1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
|
//===- PassTiming.cpp -----------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "PassDetail.h"
#include "mlir/Pass/PassManager.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Support/Threading.h"
#include <chrono>
#include <optional>
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// PassTiming
//===----------------------------------------------------------------------===//
namespace {
struct PassTiming : public PassInstrumentation {
PassTiming(TimingScope &timingScope) : rootScope(timingScope) {}
PassTiming(std::unique_ptr<TimingManager> tm)
: ownedTimingManager(std::move(tm)),
ownedTimingScope(ownedTimingManager->getRootScope()),
rootScope(ownedTimingScope) {}
/// If a pass can spawn additional work on other threads, it records the
/// index to its currently active timer here. Passes that run on a
/// newly-forked thread will check this list to find the active timer of the
/// parent thread into which the new thread should be nested.
DenseMap<PipelineParentInfo, unsigned> parentTimerIndices;
/// A stack of the currently active timing scopes per thread.
DenseMap<uint64_t, SmallVector<TimingScope, 4>> activeThreadTimers;
/// The timing manager owned by this instrumentation (in case timing was
/// enabled by the user on the pass manager without providing an external
/// timing manager). This *must* appear before the `ownedTimingScope` to
/// ensure the timing manager is destroyed *after* the scope, since the latter
/// may hold a timer that points into the former.
std::unique_ptr<TimingManager> ownedTimingManager;
TimingScope ownedTimingScope;
/// The root timing scope into which timing is reported.
TimingScope &rootScope;
//===--------------------------------------------------------------------===//
// Pipeline
//===--------------------------------------------------------------------===//
void runBeforePipeline(std::optional<OperationName> name,
const PipelineParentInfo &parentInfo) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
// Find the parent scope, either using the parent info or the root scope
// (e.g. in the case of the top-level pipeline).
TimingScope *parentScope;
auto it = parentTimerIndices.find(parentInfo);
if (it != parentTimerIndices.end())
parentScope = &activeThreadTimers[parentInfo.parentThreadID][it->second];
else
parentScope = &rootScope;
// Use nullptr to anchor op-agnostic pipelines, otherwise use the name of
// the operation.
const void *timerId = name ? name->getAsOpaquePointer() : nullptr;
activeTimers.push_back(parentScope->nest(timerId, [name] {
return ("'" + (name ? name->getStringRef() : "any") + "' Pipeline").str();
}));
}
void runAfterPipeline(std::optional<OperationName>,
const PipelineParentInfo &) override {
auto &activeTimers = activeThreadTimers[llvm::get_threadid()];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
//===--------------------------------------------------------------------===//
// Pass
//===--------------------------------------------------------------------===//
void runBeforePass(Pass *pass, Operation *) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
auto &parentScope = activeTimers.empty() ? rootScope : activeTimers.back();
if (auto *adaptor = dyn_cast<OpToOpPassAdaptor>(pass)) {
parentTimerIndices[{tid, pass}] = activeTimers.size();
auto scope =
parentScope.nest(pass->getThreadingSiblingOrThis(),
[adaptor]() { return adaptor->getAdaptorName(); });
if (adaptor->getPassManagers().size() <= 1)
scope.hide();
activeTimers.push_back(std::move(scope));
} else {
activeTimers.push_back(
parentScope.nest(pass->getThreadingSiblingOrThis(),
[pass]() { return std::string(pass->getName()); }));
}
}
void runAfterPass(Pass *pass, Operation *) override {
auto tid = llvm::get_threadid();
if (isa<OpToOpPassAdaptor>(pass))
parentTimerIndices.erase({tid, pass});
auto &activeTimers = activeThreadTimers[tid];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
void runAfterPassFailed(Pass *pass, Operation *op) override {
runAfterPass(pass, op);
}
//===--------------------------------------------------------------------===//
// Analysis
//===--------------------------------------------------------------------===//
void runBeforeAnalysis(StringRef name, TypeID id, Operation *) override {
auto tid = llvm::get_threadid();
auto &activeTimers = activeThreadTimers[tid];
auto &parentScope = activeTimers.empty() ? rootScope : activeTimers.back();
activeTimers.push_back(parentScope.nest(
id.getAsOpaquePointer(), [name] { return "(A) " + name.str(); }));
}
void runAfterAnalysis(StringRef, TypeID, Operation *) override {
auto &activeTimers = activeThreadTimers[llvm::get_threadid()];
assert(!activeTimers.empty() && "expected active timer");
activeTimers.pop_back();
}
};
} // namespace
//===----------------------------------------------------------------------===//
// PassManager
//===----------------------------------------------------------------------===//
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(TimingScope &timingScope) {
if (!timingScope)
return;
addInstrumentation(std::make_unique<PassTiming>(timingScope));
}
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming(std::unique_ptr<TimingManager> tm) {
if (!tm->getRootTimer())
return; // no need to keep the timing manager around if it's disabled
addInstrumentation(std::make_unique<PassTiming>(std::move(tm)));
}
/// Add an instrumentation to time the execution of passes and the computation
/// of analyses.
void PassManager::enableTiming() {
auto tm = std::make_unique<DefaultTimingManager>();
tm->setEnabled(true);
enableTiming(std::move(tm));
}
|