); },
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, Value value, std::optional<int64_t> dim,
StopConditionFn stopCondition, bool closedUB) {
#ifndef NDEBUG
assertValidValueDim(value, dim);
#endif // NDEBUG
AffineMap map =
AffineMap::get(/*dimCount=*/1, /*symbolCount=*/0,
Builder(value.getContext()).getAffineDimExpr(0));
return computeConstantBound(type, map, {{value, dim}}, stopCondition,
closedUB);
}
FailureOr<int64_t> ValueBoundsConstraintSet::computeConstantBound(
presburger::BoundType type, AffineMap map, ValueDimList operands,
StopConditionFn stopCondition, bool closedUB) {
assert(map.getNumResults() == 1 && "expected affine map with one result");
ValueBoundsConstraintSet cstr(map.getContext());
int64_t pos = cstr.insert(/*isSymbol=*/false);
// Add map and operands to the constraint set. Dimensions are converted to
// symbols. All operands are added to the worklist.
auto mapper = [&](std::pair<Value, std::optional<int64_t>> v) {
return cstr.getExpr(v.first, v.second);
};
SmallVector<AffineExpr> dimReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).take_front(map.getNumDims()), mapper));
SmallVector<AffineExpr> symReplacements = llvm::to_vector(
llvm::map_range(ArrayRef(operands).drop_front(map.getNumDims()), mapper));
cstr.addBound(
presburger::BoundType::EQ, pos,
map.getResult(0).replaceDimsAndSymbols(dimReplacements, symReplacements));
// Process the backward slice of `operands` (i.e., reverse use-def chain)
// until `stopCondition` is met.
if (stopCondition) {
cstr.processWorklist(stopCondition);
} else {
// No stop condition specified: Keep adding constraints until a bound could
// be computed.
cstr.processWorklist(
/*stopCondition=*/[&](Value v, std::optional<int64_t> dim) {
return cstr.cstr.getConstantBound64(type, pos).has_value();
});
}
// Compute constant bound for `valueDim`.
int64_t ubAdjustment = closedUB ? 0 : 1;
if (auto bound = cstr.cstr.getConstantBound64(type, pos))
return type == BoundType::UB ? *bound + ubAdjustment : *bound;
return failure();
}
FailureOr<bool>
ValueBoundsConstraintSet::areEqual(Value value1, Value value2,
std::optional<int64_t> dim1,
std::optional<int64_t> dim2) {
#ifndef NDEBUG
assertValidValueDim(value1, dim1);
assertValidValueDim(value2, dim2);
#endif // NDEBUG
// Subtract the two values/dimensions from each other. If the result is 0,
// both are equal.
Builder b(value1.getContext());
AffineMap map = AffineMap::get(/*dimCount=*/2, /*symbolCount=*/0,
b.getAffineDimExpr(0) - b.getAffineDimExpr(1));
FailureOr<int64_t> bound = computeConstantBound(
presburger::BoundType::EQ, map, {{value1, dim1}, {value2, dim2}});
if (failed(bound))
return failure();
return *bound == 0;
}
ValueBoundsConstraintSet::BoundBuilder &
ValueBoundsConstraintSet::BoundBuilder::operator[](int64_t dim) {
assert(!this->dim.has_value() && "dim was already set");
this->dim = dim;
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
return *this;
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::UB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(AffineExpr expr) {
operator<(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(AffineExpr expr) {
operator>=(expr + 1);
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::LB, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(AffineExpr expr) {
#ifndef NDEBUG
assertValidValueDim(value, this->dim);
#endif // NDEBUG
cstr.addBound(BoundType::EQ, cstr.getPos(value, this->dim), expr);
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(OpFoldResult ofr) {
operator<(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(OpFoldResult ofr) {
operator<=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(OpFoldResult ofr) {
operator>(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(OpFoldResult ofr) {
operator>=(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(OpFoldResult ofr) {
operator==(cstr.getExpr(ofr));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<(int64_t i) {
operator<(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator<=(int64_t i) {
operator<=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>(int64_t i) {
operator>(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator>=(int64_t i) {
operator>=(cstr.getExpr(i));
}
void ValueBoundsConstraintSet::BoundBuilder::operator==(int64_t i) {
operator==(cstr.getExpr(i));
}
|