1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328
|
//===- ByteCode.cpp - Pattern ByteCode Interpreter ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements MLIR to byte-code generation and the interpreter.
//
//===----------------------------------------------------------------------===//
#include "ByteCode.h"
#include "mlir/Analysis/Liveness.h"
#include "mlir/Dialect/PDL/IR/PDLTypes.h"
#include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/RegionGraphTraits.h"
#include "llvm/ADT/IntervalMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include <numeric>
#include <optional>
#define DEBUG_TYPE "pdl-bytecode"
using namespace mlir;
using namespace mlir::detail;
//===----------------------------------------------------------------------===//
// PDLByteCodePattern
//===----------------------------------------------------------------------===//
PDLByteCodePattern PDLByteCodePattern::create(pdl_interp::RecordMatchOp matchOp,
PDLPatternConfigSet *configSet,
ByteCodeAddr rewriterAddr) {
PatternBenefit benefit = matchOp.getBenefit();
MLIRContext *ctx = matchOp.getContext();
// Collect the set of generated operations.
SmallVector<StringRef, 8> generatedOps;
if (ArrayAttr generatedOpsAttr = matchOp.getGeneratedOpsAttr())
generatedOps =
llvm::to_vector<8>(generatedOpsAttr.getAsValueRange<StringAttr>());
// Check to see if this is pattern matches a specific operation type.
if (std::optional<StringRef> rootKind = matchOp.getRootKind())
return PDLByteCodePattern(rewriterAddr, configSet, *rootKind, benefit, ctx,
generatedOps);
return PDLByteCodePattern(rewriterAddr, configSet, MatchAnyOpTypeTag(),
benefit, ctx, generatedOps);
}
//===----------------------------------------------------------------------===//
// PDLByteCodeMutableState
//===----------------------------------------------------------------------===//
/// Set the new benefit for a bytecode pattern. The `patternIndex` corresponds
/// to the position of the pattern within the range returned by
/// `PDLByteCode::getPatterns`.
void PDLByteCodeMutableState::updatePatternBenefit(unsigned patternIndex,
PatternBenefit benefit) {
currentPatternBenefits[patternIndex] = benefit;
}
/// Cleanup any allocated state after a full match/rewrite has been completed.
/// This method should be called irregardless of whether the match+rewrite was a
/// success or not.
void PDLByteCodeMutableState::cleanupAfterMatchAndRewrite() {
allocatedTypeRangeMemory.clear();
allocatedValueRangeMemory.clear();
}
//===----------------------------------------------------------------------===//
// Bytecode OpCodes
//===----------------------------------------------------------------------===//
namespace {
enum OpCode : ByteCodeField {
/// Apply an externally registered constraint.
ApplyConstraint,
/// Apply an externally registered rewrite.
ApplyRewrite,
/// Check if two generic values are equal.
AreEqual,
/// Check if two ranges are equal.
AreRangesEqual,
/// Unconditional branch.
Branch,
/// Compare the operand count of an operation with a constant.
CheckOperandCount,
/// Compare the name of an operation with a constant.
CheckOperationName,
/// Compare the result count of an operation with a constant.
CheckResultCount,
/// Compare a range of types to a constant range of types.
CheckTypes,
/// Continue to the next iteration of a loop.
Continue,
/// Create a type range from a list of constant types.
CreateConstantTypeRange,
/// Create an operation.
CreateOperation,
/// Create a type range from a list of dynamic types.
CreateDynamicTypeRange,
/// Create a value range.
CreateDynamicValueRange,
/// Erase an operation.
EraseOp,
/// Extract the op from a range at the specified index.
ExtractOp,
/// Extract the type from a range at the specified index.
ExtractType,
/// Extract the value from a range at the specified index.
ExtractValue,
/// Terminate a matcher or rewrite sequence.
Finalize,
/// Iterate over a range of values.
ForEach,
/// Get a specific attribute of an operation.
GetAttribute,
/// Get the type of an attribute.
GetAttributeType,
/// Get the defining operation of a value.
GetDefiningOp,
/// Get a specific operand of an operation.
GetOperand0,
GetOperand1,
GetOperand2,
GetOperand3,
GetOperandN,
/// Get a specific operand group of an operation.
GetOperands,
/// Get a specific result of an operation.
GetResult0,
GetResult1,
GetResult2,
GetResult3,
GetResultN,
/// Get a specific result group of an operation.
GetResults,
/// Get the users of a value or a range of values.
GetUsers,
/// Get the type of a value.
GetValueType,
/// Get the types of a value range.
GetValueRangeTypes,
/// Check if a generic value is not null.
IsNotNull,
/// Record a successful pattern match.
RecordMatch,
/// Replace an operation.
ReplaceOp,
/// Compare an attribute with a set of constants.
SwitchAttribute,
/// Compare the operand count of an operation with a set of constants.
SwitchOperandCount,
/// Compare the name of an operation with a set of constants.
SwitchOperationName,
/// Compare the result count of an operation with a set of constants.
SwitchResultCount,
/// Compare a type with a set of constants.
SwitchType,
/// Compare a range of types with a set of constants.
SwitchTypes,
};
} // namespace
/// A marker used to indicate if an operation should infer types.
static constexpr ByteCodeField kInferTypesMarker =
std::numeric_limits<ByteCodeField>::max();
//===----------------------------------------------------------------------===//
// ByteCode Generation
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// Generator
namespace {
struct ByteCodeLiveRange;
struct ByteCodeWriter;
/// Check if the given class `T` can be converted to an opaque pointer.
template <typename T, typename... Args>
using has_pointer_traits = decltype(std::declval<T>().getAsOpaquePointer());
/// This class represents the main generator for the pattern bytecode.
class Generator {
public:
Generator(MLIRContext *ctx, std::vector<const void *> &uniquedData,
SmallVectorImpl<ByteCodeField> &matcherByteCode,
SmallVectorImpl<ByteCodeField> &rewriterByteCode,
SmallVectorImpl<PDLByteCodePattern> &patterns,
ByteCodeField &maxValueMemoryIndex,
ByteCodeField &maxOpRangeMemoryIndex,
ByteCodeField &maxTypeRangeMemoryIndex,
ByteCodeField &maxValueRangeMemoryIndex,
ByteCodeField &maxLoopLevel,
llvm::StringMap<PDLConstraintFunction> &constraintFns,
llvm::StringMap<PDLRewriteFunction> &rewriteFns,
const DenseMap<Operation *, PDLPatternConfigSet *> &configMap)
: ctx(ctx), uniquedData(uniquedData), matcherByteCode(matcherByteCode),
rewriterByteCode(rewriterByteCode), patterns(patterns),
maxValueMemoryIndex(maxValueMemoryIndex),
maxOpRangeMemoryIndex(maxOpRangeMemoryIndex),
maxTypeRangeMemoryIndex(maxTypeRangeMemoryIndex),
maxValueRangeMemoryIndex(maxValueRangeMemoryIndex),
maxLoopLevel(maxLoopLevel), configMap(configMap) {
for (const auto &it : llvm::enumerate(constraintFns))
constraintToMemIndex.try_emplace(it.value().first(), it.index());
for (const auto &it : llvm::enumerate(rewriteFns))
externalRewriterToMemIndex.try_emplace(it.value().first(), it.index());
}
/// Generate the bytecode for the given PDL interpreter module.
void generate(ModuleOp module);
/// Return the memory index to use for the given value.
ByteCodeField &getMemIndex(Value value) {
assert(valueToMemIndex.count(value) &&
"expected memory index to be assigned");
return valueToMemIndex[value];
}
/// Return the range memory index used to store the given range value.
ByteCodeField &getRangeStorageIndex(Value value) {
assert(valueToRangeIndex.count(value) &&
"expected range index to be assigned");
return valueToRangeIndex[value];
}
/// Return an index to use when referring to the given data that is uniqued in
/// the MLIR context.
template <typename T>
std::enable_if_t<!std::is_convertible<T, Value>::value, ByteCodeField &>
getMemIndex(T val) {
const void *opaqueVal = val.getAsOpaquePointer();
// Get or insert a reference to this value.
auto it = uniquedDataToMemIndex.try_emplace(
opaqueVal, maxValueMemoryIndex + uniquedData.size());
if (it.second)
uniquedData.push_back(opaqueVal);
return it.first->second;
}
private:
/// Allocate memory indices for the results of operations within the matcher
/// and rewriters.
void allocateMemoryIndices(pdl_interp::FuncOp matcherFunc,
ModuleOp rewriterModule);
/// Generate the bytecode for the given operation.
void generate(Region *region, ByteCodeWriter &writer);
void generate(Operation *op, ByteCodeWriter &writer);
void generate(pdl_interp::ApplyConstraintOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ApplyRewriteOp op, ByteCodeWriter &writer);
void generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer);
void generate(pdl_interp::BranchOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckOperandCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckOperationNameOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckResultCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateOperationOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::EraseOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer);
void generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetAttributeTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetDefiningOpOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer);
void generate(pdl_interp::GetValueTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer);
void generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer);
void generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchAttributeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchOperandCountOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchOperationNameOp op, ByteCodeWriter &writer);
void generate(pdl_interp::SwitchResultCountOp op, ByteCodeWriter &writer);
/// Mapping from value to its corresponding memory index.
DenseMap<Value, ByteCodeField> valueToMemIndex;
/// Mapping from a range value to its corresponding range storage index.
DenseMap<Value, ByteCodeField> valueToRangeIndex;
/// Mapping from the name of an externally registered rewrite to its index in
/// the bytecode registry.
llvm::StringMap<ByteCodeField> externalRewriterToMemIndex;
/// Mapping from the name of an externally registered constraint to its index
/// in the bytecode registry.
llvm::StringMap<ByteCodeField> constraintToMemIndex;
/// Mapping from rewriter function name to the bytecode address of the
/// rewriter function in byte.
llvm::StringMap<ByteCodeAddr> rewriterToAddr;
/// Mapping from a uniqued storage object to its memory index within
/// `uniquedData`.
DenseMap<const void *, ByteCodeField> uniquedDataToMemIndex;
/// The current level of the foreach loop.
ByteCodeField curLoopLevel = 0;
/// The current MLIR context.
MLIRContext *ctx;
/// Mapping from block to its address.
DenseMap<Block *, ByteCodeAddr> blockToAddr;
/// Data of the ByteCode class to be populated.
std::vector<const void *> &uniquedData;
SmallVectorImpl<ByteCodeField> &matcherByteCode;
SmallVectorImpl<ByteCodeField> &rewriterByteCode;
SmallVectorImpl<PDLByteCodePattern> &patterns;
ByteCodeField &maxValueMemoryIndex;
ByteCodeField &maxOpRangeMemoryIndex;
ByteCodeField &maxTypeRangeMemoryIndex;
ByteCodeField &maxValueRangeMemoryIndex;
ByteCodeField &maxLoopLevel;
/// A map of pattern configurations.
const DenseMap<Operation *, PDLPatternConfigSet *> &configMap;
};
/// This class provides utilities for writing a bytecode stream.
struct ByteCodeWriter {
ByteCodeWriter(SmallVectorImpl<ByteCodeField> &bytecode, Generator &generator)
: bytecode(bytecode), generator(generator) {}
/// Append a field to the bytecode.
void append(ByteCodeField field) { bytecode.push_back(field); }
void append(OpCode opCode) { bytecode.push_back(opCode); }
/// Append an address to the bytecode.
void append(ByteCodeAddr field) {
static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2,
"unexpected ByteCode address size");
ByteCodeField fieldParts[2];
std::memcpy(fieldParts, &field, sizeof(ByteCodeAddr));
bytecode.append({fieldParts[0], fieldParts[1]});
}
/// Append a single successor to the bytecode, the exact address will need to
/// be resolved later.
void append(Block *successor) {
// Add back a reference to the successor so that the address can be resolved
// later.
unresolvedSuccessorRefs[successor].push_back(bytecode.size());
append(ByteCodeAddr(0));
}
/// Append a successor range to the bytecode, the exact address will need to
/// be resolved later.
void append(SuccessorRange successors) {
for (Block *successor : successors)
append(successor);
}
/// Append a range of values that will be read as generic PDLValues.
void appendPDLValueList(OperandRange values) {
bytecode.push_back(values.size());
for (Value value : values)
appendPDLValue(value);
}
/// Append a value as a PDLValue.
void appendPDLValue(Value value) {
appendPDLValueKind(value);
append(value);
}
/// Append the PDLValue::Kind of the given value.
void appendPDLValueKind(Value value) { appendPDLValueKind(value.getType()); }
/// Append the PDLValue::Kind of the given type.
void appendPDLValueKind(Type type) {
PDLValue::Kind kind =
TypeSwitch<Type, PDLValue::Kind>(type)
.Case<pdl::AttributeType>(
[](Type) { return PDLValue::Kind::Attribute; })
.Case<pdl::OperationType>(
[](Type) { return PDLValue::Kind::Operation; })
.Case<pdl::RangeType>([](pdl::RangeType rangeTy) {
if (isa<pdl::TypeType>(rangeTy.getElementType()))
return PDLValue::Kind::TypeRange;
return PDLValue::Kind::ValueRange;
})
.Case<pdl::TypeType>([](Type) { return PDLValue::Kind::Type; })
.Case<pdl::ValueType>([](Type) { return PDLValue::Kind::Value; });
bytecode.push_back(static_cast<ByteCodeField>(kind));
}
/// Append a value that will be stored in a memory slot and not inline within
/// the bytecode.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value ||
std::is_pointer<T>::value>
append(T value) {
bytecode.push_back(generator.getMemIndex(value));
}
/// Append a range of values.
template <typename T, typename IteratorT = llvm::detail::IterOfRange<T>>
std::enable_if_t<!llvm::is_detected<has_pointer_traits, T>::value>
append(T range) {
bytecode.push_back(llvm::size(range));
for (auto it : range)
append(it);
}
/// Append a variadic number of fields to the bytecode.
template <typename FieldTy, typename Field2Ty, typename... FieldTys>
void append(FieldTy field, Field2Ty field2, FieldTys... fields) {
append(field);
append(field2, fields...);
}
/// Appends a value as a pointer, stored inline within the bytecode.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value>
appendInline(T value) {
constexpr size_t numParts = sizeof(const void *) / sizeof(ByteCodeField);
const void *pointer = value.getAsOpaquePointer();
ByteCodeField fieldParts[numParts];
std::memcpy(fieldParts, &pointer, sizeof(const void *));
bytecode.append(fieldParts, fieldParts + numParts);
}
/// Successor references in the bytecode that have yet to be resolved.
DenseMap<Block *, SmallVector<unsigned, 4>> unresolvedSuccessorRefs;
/// The underlying bytecode buffer.
SmallVectorImpl<ByteCodeField> &bytecode;
/// The main generator producing PDL.
Generator &generator;
};
/// This class represents a live range of PDL Interpreter values, containing
/// information about when values are live within a match/rewrite.
struct ByteCodeLiveRange {
using Set = llvm::IntervalMap<uint64_t, char, 16>;
using Allocator = Set::Allocator;
ByteCodeLiveRange(Allocator &alloc) : liveness(new Set(alloc)) {}
/// Union this live range with the one provided.
void unionWith(const ByteCodeLiveRange &rhs) {
for (auto it = rhs.liveness->begin(), e = rhs.liveness->end(); it != e;
++it)
liveness->insert(it.start(), it.stop(), /*dummyValue*/ 0);
}
/// Returns true if this range overlaps with the one provided.
bool overlaps(const ByteCodeLiveRange &rhs) const {
return llvm::IntervalMapOverlaps<Set, Set>(*liveness, *rhs.liveness)
.valid();
}
/// A map representing the ranges of the match/rewrite that a value is live in
/// the interpreter.
///
/// We use std::unique_ptr here, because IntervalMap does not provide a
/// correct copy or move constructor. We can eliminate the pointer once
/// https://reviews.llvm.org/D113240 lands.
std::unique_ptr<llvm::IntervalMap<uint64_t, char, 16>> liveness;
/// The operation range storage index for this range.
std::optional<unsigned> opRangeIndex;
/// The type range storage index for this range.
std::optional<unsigned> typeRangeIndex;
/// The value range storage index for this range.
std::optional<unsigned> valueRangeIndex;
};
} // namespace
void Generator::generate(ModuleOp module) {
auto matcherFunc = module.lookupSymbol<pdl_interp::FuncOp>(
pdl_interp::PDLInterpDialect::getMatcherFunctionName());
ModuleOp rewriterModule = module.lookupSymbol<ModuleOp>(
pdl_interp::PDLInterpDialect::getRewriterModuleName());
assert(matcherFunc && rewriterModule && "invalid PDL Interpreter module");
// Allocate memory indices for the results of operations within the matcher
// and rewriters.
allocateMemoryIndices(matcherFunc, rewriterModule);
// Generate code for the rewriter functions.
ByteCodeWriter rewriterByteCodeWriter(rewriterByteCode, *this);
for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) {
rewriterToAddr.try_emplace(rewriterFunc.getName(), rewriterByteCode.size());
for (Operation &op : rewriterFunc.getOps())
generate(&op, rewriterByteCodeWriter);
}
assert(rewriterByteCodeWriter.unresolvedSuccessorRefs.empty() &&
"unexpected branches in rewriter function");
// Generate code for the matcher function.
ByteCodeWriter matcherByteCodeWriter(matcherByteCode, *this);
generate(&matcherFunc.getBody(), matcherByteCodeWriter);
// Resolve successor references in the matcher.
for (auto &it : matcherByteCodeWriter.unresolvedSuccessorRefs) {
ByteCodeAddr addr = blockToAddr[it.first];
for (unsigned offsetToFix : it.second)
std::memcpy(&matcherByteCode[offsetToFix], &addr, sizeof(ByteCodeAddr));
}
}
void Generator::allocateMemoryIndices(pdl_interp::FuncOp matcherFunc,
ModuleOp rewriterModule) {
// Rewriters use simplistic allocation scheme that simply assigns an index to
// each result.
for (auto rewriterFunc : rewriterModule.getOps<pdl_interp::FuncOp>()) {
ByteCodeField index = 0, typeRangeIndex = 0, valueRangeIndex = 0;
auto processRewriterValue = [&](Value val) {
valueToMemIndex.try_emplace(val, index++);
if (pdl::RangeType rangeType = dyn_cast<pdl::RangeType>(val.getType())) {
Type elementTy = rangeType.getElementType();
if (isa<pdl::TypeType>(elementTy))
valueToRangeIndex.try_emplace(val, typeRangeIndex++);
else if (isa<pdl::ValueType>(elementTy))
valueToRangeIndex.try_emplace(val, valueRangeIndex++);
}
};
for (BlockArgument arg : rewriterFunc.getArguments())
processRewriterValue(arg);
rewriterFunc.getBody().walk([&](Operation *op) {
for (Value result : op->getResults())
processRewriterValue(result);
});
if (index > maxValueMemoryIndex)
maxValueMemoryIndex = index;
if (typeRangeIndex > maxTypeRangeMemoryIndex)
maxTypeRangeMemoryIndex = typeRangeIndex;
if (valueRangeIndex > maxValueRangeMemoryIndex)
maxValueRangeMemoryIndex = valueRangeIndex;
}
// The matcher function uses a more sophisticated numbering that tries to
// minimize the number of memory indices assigned. This is done by determining
// a live range of the values within the matcher, then the allocation is just
// finding the minimal number of overlapping live ranges. This is essentially
// a simplified form of register allocation where we don't necessarily have a
// limited number of registers, but we still want to minimize the number used.
DenseMap<Operation *, unsigned> opToFirstIndex;
DenseMap<Operation *, unsigned> opToLastIndex;
// A custom walk that marks the first and the last index of each operation.
// The entry marks the beginning of the liveness range for this operation,
// followed by nested operations, followed by the end of the liveness range.
unsigned index = 0;
llvm::unique_function<void(Operation *)> walk = [&](Operation *op) {
opToFirstIndex.try_emplace(op, index++);
for (Region ®ion : op->getRegions())
for (Block &block : region.getBlocks())
for (Operation &nested : block)
walk(&nested);
opToLastIndex.try_emplace(op, index++);
};
walk(matcherFunc);
// Liveness info for each of the defs within the matcher.
ByteCodeLiveRange::Allocator allocator;
DenseMap<Value, ByteCodeLiveRange> valueDefRanges;
// Assign the root operation being matched to slot 0.
BlockArgument rootOpArg = matcherFunc.getArgument(0);
valueToMemIndex[rootOpArg] = 0;
// Walk each of the blocks, computing the def interval that the value is used.
Liveness matcherLiveness(matcherFunc);
matcherFunc->walk([&](Block *block) {
const LivenessBlockInfo *info = matcherLiveness.getLiveness(block);
assert(info && "expected liveness info for block");
auto processValue = [&](Value value, Operation *firstUseOrDef) {
// We don't need to process the root op argument, this value is always
// assigned to the first memory slot.
if (value == rootOpArg)
return;
// Set indices for the range of this block that the value is used.
auto defRangeIt = valueDefRanges.try_emplace(value, allocator).first;
defRangeIt->second.liveness->insert(
opToFirstIndex[firstUseOrDef],
opToLastIndex[info->getEndOperation(value, firstUseOrDef)],
/*dummyValue*/ 0);
// Check to see if this value is a range type.
if (auto rangeTy = dyn_cast<pdl::RangeType>(value.getType())) {
Type eleType = rangeTy.getElementType();
if (isa<pdl::OperationType>(eleType))
defRangeIt->second.opRangeIndex = 0;
else if (isa<pdl::TypeType>(eleType))
defRangeIt->second.typeRangeIndex = 0;
else if (isa<pdl::ValueType>(eleType))
defRangeIt->second.valueRangeIndex = 0;
}
};
// Process the live-ins of this block.
for (Value liveIn : info->in()) {
// Only process the value if it has been defined in the current region.
// Other values that span across pdl_interp.foreach will be added higher
// up. This ensures that the we keep them alive for the entire duration
// of the loop.
if (liveIn.getParentRegion() == block->getParent())
processValue(liveIn, &block->front());
}
// Process the block arguments for the entry block (those are not live-in).
if (block->isEntryBlock()) {
for (Value argument : block->getArguments())
processValue(argument, &block->front());
}
// Process any new defs within this block.
for (Operation &op : *block)
for (Value result : op.getResults())
processValue(result, &op);
});
// Greedily allocate memory slots using the computed def live ranges.
std::vector<ByteCodeLiveRange> allocatedIndices;
// The number of memory indices currently allocated (and its next value).
// Recall that the root gets allocated memory index 0.
ByteCodeField numIndices = 1;
// The number of memory ranges of various types (and their next values).
ByteCodeField numOpRanges = 0, numTypeRanges = 0, numValueRanges = 0;
for (auto &defIt : valueDefRanges) {
ByteCodeField &memIndex = valueToMemIndex[defIt.first];
ByteCodeLiveRange &defRange = defIt.second;
// Try to allocate to an existing index.
for (const auto &existingIndexIt : llvm::enumerate(allocatedIndices)) {
ByteCodeLiveRange &existingRange = existingIndexIt.value();
if (!defRange.overlaps(existingRange)) {
existingRange.unionWith(defRange);
memIndex = existingIndexIt.index() + 1;
if (defRange.opRangeIndex) {
if (!existingRange.opRangeIndex)
existingRange.opRangeIndex = numOpRanges++;
valueToRangeIndex[defIt.first] = *existingRange.opRangeIndex;
} else if (defRange.typeRangeIndex) {
if (!existingRange.typeRangeIndex)
existingRange.typeRangeIndex = numTypeRanges++;
valueToRangeIndex[defIt.first] = *existingRange.typeRangeIndex;
} else if (defRange.valueRangeIndex) {
if (!existingRange.valueRangeIndex)
existingRange.valueRangeIndex = numValueRanges++;
valueToRangeIndex[defIt.first] = *existingRange.valueRangeIndex;
}
break;
}
}
// If no existing index could be used, add a new one.
if (memIndex == 0) {
allocatedIndices.emplace_back(allocator);
ByteCodeLiveRange &newRange = allocatedIndices.back();
newRange.unionWith(defRange);
// Allocate an index for op/type/value ranges.
if (defRange.opRangeIndex) {
newRange.opRangeIndex = numOpRanges;
valueToRangeIndex[defIt.first] = numOpRanges++;
} else if (defRange.typeRangeIndex) {
newRange.typeRangeIndex = numTypeRanges;
valueToRangeIndex[defIt.first] = numTypeRanges++;
} else if (defRange.valueRangeIndex) {
newRange.valueRangeIndex = numValueRanges;
valueToRangeIndex[defIt.first] = numValueRanges++;
}
memIndex = allocatedIndices.size();
++numIndices;
}
}
// Print the index usage and ensure that we did not run out of index space.
LLVM_DEBUG({
llvm::dbgs() << "Allocated " << allocatedIndices.size() << " indices "
<< "(down from initial " << valueDefRanges.size() << ").\n";
});
assert(allocatedIndices.size() <= std::numeric_limits<ByteCodeField>::max() &&
"Ran out of memory for allocated indices");
// Update the max number of indices.
if (numIndices > maxValueMemoryIndex)
maxValueMemoryIndex = numIndices;
if (numOpRanges > maxOpRangeMemoryIndex)
maxOpRangeMemoryIndex = numOpRanges;
if (numTypeRanges > maxTypeRangeMemoryIndex)
maxTypeRangeMemoryIndex = numTypeRanges;
if (numValueRanges > maxValueRangeMemoryIndex)
maxValueRangeMemoryIndex = numValueRanges;
}
void Generator::generate(Region *region, ByteCodeWriter &writer) {
llvm::ReversePostOrderTraversal<Region *> rpot(region);
for (Block *block : rpot) {
// Keep track of where this block begins within the matcher function.
blockToAddr.try_emplace(block, matcherByteCode.size());
for (Operation &op : *block)
generate(&op, writer);
}
}
void Generator::generate(Operation *op, ByteCodeWriter &writer) {
LLVM_DEBUG({
// The following list must contain all the operations that do not
// produce any bytecode.
if (!isa<pdl_interp::CreateAttributeOp, pdl_interp::CreateTypeOp>(op))
writer.appendInline(op->getLoc());
});
TypeSwitch<Operation *>(op)
.Case<pdl_interp::ApplyConstraintOp, pdl_interp::ApplyRewriteOp,
pdl_interp::AreEqualOp, pdl_interp::BranchOp,
pdl_interp::CheckAttributeOp, pdl_interp::CheckOperandCountOp,
pdl_interp::CheckOperationNameOp, pdl_interp::CheckResultCountOp,
pdl_interp::CheckTypeOp, pdl_interp::CheckTypesOp,
pdl_interp::ContinueOp, pdl_interp::CreateAttributeOp,
pdl_interp::CreateOperationOp, pdl_interp::CreateRangeOp,
pdl_interp::CreateTypeOp, pdl_interp::CreateTypesOp,
pdl_interp::EraseOp, pdl_interp::ExtractOp, pdl_interp::FinalizeOp,
pdl_interp::ForEachOp, pdl_interp::GetAttributeOp,
pdl_interp::GetAttributeTypeOp, pdl_interp::GetDefiningOpOp,
pdl_interp::GetOperandOp, pdl_interp::GetOperandsOp,
pdl_interp::GetResultOp, pdl_interp::GetResultsOp,
pdl_interp::GetUsersOp, pdl_interp::GetValueTypeOp,
pdl_interp::IsNotNullOp, pdl_interp::RecordMatchOp,
pdl_interp::ReplaceOp, pdl_interp::SwitchAttributeOp,
pdl_interp::SwitchTypeOp, pdl_interp::SwitchTypesOp,
pdl_interp::SwitchOperandCountOp, pdl_interp::SwitchOperationNameOp,
pdl_interp::SwitchResultCountOp>(
[&](auto interpOp) { this->generate(interpOp, writer); })
.Default([](Operation *) {
llvm_unreachable("unknown `pdl_interp` operation");
});
}
void Generator::generate(pdl_interp::ApplyConstraintOp op,
ByteCodeWriter &writer) {
assert(constraintToMemIndex.count(op.getName()) &&
"expected index for constraint function");
writer.append(OpCode::ApplyConstraint, constraintToMemIndex[op.getName()]);
writer.appendPDLValueList(op.getArgs());
writer.append(op.getSuccessors());
}
void Generator::generate(pdl_interp::ApplyRewriteOp op,
ByteCodeWriter &writer) {
assert(externalRewriterToMemIndex.count(op.getName()) &&
"expected index for rewrite function");
writer.append(OpCode::ApplyRewrite, externalRewriterToMemIndex[op.getName()]);
writer.appendPDLValueList(op.getArgs());
ResultRange results = op.getResults();
writer.append(ByteCodeField(results.size()));
for (Value result : results) {
// In debug mode we also record the expected kind of the result, so that we
// can provide extra verification of the native rewrite function.
#ifndef NDEBUG
writer.appendPDLValueKind(result);
#endif
// Range results also need to append the range storage index.
if (isa<pdl::RangeType>(result.getType()))
writer.append(getRangeStorageIndex(result));
writer.append(result);
}
}
void Generator::generate(pdl_interp::AreEqualOp op, ByteCodeWriter &writer) {
Value lhs = op.getLhs();
if (isa<pdl::RangeType>(lhs.getType())) {
writer.append(OpCode::AreRangesEqual);
writer.appendPDLValueKind(lhs);
writer.append(op.getLhs(), op.getRhs(), op.getSuccessors());
return;
}
writer.append(OpCode::AreEqual, lhs, op.getRhs(), op.getSuccessors());
}
void Generator::generate(pdl_interp::BranchOp op, ByteCodeWriter &writer) {
writer.append(OpCode::Branch, SuccessorRange(op.getOperation()));
}
void Generator::generate(pdl_interp::CheckAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::AreEqual, op.getAttribute(), op.getConstantValue(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckOperandCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckOperandCount, op.getInputOp(), op.getCount(),
static_cast<ByteCodeField>(op.getCompareAtLeast()),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckOperationNameOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckOperationName, op.getInputOp(),
OperationName(op.getName(), ctx), op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckResultCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CheckResultCount, op.getInputOp(), op.getCount(),
static_cast<ByteCodeField>(op.getCompareAtLeast()),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckTypeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::AreEqual, op.getValue(), op.getType(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::CheckTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::CheckTypes, op.getValue(), op.getTypes(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::ContinueOp op, ByteCodeWriter &writer) {
assert(curLoopLevel > 0 && "encountered pdl_interp.continue at top level");
writer.append(OpCode::Continue, ByteCodeField(curLoopLevel - 1));
}
void Generator::generate(pdl_interp::CreateAttributeOp op,
ByteCodeWriter &writer) {
// Simply repoint the memory index of the result to the constant.
getMemIndex(op.getAttribute()) = getMemIndex(op.getValue());
}
void Generator::generate(pdl_interp::CreateOperationOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::CreateOperation, op.getResultOp(),
OperationName(op.getName(), ctx));
writer.appendPDLValueList(op.getInputOperands());
// Add the attributes.
OperandRange attributes = op.getInputAttributes();
writer.append(static_cast<ByteCodeField>(attributes.size()));
for (auto it : llvm::zip(op.getInputAttributeNames(), attributes))
writer.append(std::get<0>(it), std::get<1>(it));
// Add the result types. If the operation has inferred results, we use a
// marker "size" value. Otherwise, we add the list of explicit result types.
if (op.getInferredResultTypes())
writer.append(kInferTypesMarker);
else
writer.appendPDLValueList(op.getInputResultTypes());
}
void Generator::generate(pdl_interp::CreateRangeOp op, ByteCodeWriter &writer) {
// Append the correct opcode for the range type.
TypeSwitch<Type>(op.getType().getElementType())
.Case(
[&](pdl::TypeType) { writer.append(OpCode::CreateDynamicTypeRange); })
.Case([&](pdl::ValueType) {
writer.append(OpCode::CreateDynamicValueRange);
});
writer.append(op.getResult(), getRangeStorageIndex(op.getResult()));
writer.appendPDLValueList(op->getOperands());
}
void Generator::generate(pdl_interp::CreateTypeOp op, ByteCodeWriter &writer) {
// Simply repoint the memory index of the result to the constant.
getMemIndex(op.getResult()) = getMemIndex(op.getValue());
}
void Generator::generate(pdl_interp::CreateTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::CreateConstantTypeRange, op.getResult(),
getRangeStorageIndex(op.getResult()), op.getValue());
}
void Generator::generate(pdl_interp::EraseOp op, ByteCodeWriter &writer) {
writer.append(OpCode::EraseOp, op.getInputOp());
}
void Generator::generate(pdl_interp::ExtractOp op, ByteCodeWriter &writer) {
OpCode opCode =
TypeSwitch<Type, OpCode>(op.getResult().getType())
.Case([](pdl::OperationType) { return OpCode::ExtractOp; })
.Case([](pdl::ValueType) { return OpCode::ExtractValue; })
.Case([](pdl::TypeType) { return OpCode::ExtractType; })
.Default([](Type) -> OpCode {
llvm_unreachable("unsupported element type");
});
writer.append(opCode, op.getRange(), op.getIndex(), op.getResult());
}
void Generator::generate(pdl_interp::FinalizeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::Finalize);
}
void Generator::generate(pdl_interp::ForEachOp op, ByteCodeWriter &writer) {
BlockArgument arg = op.getLoopVariable();
writer.append(OpCode::ForEach, getRangeStorageIndex(op.getValues()), arg);
writer.appendPDLValueKind(arg.getType());
writer.append(curLoopLevel, op.getSuccessor());
++curLoopLevel;
if (curLoopLevel > maxLoopLevel)
maxLoopLevel = curLoopLevel;
generate(&op.getRegion(), writer);
--curLoopLevel;
}
void Generator::generate(pdl_interp::GetAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetAttribute, op.getAttribute(), op.getInputOp(),
op.getNameAttr());
}
void Generator::generate(pdl_interp::GetAttributeTypeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetAttributeType, op.getResult(), op.getValue());
}
void Generator::generate(pdl_interp::GetDefiningOpOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::GetDefiningOp, op.getInputOp());
writer.appendPDLValue(op.getValue());
}
void Generator::generate(pdl_interp::GetOperandOp op, ByteCodeWriter &writer) {
uint32_t index = op.getIndex();
if (index < 4)
writer.append(static_cast<OpCode>(OpCode::GetOperand0 + index));
else
writer.append(OpCode::GetOperandN, index);
writer.append(op.getInputOp(), op.getValue());
}
void Generator::generate(pdl_interp::GetOperandsOp op, ByteCodeWriter &writer) {
Value result = op.getValue();
std::optional<uint32_t> index = op.getIndex();
writer.append(OpCode::GetOperands,
index.value_or(std::numeric_limits<uint32_t>::max()),
op.getInputOp());
if (isa<pdl::RangeType>(result.getType()))
writer.append(getRangeStorageIndex(result));
else
writer.append(std::numeric_limits<ByteCodeField>::max());
writer.append(result);
}
void Generator::generate(pdl_interp::GetResultOp op, ByteCodeWriter &writer) {
uint32_t index = op.getIndex();
if (index < 4)
writer.append(static_cast<OpCode>(OpCode::GetResult0 + index));
else
writer.append(OpCode::GetResultN, index);
writer.append(op.getInputOp(), op.getValue());
}
void Generator::generate(pdl_interp::GetResultsOp op, ByteCodeWriter &writer) {
Value result = op.getValue();
std::optional<uint32_t> index = op.getIndex();
writer.append(OpCode::GetResults,
index.value_or(std::numeric_limits<uint32_t>::max()),
op.getInputOp());
if (isa<pdl::RangeType>(result.getType()))
writer.append(getRangeStorageIndex(result));
else
writer.append(std::numeric_limits<ByteCodeField>::max());
writer.append(result);
}
void Generator::generate(pdl_interp::GetUsersOp op, ByteCodeWriter &writer) {
Value operations = op.getOperations();
ByteCodeField rangeIndex = getRangeStorageIndex(operations);
writer.append(OpCode::GetUsers, operations, rangeIndex);
writer.appendPDLValue(op.getValue());
}
void Generator::generate(pdl_interp::GetValueTypeOp op,
ByteCodeWriter &writer) {
if (isa<pdl::RangeType>(op.getType())) {
Value result = op.getResult();
writer.append(OpCode::GetValueRangeTypes, result,
getRangeStorageIndex(result), op.getValue());
} else {
writer.append(OpCode::GetValueType, op.getResult(), op.getValue());
}
}
void Generator::generate(pdl_interp::IsNotNullOp op, ByteCodeWriter &writer) {
writer.append(OpCode::IsNotNull, op.getValue(), op.getSuccessors());
}
void Generator::generate(pdl_interp::RecordMatchOp op, ByteCodeWriter &writer) {
ByteCodeField patternIndex = patterns.size();
patterns.emplace_back(PDLByteCodePattern::create(
op, configMap.lookup(op),
rewriterToAddr[op.getRewriter().getLeafReference().getValue()]));
writer.append(OpCode::RecordMatch, patternIndex,
SuccessorRange(op.getOperation()), op.getMatchedOps());
writer.appendPDLValueList(op.getInputs());
}
void Generator::generate(pdl_interp::ReplaceOp op, ByteCodeWriter &writer) {
writer.append(OpCode::ReplaceOp, op.getInputOp());
writer.appendPDLValueList(op.getReplValues());
}
void Generator::generate(pdl_interp::SwitchAttributeOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchAttribute, op.getAttribute(),
op.getCaseValuesAttr(), op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchOperandCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchOperandCount, op.getInputOp(),
op.getCaseValuesAttr(), op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchOperationNameOp op,
ByteCodeWriter &writer) {
auto cases = llvm::map_range(op.getCaseValuesAttr(), [&](Attribute attr) {
return OperationName(cast<StringAttr>(attr).getValue(), ctx);
});
writer.append(OpCode::SwitchOperationName, op.getInputOp(), cases,
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchResultCountOp op,
ByteCodeWriter &writer) {
writer.append(OpCode::SwitchResultCount, op.getInputOp(),
op.getCaseValuesAttr(), op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchTypeOp op, ByteCodeWriter &writer) {
writer.append(OpCode::SwitchType, op.getValue(), op.getCaseValuesAttr(),
op.getSuccessors());
}
void Generator::generate(pdl_interp::SwitchTypesOp op, ByteCodeWriter &writer) {
writer.append(OpCode::SwitchTypes, op.getValue(), op.getCaseValuesAttr(),
op.getSuccessors());
}
//===----------------------------------------------------------------------===//
// PDLByteCode
//===----------------------------------------------------------------------===//
PDLByteCode::PDLByteCode(
ModuleOp module, SmallVector<std::unique_ptr<PDLPatternConfigSet>> configs,
const DenseMap<Operation *, PDLPatternConfigSet *> &configMap,
llvm::StringMap<PDLConstraintFunction> constraintFns,
llvm::StringMap<PDLRewriteFunction> rewriteFns)
: configs(std::move(configs)) {
Generator generator(module.getContext(), uniquedData, matcherByteCode,
rewriterByteCode, patterns, maxValueMemoryIndex,
maxOpRangeCount, maxTypeRangeCount, maxValueRangeCount,
maxLoopLevel, constraintFns, rewriteFns, configMap);
generator.generate(module);
// Initialize the external functions.
for (auto &it : constraintFns)
constraintFunctions.push_back(std::move(it.second));
for (auto &it : rewriteFns)
rewriteFunctions.push_back(std::move(it.second));
}
/// Initialize the given state such that it can be used to execute the current
/// bytecode.
void PDLByteCode::initializeMutableState(PDLByteCodeMutableState &state) const {
state.memory.resize(maxValueMemoryIndex, nullptr);
state.opRangeMemory.resize(maxOpRangeCount);
state.typeRangeMemory.resize(maxTypeRangeCount, TypeRange());
state.valueRangeMemory.resize(maxValueRangeCount, ValueRange());
state.loopIndex.resize(maxLoopLevel, 0);
state.currentPatternBenefits.reserve(patterns.size());
for (const PDLByteCodePattern &pattern : patterns)
state.currentPatternBenefits.push_back(pattern.getBenefit());
}
//===----------------------------------------------------------------------===//
// ByteCode Execution
namespace {
/// This class provides support for executing a bytecode stream.
class ByteCodeExecutor {
public:
ByteCodeExecutor(
const ByteCodeField *curCodeIt, MutableArrayRef<const void *> memory,
MutableArrayRef<llvm::OwningArrayRef<Operation *>> opRangeMemory,
MutableArrayRef<TypeRange> typeRangeMemory,
std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory,
MutableArrayRef<ValueRange> valueRangeMemory,
std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory,
MutableArrayRef<unsigned> loopIndex, ArrayRef<const void *> uniquedMemory,
ArrayRef<ByteCodeField> code,
ArrayRef<PatternBenefit> currentPatternBenefits,
ArrayRef<PDLByteCodePattern> patterns,
ArrayRef<PDLConstraintFunction> constraintFunctions,
ArrayRef<PDLRewriteFunction> rewriteFunctions)
: curCodeIt(curCodeIt), memory(memory), opRangeMemory(opRangeMemory),
typeRangeMemory(typeRangeMemory),
allocatedTypeRangeMemory(allocatedTypeRangeMemory),
valueRangeMemory(valueRangeMemory),
allocatedValueRangeMemory(allocatedValueRangeMemory),
loopIndex(loopIndex), uniquedMemory(uniquedMemory), code(code),
currentPatternBenefits(currentPatternBenefits), patterns(patterns),
constraintFunctions(constraintFunctions),
rewriteFunctions(rewriteFunctions) {}
/// Start executing the code at the current bytecode index. `matches` is an
/// optional field provided when this function is executed in a matching
/// context.
LogicalResult
execute(PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> *matches = nullptr,
std::optional<Location> mainRewriteLoc = {});
private:
/// Internal implementation of executing each of the bytecode commands.
void executeApplyConstraint(PatternRewriter &rewriter);
LogicalResult executeApplyRewrite(PatternRewriter &rewriter);
void executeAreEqual();
void executeAreRangesEqual();
void executeBranch();
void executeCheckOperandCount();
void executeCheckOperationName();
void executeCheckResultCount();
void executeCheckTypes();
void executeContinue();
void executeCreateConstantTypeRange();
void executeCreateOperation(PatternRewriter &rewriter,
Location mainRewriteLoc);
template <typename T>
void executeDynamicCreateRange(StringRef type);
void executeEraseOp(PatternRewriter &rewriter);
template <typename T, typename Range, PDLValue::Kind kind>
void executeExtract();
void executeFinalize();
void executeForEach();
void executeGetAttribute();
void executeGetAttributeType();
void executeGetDefiningOp();
void executeGetOperand(unsigned index);
void executeGetOperands();
void executeGetResult(unsigned index);
void executeGetResults();
void executeGetUsers();
void executeGetValueType();
void executeGetValueRangeTypes();
void executeIsNotNull();
void executeRecordMatch(PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> &matches);
void executeReplaceOp(PatternRewriter &rewriter);
void executeSwitchAttribute();
void executeSwitchOperandCount();
void executeSwitchOperationName();
void executeSwitchResultCount();
void executeSwitchType();
void executeSwitchTypes();
/// Pushes a code iterator to the stack.
void pushCodeIt(const ByteCodeField *it) { resumeCodeIt.push_back(it); }
/// Pops a code iterator from the stack, returning true on success.
void popCodeIt() {
assert(!resumeCodeIt.empty() && "attempt to pop code off empty stack");
curCodeIt = resumeCodeIt.back();
resumeCodeIt.pop_back();
}
/// Return the bytecode iterator at the start of the current op code.
const ByteCodeField *getPrevCodeIt() const {
LLVM_DEBUG({
// Account for the op code and the Location stored inline.
return curCodeIt - 1 - sizeof(const void *) / sizeof(ByteCodeField);
});
// Account for the op code only.
return curCodeIt - 1;
}
/// Read a value from the bytecode buffer, optionally skipping a certain
/// number of prefix values. These methods always update the buffer to point
/// to the next field after the read data.
template <typename T = ByteCodeField>
T read(size_t skipN = 0) {
curCodeIt += skipN;
return readImpl<T>();
}
ByteCodeField read(size_t skipN = 0) { return read<ByteCodeField>(skipN); }
/// Read a list of values from the bytecode buffer.
template <typename ValueT, typename T>
void readList(SmallVectorImpl<T> &list) {
list.clear();
for (unsigned i = 0, e = read(); i != e; ++i)
list.push_back(read<ValueT>());
}
/// Read a list of values from the bytecode buffer. The values may be encoded
/// either as a single element or a range of elements.
void readList(SmallVectorImpl<Type> &list) {
for (unsigned i = 0, e = read(); i != e; ++i) {
if (read<PDLValue::Kind>() == PDLValue::Kind::Type) {
list.push_back(read<Type>());
} else {
TypeRange *values = read<TypeRange *>();
list.append(values->begin(), values->end());
}
}
}
void readList(SmallVectorImpl<Value> &list) {
for (unsigned i = 0, e = read(); i != e; ++i) {
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
list.push_back(read<Value>());
} else {
ValueRange *values = read<ValueRange *>();
list.append(values->begin(), values->end());
}
}
}
/// Read a value stored inline as a pointer.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value, T>
readInline() {
const void *pointer;
std::memcpy(&pointer, curCodeIt, sizeof(const void *));
curCodeIt += sizeof(const void *) / sizeof(ByteCodeField);
return T::getFromOpaquePointer(pointer);
}
/// Jump to a specific successor based on a predicate value.
void selectJump(bool isTrue) { selectJump(size_t(isTrue ? 0 : 1)); }
/// Jump to a specific successor based on a destination index.
void selectJump(size_t destIndex) {
curCodeIt = &code[read<ByteCodeAddr>(destIndex * 2)];
}
/// Handle a switch operation with the provided value and cases.
template <typename T, typename RangeT, typename Comparator = std::equal_to<T>>
void handleSwitch(const T &value, RangeT &&cases, Comparator cmp = {}) {
LLVM_DEBUG({
llvm::dbgs() << " * Value: " << value << "\n"
<< " * Cases: ";
llvm::interleaveComma(cases, llvm::dbgs());
llvm::dbgs() << "\n";
});
// Check to see if the attribute value is within the case list. Jump to
// the correct successor index based on the result.
for (auto it = cases.begin(), e = cases.end(); it != e; ++it)
if (cmp(*it, value))
return selectJump(size_t((it - cases.begin()) + 1));
selectJump(size_t(0));
}
/// Store a pointer to memory.
void storeToMemory(unsigned index, const void *value) {
memory[index] = value;
}
/// Store a value to memory as an opaque pointer.
template <typename T>
std::enable_if_t<llvm::is_detected<has_pointer_traits, T>::value>
storeToMemory(unsigned index, T value) {
memory[index] = value.getAsOpaquePointer();
}
/// Internal implementation of reading various data types from the bytecode
/// stream.
template <typename T>
const void *readFromMemory() {
size_t index = *curCodeIt++;
// If this type is an SSA value, it can only be stored in non-const memory.
if (llvm::is_one_of<T, Operation *, TypeRange *, ValueRange *,
Value>::value ||
index < memory.size())
return memory[index];
// Otherwise, if this index is not inbounds it is uniqued.
return uniquedMemory[index - memory.size()];
}
template <typename T>
std::enable_if_t<std::is_pointer<T>::value, T> readImpl() {
return reinterpret_cast<T>(const_cast<void *>(readFromMemory<T>()));
}
template <typename T>
std::enable_if_t<std::is_class<T>::value && !std::is_same<PDLValue, T>::value,
T>
readImpl() {
return T(T::getFromOpaquePointer(readFromMemory<T>()));
}
template <typename T>
std::enable_if_t<std::is_same<PDLValue, T>::value, T> readImpl() {
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::Attribute:
return read<Attribute>();
case PDLValue::Kind::Operation:
return read<Operation *>();
case PDLValue::Kind::Type:
return read<Type>();
case PDLValue::Kind::Value:
return read<Value>();
case PDLValue::Kind::TypeRange:
return read<TypeRange *>();
case PDLValue::Kind::ValueRange:
return read<ValueRange *>();
}
llvm_unreachable("unhandled PDLValue::Kind");
}
template <typename T>
std::enable_if_t<std::is_same<T, ByteCodeAddr>::value, T> readImpl() {
static_assert((sizeof(ByteCodeAddr) / sizeof(ByteCodeField)) == 2,
"unexpected ByteCode address size");
ByteCodeAddr result;
std::memcpy(&result, curCodeIt, sizeof(ByteCodeAddr));
curCodeIt += 2;
return result;
}
template <typename T>
std::enable_if_t<std::is_same<T, ByteCodeField>::value, T> readImpl() {
return *curCodeIt++;
}
template <typename T>
std::enable_if_t<std::is_same<T, PDLValue::Kind>::value, T> readImpl() {
return static_cast<PDLValue::Kind>(readImpl<ByteCodeField>());
}
/// Assign the given range to the given memory index. This allocates a new
/// range object if necessary.
template <typename RangeT, typename T = llvm::detail::ValueOfRange<RangeT>>
void assignRangeToMemory(RangeT &&range, unsigned memIndex,
unsigned rangeIndex) {
// Utility functor used to type-erase the assignment.
auto assignRange = [&](auto &allocatedRangeMemory, auto &rangeMemory) {
// If the input range is empty, we don't need to allocate anything.
if (range.empty()) {
rangeMemory[rangeIndex] = {};
} else {
// Allocate a buffer for this type range.
llvm::OwningArrayRef<T> storage(llvm::size(range));
llvm::copy(range, storage.begin());
// Assign this to the range slot and use the range as the value for the
// memory index.
allocatedRangeMemory.emplace_back(std::move(storage));
rangeMemory[rangeIndex] = allocatedRangeMemory.back();
}
memory[memIndex] = &rangeMemory[rangeIndex];
};
// Dispatch based on the concrete range type.
if constexpr (std::is_same_v<T, Type>) {
return assignRange(allocatedTypeRangeMemory, typeRangeMemory);
} else if constexpr (std::is_same_v<T, Value>) {
return assignRange(allocatedValueRangeMemory, valueRangeMemory);
} else {
llvm_unreachable("unhandled range type");
}
}
/// The underlying bytecode buffer.
const ByteCodeField *curCodeIt;
/// The stack of bytecode positions at which to resume operation.
SmallVector<const ByteCodeField *> resumeCodeIt;
/// The current execution memory.
MutableArrayRef<const void *> memory;
MutableArrayRef<OwningOpRange> opRangeMemory;
MutableArrayRef<TypeRange> typeRangeMemory;
std::vector<llvm::OwningArrayRef<Type>> &allocatedTypeRangeMemory;
MutableArrayRef<ValueRange> valueRangeMemory;
std::vector<llvm::OwningArrayRef<Value>> &allocatedValueRangeMemory;
/// The current loop indices.
MutableArrayRef<unsigned> loopIndex;
/// References to ByteCode data necessary for execution.
ArrayRef<const void *> uniquedMemory;
ArrayRef<ByteCodeField> code;
ArrayRef<PatternBenefit> currentPatternBenefits;
ArrayRef<PDLByteCodePattern> patterns;
ArrayRef<PDLConstraintFunction> constraintFunctions;
ArrayRef<PDLRewriteFunction> rewriteFunctions;
};
/// This class is an instantiation of the PDLResultList that provides access to
/// the returned results. This API is not on `PDLResultList` to avoid
/// overexposing access to information specific solely to the ByteCode.
class ByteCodeRewriteResultList : public PDLResultList {
public:
ByteCodeRewriteResultList(unsigned maxNumResults)
: PDLResultList(maxNumResults) {}
/// Return the list of PDL results.
MutableArrayRef<PDLValue> getResults() { return results; }
/// Return the type ranges allocated by this list.
MutableArrayRef<llvm::OwningArrayRef<Type>> getAllocatedTypeRanges() {
return allocatedTypeRanges;
}
/// Return the value ranges allocated by this list.
MutableArrayRef<llvm::OwningArrayRef<Value>> getAllocatedValueRanges() {
return allocatedValueRanges;
}
};
} // namespace
void ByteCodeExecutor::executeApplyConstraint(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ApplyConstraint:\n");
const PDLConstraintFunction &constraintFn = constraintFunctions[read()];
SmallVector<PDLValue, 16> args;
readList<PDLValue>(args);
LLVM_DEBUG({
llvm::dbgs() << " * Arguments: ";
llvm::interleaveComma(args, llvm::dbgs());
});
// Invoke the constraint and jump to the proper destination.
selectJump(succeeded(constraintFn(rewriter, args)));
}
LogicalResult ByteCodeExecutor::executeApplyRewrite(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ApplyRewrite:\n");
const PDLRewriteFunction &rewriteFn = rewriteFunctions[read()];
SmallVector<PDLValue, 16> args;
readList<PDLValue>(args);
LLVM_DEBUG({
llvm::dbgs() << " * Arguments: ";
llvm::interleaveComma(args, llvm::dbgs());
});
// Execute the rewrite function.
ByteCodeField numResults = read();
ByteCodeRewriteResultList results(numResults);
LogicalResult rewriteResult = rewriteFn(rewriter, results, args);
assert(results.getResults().size() == numResults &&
"native PDL rewrite function returned unexpected number of results");
// Store the results in the bytecode memory.
for (PDLValue &result : results.getResults()) {
LLVM_DEBUG(llvm::dbgs() << " * Result: " << result << "\n");
// In debug mode we also verify the expected kind of the result.
#ifndef NDEBUG
assert(result.getKind() == read<PDLValue::Kind>() &&
"native PDL rewrite function returned an unexpected type of result");
#endif
// If the result is a range, we need to copy it over to the bytecodes
// range memory.
if (std::optional<TypeRange> typeRange = result.dyn_cast<TypeRange>()) {
unsigned rangeIndex = read();
typeRangeMemory[rangeIndex] = *typeRange;
memory[read()] = &typeRangeMemory[rangeIndex];
} else if (std::optional<ValueRange> valueRange =
result.dyn_cast<ValueRange>()) {
unsigned rangeIndex = read();
valueRangeMemory[rangeIndex] = *valueRange;
memory[read()] = &valueRangeMemory[rangeIndex];
} else {
memory[read()] = result.getAsOpaquePointer();
}
}
// Copy over any underlying storage allocated for result ranges.
for (auto &it : results.getAllocatedTypeRanges())
allocatedTypeRangeMemory.push_back(std::move(it));
for (auto &it : results.getAllocatedValueRanges())
allocatedValueRangeMemory.push_back(std::move(it));
// Process the result of the rewrite.
if (failed(rewriteResult)) {
LLVM_DEBUG(llvm::dbgs() << " - Failed");
return failure();
}
return success();
}
void ByteCodeExecutor::executeAreEqual() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n");
const void *lhs = read<const void *>();
const void *rhs = read<const void *>();
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n");
selectJump(lhs == rhs);
}
void ByteCodeExecutor::executeAreRangesEqual() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreRangesEqual:\n");
PDLValue::Kind valueKind = read<PDLValue::Kind>();
const void *lhs = read<const void *>();
const void *rhs = read<const void *>();
switch (valueKind) {
case PDLValue::Kind::TypeRange: {
const TypeRange *lhsRange = reinterpret_cast<const TypeRange *>(lhs);
const TypeRange *rhsRange = reinterpret_cast<const TypeRange *>(rhs);
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhsRange == *rhsRange);
break;
}
case PDLValue::Kind::ValueRange: {
const auto *lhsRange = reinterpret_cast<const ValueRange *>(lhs);
const auto *rhsRange = reinterpret_cast<const ValueRange *>(rhs);
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhsRange == *rhsRange);
break;
}
default:
llvm_unreachable("unexpected `AreRangesEqual` value kind");
}
}
void ByteCodeExecutor::executeBranch() {
LLVM_DEBUG(llvm::dbgs() << "Executing Branch\n");
curCodeIt = &code[read<ByteCodeAddr>()];
}
void ByteCodeExecutor::executeCheckOperandCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperandCount:\n");
Operation *op = read<Operation *>();
uint32_t expectedCount = read<uint32_t>();
bool compareAtLeast = read();
LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumOperands() << "\n"
<< " * Expected: " << expectedCount << "\n"
<< " * Comparator: "
<< (compareAtLeast ? ">=" : "==") << "\n");
if (compareAtLeast)
selectJump(op->getNumOperands() >= expectedCount);
else
selectJump(op->getNumOperands() == expectedCount);
}
void ByteCodeExecutor::executeCheckOperationName() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckOperationName:\n");
Operation *op = read<Operation *>();
OperationName expectedName = read<OperationName>();
LLVM_DEBUG(llvm::dbgs() << " * Found: \"" << op->getName() << "\"\n"
<< " * Expected: \"" << expectedName << "\"\n");
selectJump(op->getName() == expectedName);
}
void ByteCodeExecutor::executeCheckResultCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing CheckResultCount:\n");
Operation *op = read<Operation *>();
uint32_t expectedCount = read<uint32_t>();
bool compareAtLeast = read();
LLVM_DEBUG(llvm::dbgs() << " * Found: " << op->getNumResults() << "\n"
<< " * Expected: " << expectedCount << "\n"
<< " * Comparator: "
<< (compareAtLeast ? ">=" : "==") << "\n");
if (compareAtLeast)
selectJump(op->getNumResults() >= expectedCount);
else
selectJump(op->getNumResults() == expectedCount);
}
void ByteCodeExecutor::executeCheckTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing AreEqual:\n");
TypeRange *lhs = read<TypeRange *>();
Attribute rhs = read<Attribute>();
LLVM_DEBUG(llvm::dbgs() << " * " << lhs << " == " << rhs << "\n\n");
selectJump(*lhs == cast<ArrayAttr>(rhs).getAsValueRange<TypeAttr>());
}
void ByteCodeExecutor::executeContinue() {
ByteCodeField level = read();
LLVM_DEBUG(llvm::dbgs() << "Executing Continue\n"
<< " * Level: " << level << "\n");
++loopIndex[level];
popCodeIt();
}
void ByteCodeExecutor::executeCreateConstantTypeRange() {
LLVM_DEBUG(llvm::dbgs() << "Executing CreateConstantTypeRange:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
ArrayAttr typesAttr = cast<ArrayAttr>(read<Attribute>());
LLVM_DEBUG(llvm::dbgs() << " * Types: " << typesAttr << "\n\n");
assignRangeToMemory(typesAttr.getAsValueRange<TypeAttr>(), memIndex,
rangeIndex);
}
void ByteCodeExecutor::executeCreateOperation(PatternRewriter &rewriter,
Location mainRewriteLoc) {
LLVM_DEBUG(llvm::dbgs() << "Executing CreateOperation:\n");
unsigned memIndex = read();
OperationState state(mainRewriteLoc, read<OperationName>());
readList(state.operands);
for (unsigned i = 0, e = read(); i != e; ++i) {
StringAttr name = read<StringAttr>();
if (Attribute attr = read<Attribute>())
state.addAttribute(name, attr);
}
// Read in the result types. If the "size" is the sentinel value, this
// indicates that the result types should be inferred.
unsigned numResults = read();
if (numResults == kInferTypesMarker) {
InferTypeOpInterface::Concept *inferInterface =
state.name.getInterface<InferTypeOpInterface>();
assert(inferInterface &&
"expected operation to provide InferTypeOpInterface");
// TODO: Handle failure.
if (failed(inferInterface->inferReturnTypes(
state.getContext(), state.location, state.operands,
state.attributes.getDictionary(state.getContext()),
state.getRawProperties(), state.regions, state.types)))
return;
} else {
// Otherwise, this is a fixed number of results.
for (unsigned i = 0; i != numResults; ++i) {
if (read<PDLValue::Kind>() == PDLValue::Kind::Type) {
state.types.push_back(read<Type>());
} else {
TypeRange *resultTypes = read<TypeRange *>();
state.types.append(resultTypes->begin(), resultTypes->end());
}
}
}
Operation *resultOp = rewriter.create(state);
memory[memIndex] = resultOp;
LLVM_DEBUG({
llvm::dbgs() << " * Attributes: "
<< state.attributes.getDictionary(state.getContext())
<< "\n * Operands: ";
llvm::interleaveComma(state.operands, llvm::dbgs());
llvm::dbgs() << "\n * Result Types: ";
llvm::interleaveComma(state.types, llvm::dbgs());
llvm::dbgs() << "\n * Result: " << *resultOp << "\n";
});
}
template <typename T>
void ByteCodeExecutor::executeDynamicCreateRange(StringRef type) {
LLVM_DEBUG(llvm::dbgs() << "Executing CreateDynamic" << type << "Range:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
SmallVector<T> values;
readList(values);
LLVM_DEBUG({
llvm::dbgs() << "\n * " << type << "s: ";
llvm::interleaveComma(values, llvm::dbgs());
llvm::dbgs() << "\n";
});
assignRangeToMemory(values, memIndex, rangeIndex);
}
void ByteCodeExecutor::executeEraseOp(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing EraseOp:\n");
Operation *op = read<Operation *>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
rewriter.eraseOp(op);
}
template <typename T, typename Range, PDLValue::Kind kind>
void ByteCodeExecutor::executeExtract() {
LLVM_DEBUG(llvm::dbgs() << "Executing Extract" << kind << ":\n");
Range *range = read<Range *>();
unsigned index = read<uint32_t>();
unsigned memIndex = read();
if (!range) {
memory[memIndex] = nullptr;
return;
}
T result = index < range->size() ? (*range)[index] : T();
LLVM_DEBUG(llvm::dbgs() << " * " << kind << "s(" << range->size() << ")\n"
<< " * Index: " << index << "\n"
<< " * Result: " << result << "\n");
storeToMemory(memIndex, result);
}
void ByteCodeExecutor::executeFinalize() {
LLVM_DEBUG(llvm::dbgs() << "Executing Finalize\n");
}
void ByteCodeExecutor::executeForEach() {
LLVM_DEBUG(llvm::dbgs() << "Executing ForEach:\n");
const ByteCodeField *prevCodeIt = getPrevCodeIt();
unsigned rangeIndex = read();
unsigned memIndex = read();
const void *value = nullptr;
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::Operation: {
unsigned &index = loopIndex[read()];
ArrayRef<Operation *> array = opRangeMemory[rangeIndex];
assert(index <= array.size() && "iterated past the end");
if (index < array.size()) {
LLVM_DEBUG(llvm::dbgs() << " * Result: " << array[index] << "\n");
value = array[index];
break;
}
LLVM_DEBUG(llvm::dbgs() << " * Done\n");
index = 0;
selectJump(size_t(0));
return;
}
default:
llvm_unreachable("unexpected `ForEach` value kind");
}
// Store the iterate value and the stack address.
memory[memIndex] = value;
pushCodeIt(prevCodeIt);
// Skip over the successor (we will enter the body of the loop).
read<ByteCodeAddr>();
}
void ByteCodeExecutor::executeGetAttribute() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetAttribute:\n");
unsigned memIndex = read();
Operation *op = read<Operation *>();
StringAttr attrName = read<StringAttr>();
Attribute attr = op->getAttr(attrName);
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Attribute: " << attrName << "\n"
<< " * Result: " << attr << "\n");
memory[memIndex] = attr.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetAttributeType() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetAttributeType:\n");
unsigned memIndex = read();
Attribute attr = read<Attribute>();
Type type;
if (auto typedAttr = dyn_cast<TypedAttr>(attr))
type = typedAttr.getType();
LLVM_DEBUG(llvm::dbgs() << " * Attribute: " << attr << "\n"
<< " * Result: " << type << "\n");
memory[memIndex] = type.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetDefiningOp() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetDefiningOp:\n");
unsigned memIndex = read();
Operation *op = nullptr;
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
Value value = read<Value>();
if (value)
op = value.getDefiningOp();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
} else {
ValueRange *values = read<ValueRange *>();
if (values && !values->empty()) {
op = values->front().getDefiningOp();
}
LLVM_DEBUG(llvm::dbgs() << " * Values: " << values << "\n");
}
LLVM_DEBUG(llvm::dbgs() << " * Result: " << op << "\n");
memory[memIndex] = op;
}
void ByteCodeExecutor::executeGetOperand(unsigned index) {
Operation *op = read<Operation *>();
unsigned memIndex = read();
Value operand =
index < op->getNumOperands() ? op->getOperand(index) : Value();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Index: " << index << "\n"
<< " * Result: " << operand << "\n");
memory[memIndex] = operand.getAsOpaquePointer();
}
/// This function is the internal implementation of `GetResults` and
/// `GetOperands` that provides support for extracting a value range from the
/// given operation.
template <template <typename> class AttrSizedSegmentsT, typename RangeT>
static void *
executeGetOperandsResults(RangeT values, Operation *op, unsigned index,
ByteCodeField rangeIndex, StringRef attrSizedSegments,
MutableArrayRef<ValueRange> valueRangeMemory) {
// Check for the sentinel index that signals that all values should be
// returned.
if (index == std::numeric_limits<uint32_t>::max()) {
LLVM_DEBUG(llvm::dbgs() << " * Getting all values\n");
// `values` is already the full value range.
// Otherwise, check to see if this operation uses AttrSizedSegments.
} else if (op->hasTrait<AttrSizedSegmentsT>()) {
LLVM_DEBUG(llvm::dbgs()
<< " * Extracting values from `" << attrSizedSegments << "`\n");
auto segmentAttr = op->getAttrOfType<DenseI32ArrayAttr>(attrSizedSegments);
if (!segmentAttr || segmentAttr.asArrayRef().size() <= index)
return nullptr;
ArrayRef<int32_t> segments = segmentAttr;
unsigned startIndex =
std::accumulate(segments.begin(), segments.begin() + index, 0);
values = values.slice(startIndex, *std::next(segments.begin(), index));
LLVM_DEBUG(llvm::dbgs() << " * Extracting range[" << startIndex << ", "
<< *std::next(segments.begin(), index) << "]\n");
// Otherwise, assume this is the last operand group of the operation.
// FIXME: We currently don't support operations with
// SameVariadicOperandSize/SameVariadicResultSize here given that we don't
// have a way to detect it's presence.
} else if (values.size() >= index) {
LLVM_DEBUG(llvm::dbgs()
<< " * Treating values as trailing variadic range\n");
values = values.drop_front(index);
// If we couldn't detect a way to compute the values, bail out.
} else {
return nullptr;
}
// If the range index is valid, we are returning a range.
if (rangeIndex != std::numeric_limits<ByteCodeField>::max()) {
valueRangeMemory[rangeIndex] = values;
return &valueRangeMemory[rangeIndex];
}
// If a range index wasn't provided, the range is required to be non-variadic.
return values.size() != 1 ? nullptr : values.front().getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetOperands() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperands:\n");
unsigned index = read<uint32_t>();
Operation *op = read<Operation *>();
ByteCodeField rangeIndex = read();
void *result = executeGetOperandsResults<OpTrait::AttrSizedOperandSegments>(
op->getOperands(), op, index, rangeIndex, "operandSegmentSizes",
valueRangeMemory);
if (!result)
LLVM_DEBUG(llvm::dbgs() << " * Invalid operand range\n");
memory[read()] = result;
}
void ByteCodeExecutor::executeGetResult(unsigned index) {
Operation *op = read<Operation *>();
unsigned memIndex = read();
OpResult result =
index < op->getNumResults() ? op->getResult(index) : OpResult();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Index: " << index << "\n"
<< " * Result: " << result << "\n");
memory[memIndex] = result.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetResults() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetResults:\n");
unsigned index = read<uint32_t>();
Operation *op = read<Operation *>();
ByteCodeField rangeIndex = read();
void *result = executeGetOperandsResults<OpTrait::AttrSizedResultSegments>(
op->getResults(), op, index, rangeIndex, "resultSegmentSizes",
valueRangeMemory);
if (!result)
LLVM_DEBUG(llvm::dbgs() << " * Invalid result range\n");
memory[read()] = result;
}
void ByteCodeExecutor::executeGetUsers() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetUsers:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
OwningOpRange &range = opRangeMemory[rangeIndex];
memory[memIndex] = ⦥
range = OwningOpRange();
if (read<PDLValue::Kind>() == PDLValue::Kind::Value) {
// Read the value.
Value value = read<Value>();
if (!value)
return;
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
// Extract the users of a single value.
range = OwningOpRange(std::distance(value.user_begin(), value.user_end()));
llvm::copy(value.getUsers(), range.begin());
} else {
// Read a range of values.
ValueRange *values = read<ValueRange *>();
if (!values)
return;
LLVM_DEBUG({
llvm::dbgs() << " * Values (" << values->size() << "): ";
llvm::interleaveComma(*values, llvm::dbgs());
llvm::dbgs() << "\n";
});
// Extract all the users of a range of values.
SmallVector<Operation *> users;
for (Value value : *values)
users.append(value.user_begin(), value.user_end());
range = OwningOpRange(users.size());
llvm::copy(users, range.begin());
}
LLVM_DEBUG(llvm::dbgs() << " * Result: " << range.size() << " operations\n");
}
void ByteCodeExecutor::executeGetValueType() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetValueType:\n");
unsigned memIndex = read();
Value value = read<Value>();
Type type = value ? value.getType() : Type();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n"
<< " * Result: " << type << "\n");
memory[memIndex] = type.getAsOpaquePointer();
}
void ByteCodeExecutor::executeGetValueRangeTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing GetValueRangeTypes:\n");
unsigned memIndex = read();
unsigned rangeIndex = read();
ValueRange *values = read<ValueRange *>();
if (!values) {
LLVM_DEBUG(llvm::dbgs() << " * Values: <NULL>\n\n");
memory[memIndex] = nullptr;
return;
}
LLVM_DEBUG({
llvm::dbgs() << " * Values (" << values->size() << "): ";
llvm::interleaveComma(*values, llvm::dbgs());
llvm::dbgs() << "\n * Result: ";
llvm::interleaveComma(values->getType(), llvm::dbgs());
llvm::dbgs() << "\n";
});
typeRangeMemory[rangeIndex] = values->getType();
memory[memIndex] = &typeRangeMemory[rangeIndex];
}
void ByteCodeExecutor::executeIsNotNull() {
LLVM_DEBUG(llvm::dbgs() << "Executing IsNotNull:\n");
const void *value = read<const void *>();
LLVM_DEBUG(llvm::dbgs() << " * Value: " << value << "\n");
selectJump(value != nullptr);
}
void ByteCodeExecutor::executeRecordMatch(
PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> &matches) {
LLVM_DEBUG(llvm::dbgs() << "Executing RecordMatch:\n");
unsigned patternIndex = read();
PatternBenefit benefit = currentPatternBenefits[patternIndex];
const ByteCodeField *dest = &code[read<ByteCodeAddr>()];
// If the benefit of the pattern is impossible, skip the processing of the
// rest of the pattern.
if (benefit.isImpossibleToMatch()) {
LLVM_DEBUG(llvm::dbgs() << " * Benefit: Impossible To Match\n");
curCodeIt = dest;
return;
}
// Create a fused location containing the locations of each of the
// operations used in the match. This will be used as the location for
// created operations during the rewrite that don't already have an
// explicit location set.
unsigned numMatchLocs = read();
SmallVector<Location, 4> matchLocs;
matchLocs.reserve(numMatchLocs);
for (unsigned i = 0; i != numMatchLocs; ++i)
matchLocs.push_back(read<Operation *>()->getLoc());
Location matchLoc = rewriter.getFusedLoc(matchLocs);
LLVM_DEBUG(llvm::dbgs() << " * Benefit: " << benefit.getBenefit() << "\n"
<< " * Location: " << matchLoc << "\n");
matches.emplace_back(matchLoc, patterns[patternIndex], benefit);
PDLByteCode::MatchResult &match = matches.back();
// Record all of the inputs to the match. If any of the inputs are ranges, we
// will also need to remap the range pointer to memory stored in the match
// state.
unsigned numInputs = read();
match.values.reserve(numInputs);
match.typeRangeValues.reserve(numInputs);
match.valueRangeValues.reserve(numInputs);
for (unsigned i = 0; i < numInputs; ++i) {
switch (read<PDLValue::Kind>()) {
case PDLValue::Kind::TypeRange:
match.typeRangeValues.push_back(*read<TypeRange *>());
match.values.push_back(&match.typeRangeValues.back());
break;
case PDLValue::Kind::ValueRange:
match.valueRangeValues.push_back(*read<ValueRange *>());
match.values.push_back(&match.valueRangeValues.back());
break;
default:
match.values.push_back(read<const void *>());
break;
}
}
curCodeIt = dest;
}
void ByteCodeExecutor::executeReplaceOp(PatternRewriter &rewriter) {
LLVM_DEBUG(llvm::dbgs() << "Executing ReplaceOp:\n");
Operation *op = read<Operation *>();
SmallVector<Value, 16> args;
readList(args);
LLVM_DEBUG({
llvm::dbgs() << " * Operation: " << *op << "\n"
<< " * Values: ";
llvm::interleaveComma(args, llvm::dbgs());
llvm::dbgs() << "\n";
});
rewriter.replaceOp(op, args);
}
void ByteCodeExecutor::executeSwitchAttribute() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchAttribute:\n");
Attribute value = read<Attribute>();
ArrayAttr cases = read<ArrayAttr>();
handleSwitch(value, cases);
}
void ByteCodeExecutor::executeSwitchOperandCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperandCount:\n");
Operation *op = read<Operation *>();
auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
handleSwitch(op->getNumOperands(), cases);
}
void ByteCodeExecutor::executeSwitchOperationName() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchOperationName:\n");
OperationName value = read<Operation *>()->getName();
size_t caseCount = read();
// The operation names are stored in-line, so to print them out for
// debugging purposes we need to read the array before executing the
// switch so that we can display all of the possible values.
LLVM_DEBUG({
const ByteCodeField *prevCodeIt = curCodeIt;
llvm::dbgs() << " * Value: " << value << "\n"
<< " * Cases: ";
llvm::interleaveComma(
llvm::map_range(llvm::seq<size_t>(0, caseCount),
[&](size_t) { return read<OperationName>(); }),
llvm::dbgs());
llvm::dbgs() << "\n";
curCodeIt = prevCodeIt;
});
// Try to find the switch value within any of the cases.
for (size_t i = 0; i != caseCount; ++i) {
if (read<OperationName>() == value) {
curCodeIt += (caseCount - i - 1);
return selectJump(i + 1);
}
}
selectJump(size_t(0));
}
void ByteCodeExecutor::executeSwitchResultCount() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchResultCount:\n");
Operation *op = read<Operation *>();
auto cases = read<DenseIntOrFPElementsAttr>().getValues<uint32_t>();
LLVM_DEBUG(llvm::dbgs() << " * Operation: " << *op << "\n");
handleSwitch(op->getNumResults(), cases);
}
void ByteCodeExecutor::executeSwitchType() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchType:\n");
Type value = read<Type>();
auto cases = read<ArrayAttr>().getAsValueRange<TypeAttr>();
handleSwitch(value, cases);
}
void ByteCodeExecutor::executeSwitchTypes() {
LLVM_DEBUG(llvm::dbgs() << "Executing SwitchTypes:\n");
TypeRange *value = read<TypeRange *>();
auto cases = read<ArrayAttr>().getAsRange<ArrayAttr>();
if (!value) {
LLVM_DEBUG(llvm::dbgs() << "Types: <NULL>\n");
return selectJump(size_t(0));
}
handleSwitch(*value, cases, [](ArrayAttr caseValue, const TypeRange &value) {
return value == caseValue.getAsValueRange<TypeAttr>();
});
}
LogicalResult
ByteCodeExecutor::execute(PatternRewriter &rewriter,
SmallVectorImpl<PDLByteCode::MatchResult> *matches,
std::optional<Location> mainRewriteLoc) {
while (true) {
// Print the location of the operation being executed.
LLVM_DEBUG(llvm::dbgs() << readInline<Location>() << "\n");
OpCode opCode = static_cast<OpCode>(read());
switch (opCode) {
case ApplyConstraint:
executeApplyConstraint(rewriter);
break;
case ApplyRewrite:
if (failed(executeApplyRewrite(rewriter)))
return failure();
break;
case AreEqual:
executeAreEqual();
break;
case AreRangesEqual:
executeAreRangesEqual();
break;
case Branch:
executeBranch();
break;
case CheckOperandCount:
executeCheckOperandCount();
break;
case CheckOperationName:
executeCheckOperationName();
break;
case CheckResultCount:
executeCheckResultCount();
break;
case CheckTypes:
executeCheckTypes();
break;
case Continue:
executeContinue();
break;
case CreateConstantTypeRange:
executeCreateConstantTypeRange();
break;
case CreateOperation:
executeCreateOperation(rewriter, *mainRewriteLoc);
break;
case CreateDynamicTypeRange:
executeDynamicCreateRange<Type>("Type");
break;
case CreateDynamicValueRange:
executeDynamicCreateRange<Value>("Value");
break;
case EraseOp:
executeEraseOp(rewriter);
break;
case ExtractOp:
executeExtract<Operation *, OwningOpRange, PDLValue::Kind::Operation>();
break;
case ExtractType:
executeExtract<Type, TypeRange, PDLValue::Kind::Type>();
break;
case ExtractValue:
executeExtract<Value, ValueRange, PDLValue::Kind::Value>();
break;
case Finalize:
executeFinalize();
LLVM_DEBUG(llvm::dbgs() << "\n");
return success();
case ForEach:
executeForEach();
break;
case GetAttribute:
executeGetAttribute();
break;
case GetAttributeType:
executeGetAttributeType();
break;
case GetDefiningOp:
executeGetDefiningOp();
break;
case GetOperand0:
case GetOperand1:
case GetOperand2:
case GetOperand3: {
unsigned index = opCode - GetOperand0;
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperand" << index << ":\n");
executeGetOperand(index);
break;
}
case GetOperandN:
LLVM_DEBUG(llvm::dbgs() << "Executing GetOperandN:\n");
executeGetOperand(read<uint32_t>());
break;
case GetOperands:
executeGetOperands();
break;
case GetResult0:
case GetResult1:
case GetResult2:
case GetResult3: {
unsigned index = opCode - GetResult0;
LLVM_DEBUG(llvm::dbgs() << "Executing GetResult" << index << ":\n");
executeGetResult(index);
break;
}
case GetResultN:
LLVM_DEBUG(llvm::dbgs() << "Executing GetResultN:\n");
executeGetResult(read<uint32_t>());
break;
case GetResults:
executeGetResults();
break;
case GetUsers:
executeGetUsers();
break;
case GetValueType:
executeGetValueType();
break;
case GetValueRangeTypes:
executeGetValueRangeTypes();
break;
case IsNotNull:
executeIsNotNull();
break;
case RecordMatch:
assert(matches &&
"expected matches to be provided when executing the matcher");
executeRecordMatch(rewriter, *matches);
break;
case ReplaceOp:
executeReplaceOp(rewriter);
break;
case SwitchAttribute:
executeSwitchAttribute();
break;
case SwitchOperandCount:
executeSwitchOperandCount();
break;
case SwitchOperationName:
executeSwitchOperationName();
break;
case SwitchResultCount:
executeSwitchResultCount();
break;
case SwitchType:
executeSwitchType();
break;
case SwitchTypes:
executeSwitchTypes();
break;
}
LLVM_DEBUG(llvm::dbgs() << "\n");
}
}
void PDLByteCode::match(Operation *op, PatternRewriter &rewriter,
SmallVectorImpl<MatchResult> &matches,
PDLByteCodeMutableState &state) const {
// The first memory slot is always the root operation.
state.memory[0] = op;
// The matcher function always starts at code address 0.
ByteCodeExecutor executor(
matcherByteCode.data(), state.memory, state.opRangeMemory,
state.typeRangeMemory, state.allocatedTypeRangeMemory,
state.valueRangeMemory, state.allocatedValueRangeMemory, state.loopIndex,
uniquedData, matcherByteCode, state.currentPatternBenefits, patterns,
constraintFunctions, rewriteFunctions);
LogicalResult executeResult = executor.execute(rewriter, &matches);
(void)executeResult;
assert(succeeded(executeResult) && "unexpected matcher execution failure");
// Order the found matches by benefit.
std::stable_sort(matches.begin(), matches.end(),
[](const MatchResult &lhs, const MatchResult &rhs) {
return lhs.benefit > rhs.benefit;
});
}
LogicalResult PDLByteCode::rewrite(PatternRewriter &rewriter,
const MatchResult &match,
PDLByteCodeMutableState &state) const {
auto *configSet = match.pattern->getConfigSet();
if (configSet)
configSet->notifyRewriteBegin(rewriter);
// The arguments of the rewrite function are stored at the start of the
// memory buffer.
llvm::copy(match.values, state.memory.begin());
ByteCodeExecutor executor(
&rewriterByteCode[match.pattern->getRewriterAddr()], state.memory,
state.opRangeMemory, state.typeRangeMemory,
state.allocatedTypeRangeMemory, state.valueRangeMemory,
state.allocatedValueRangeMemory, state.loopIndex, uniquedData,
rewriterByteCode, state.currentPatternBenefits, patterns,
constraintFunctions, rewriteFunctions);
LogicalResult result =
executor.execute(rewriter, /*matches=*/nullptr, match.location);
if (configSet)
configSet->notifyRewriteEnd(rewriter);
// If the rewrite failed, check if the pattern rewriter can recover. If it
// can, we can signal to the pattern applicator to keep trying patterns. If it
// doesn't, we need to bail. Bailing here should be fine, given that we have
// no means to propagate such a failure to the user, and it also indicates a
// bug in the user code (i.e. failable rewrites should not be used with
// pattern rewriters that don't support it).
if (failed(result) && !rewriter.canRecoverFromRewriteFailure()) {
LLVM_DEBUG(llvm::dbgs() << " and rollback is not supported - aborting");
llvm::report_fatal_error(
"Native PDL Rewrite failed, but the pattern "
"rewriter doesn't support recovery. Failable pattern rewrites should "
"not be used with pattern rewriters that do not support them.");
}
return result;
}
|