1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
|
//===- Timing.cpp - Execution time measurement facilities -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Facilities to measure and provide statistics on execution time.
//
//===----------------------------------------------------------------------===//
#include "mlir/Support/Timing.h"
#include "mlir/Support/ThreadLocalCache.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/Threading.h"
#include "llvm/Support/raw_ostream.h"
#include <atomic>
#include <optional>
#include <chrono>
using namespace mlir;
using namespace detail;
using DisplayMode = DefaultTimingManager::DisplayMode;
constexpr llvm::StringLiteral kTimingDescription =
"... Execution time report ...";
//===----------------------------------------------------------------------===//
// TimingManager
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
/// Private implementation details of the `TimingManager`.
class TimingManagerImpl {
public:
// Identifier allocator, map, and mutex for thread safety.
llvm::BumpPtrAllocator identifierAllocator;
llvm::StringSet<llvm::BumpPtrAllocator &> identifiers;
llvm::sys::SmartRWMutex<true> identifierMutex;
/// A thread local cache of identifiers to reduce lock contention.
ThreadLocalCache<llvm::StringMap<llvm::StringMapEntry<std::nullopt_t> *>>
localIdentifierCache;
TimingManagerImpl() : identifiers(identifierAllocator) {}
};
} // namespace detail
} // namespace mlir
TimingManager::TimingManager() : impl(std::make_unique<TimingManagerImpl>()) {}
TimingManager::~TimingManager() = default;
/// Get the root timer of this timing manager.
Timer TimingManager::getRootTimer() {
auto rt = rootTimer();
return rt ? Timer(*this, *rt) : Timer();
}
/// Get the root timer of this timing manager wrapped in a `TimingScope`.
TimingScope TimingManager::getRootScope() {
return TimingScope(getRootTimer());
}
//===----------------------------------------------------------------------===//
// Identifier uniquing
//===----------------------------------------------------------------------===//
/// Return an identifier for the specified string.
TimingIdentifier TimingIdentifier::get(StringRef str, TimingManager &tm) {
// Check for an existing instance in the local cache.
auto &impl = *tm.impl;
auto *&localEntry = (*impl.localIdentifierCache)[str];
if (localEntry)
return TimingIdentifier(localEntry);
// Check for an existing identifier in read-only mode.
{
llvm::sys::SmartScopedReader<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.find(str);
if (it != impl.identifiers.end()) {
localEntry = &*it;
return TimingIdentifier(localEntry);
}
}
// Acquire a writer-lock so that we can safely create the new instance.
llvm::sys::SmartScopedWriter<true> contextLock(impl.identifierMutex);
auto it = impl.identifiers.insert(str).first;
localEntry = &*it;
return TimingIdentifier(localEntry);
}
//===----------------------------------------------------------------------===//
// Helpers for time record printing
//===----------------------------------------------------------------------===//
namespace {
/// Simple record class to record timing information.
struct TimeRecord {
TimeRecord(double wall = 0.0, double user = 0.0) : wall(wall), user(user) {}
TimeRecord &operator+=(const TimeRecord &other) {
wall += other.wall;
user += other.user;
return *this;
}
TimeRecord &operator-=(const TimeRecord &other) {
wall -= other.wall;
user -= other.user;
return *this;
}
/// Print the current time record to 'os', with a breakdown showing
/// contributions to the give 'total' time record.
void print(raw_ostream &os, const TimeRecord &total) {
if (total.user != total.wall)
os << llvm::format(" %8.4f (%5.1f%%)", user, 100.0 * user / total.user);
os << llvm::format(" %8.4f (%5.1f%%) ", wall, 100.0 * wall / total.wall);
}
double wall, user;
};
} // namespace
/// Utility to print a single line entry in the timer output.
static void printTimeEntry(raw_ostream &os, unsigned indent, StringRef name,
TimeRecord time, TimeRecord total) {
time.print(os, total);
os.indent(indent) << name << "\n";
}
/// Utility to print the timer heading information.
static void printTimeHeader(raw_ostream &os, TimeRecord total) {
// Figure out how many spaces to description name.
unsigned padding = (80 - kTimingDescription.size()) / 2;
os << "===" << std::string(73, '-') << "===\n";
os.indent(padding) << kTimingDescription << '\n';
os << "===" << std::string(73, '-') << "===\n";
// Print the total time followed by the section headers.
os << llvm::format(" Total Execution Time: %.4f seconds\n\n", total.wall);
if (total.user != total.wall)
os << " ----User Time----";
os << " ----Wall Time---- ----Name----\n";
}
//===----------------------------------------------------------------------===//
// Timer Implementation for DefaultTimingManager
//===----------------------------------------------------------------------===//
namespace {
/// A timer used to sample execution time.
///
/// Separately tracks wall time and user time to account for parallel threads of
/// execution. Timers are intended to be started and stopped multiple times.
/// Each start and stop will add to the timer's wall and user time.
class TimerImpl {
public:
using ChildrenMap = llvm::MapVector<const void *, std::unique_ptr<TimerImpl>>;
using AsyncChildrenMap = llvm::DenseMap<uint64_t, ChildrenMap>;
TimerImpl(std::string &&name) : threadId(llvm::get_threadid()), name(name) {}
/// Start the timer.
void start() { startTime = std::chrono::steady_clock::now(); }
/// Stop the timer.
void stop() {
auto newTime = std::chrono::steady_clock::now() - startTime;
wallTime += newTime;
userTime += newTime;
}
/// Create a child timer nested within this one. Multiple calls to this
/// function with the same unique identifier `id` will return the same child
/// timer.
///
/// This function can be called from other threads, as long as this timer
/// outlives any uses of the child timer on the other thread.
TimerImpl *nest(const void *id, function_ref<std::string()> nameBuilder) {
auto tid = llvm::get_threadid();
if (tid == threadId)
return nestTail(children[id], nameBuilder);
std::unique_lock<std::mutex> lock(asyncMutex);
return nestTail(asyncChildren[tid][id], nameBuilder);
}
/// Tail-called from `nest()`.
TimerImpl *nestTail(std::unique_ptr<TimerImpl> &child,
function_ref<std::string()> nameBuilder) {
if (!child)
child = std::make_unique<TimerImpl>(nameBuilder());
return child.get();
}
/// Finalize this timer and all its children.
///
/// If this timer has async children, which happens if `nest()` was called
/// from another thread, this function merges the async childr timers into the
/// main list of child timers.
///
/// Caution: Call this function only after all nested timers running on other
/// threads no longer need their timers!
void finalize() {
addAsyncUserTime();
mergeAsyncChildren();
}
/// Add the user time of all async children to this timer's user time. This is
/// necessary since the user time already contains all regular child timers,
/// but not the asynchronous ones (by the nesting nature of the timers).
std::chrono::nanoseconds addAsyncUserTime() {
auto added = std::chrono::nanoseconds(0);
for (auto &child : children)
added += child.second->addAsyncUserTime();
for (auto &thread : asyncChildren) {
for (auto &child : thread.second) {
child.second->addAsyncUserTime();
added += child.second->userTime;
}
}
userTime += added;
return added;
}
/// Ensure that this timer and recursively all its children have their async
/// children folded into the main map of children.
void mergeAsyncChildren() {
for (auto &child : children)
child.second->mergeAsyncChildren();
mergeChildren(std::move(asyncChildren));
assert(asyncChildren.empty());
}
/// Merge multiple child timers into this timer.
///
/// Children in `other` are added as children to this timer, or, if this timer
/// already contains a child with the corresponding unique identifier, are
/// merged into the existing child.
void mergeChildren(ChildrenMap &&other) {
if (children.empty()) {
children = std::move(other);
for (auto &child : children)
child.second->mergeAsyncChildren();
} else {
for (auto &child : other)
mergeChild(child.first, std::move(child.second));
other.clear();
}
}
/// See above.
void mergeChildren(AsyncChildrenMap &&other) {
for (auto &thread : other) {
mergeChildren(std::move(thread.second));
assert(thread.second.empty());
}
other.clear();
}
/// Merge a child timer into this timer for a given unique identifier.
///
/// Moves all child and async child timers of `other` into this timer's child
/// for the given unique identifier.
void mergeChild(const void *id, std::unique_ptr<TimerImpl> &&other) {
auto &into = children[id];
if (!into) {
into = std::move(other);
into->mergeAsyncChildren();
} else {
into->wallTime = std::max(into->wallTime, other->wallTime);
into->userTime += other->userTime;
into->mergeChildren(std::move(other->children));
into->mergeChildren(std::move(other->asyncChildren));
other.reset();
}
}
/// Dump a human-readable tree representation of the timer and its children.
/// This is useful for debugging the timing mechanisms and structure of the
/// timers.
void dump(raw_ostream &os, unsigned indent = 0, unsigned markThreadId = 0) {
auto time = getTimeRecord();
os << std::string(indent * 2, ' ') << name << " [" << threadId << "]"
<< llvm::format(" %7.4f / %7.4f", time.user, time.wall);
if (threadId != markThreadId && markThreadId != 0)
os << " (*)";
os << "\n";
for (auto &child : children)
child.second->dump(os, indent + 1, threadId);
for (auto &thread : asyncChildren)
for (auto &child : thread.second)
child.second->dump(os, indent + 1, threadId);
}
/// Returns the time for this timer in seconds.
TimeRecord getTimeRecord() {
return TimeRecord(
std::chrono::duration_cast<std::chrono::duration<double>>(wallTime)
.count(),
std::chrono::duration_cast<std::chrono::duration<double>>(userTime)
.count());
}
/// Print the timing result in list mode.
void printAsList(raw_ostream &os, TimeRecord total) {
// Flatten the leaf timers in the tree and merge them by name.
llvm::StringMap<TimeRecord> mergedTimers;
std::function<void(TimerImpl *)> addTimer = [&](TimerImpl *timer) {
mergedTimers[timer->name] += timer->getTimeRecord();
for (auto &children : timer->children)
addTimer(children.second.get());
};
addTimer(this);
// Sort the timing information by wall time.
std::vector<std::pair<StringRef, TimeRecord>> timerNameAndTime;
for (auto &it : mergedTimers)
timerNameAndTime.emplace_back(it.first(), it.second);
llvm::array_pod_sort(timerNameAndTime.begin(), timerNameAndTime.end(),
[](const std::pair<StringRef, TimeRecord> *lhs,
const std::pair<StringRef, TimeRecord> *rhs) {
return llvm::array_pod_sort_comparator<double>(
&rhs->second.wall, &lhs->second.wall);
});
// Print the timing information sequentially.
for (auto &timeData : timerNameAndTime)
printTimeEntry(os, 0, timeData.first, timeData.second, total);
}
/// Print the timing result in tree mode.
void printAsTree(raw_ostream &os, TimeRecord total, unsigned indent = 0) {
unsigned childIndent = indent;
if (!hidden) {
printTimeEntry(os, indent, name, getTimeRecord(), total);
childIndent += 2;
}
for (auto &child : children) {
child.second->printAsTree(os, total, childIndent);
}
}
/// Print the current timing information.
void print(raw_ostream &os, DisplayMode displayMode) {
// Print the banner.
auto total = getTimeRecord();
printTimeHeader(os, total);
// Defer to a specialized printer for each display mode.
switch (displayMode) {
case DisplayMode::List:
printAsList(os, total);
break;
case DisplayMode::Tree:
printAsTree(os, total);
break;
}
// Print the top-level time not accounted for by child timers, and the
// total.
auto rest = total;
for (auto &child : children)
rest -= child.second->getTimeRecord();
printTimeEntry(os, 0, "Rest", rest, total);
printTimeEntry(os, 0, "Total", total, total);
os.flush();
}
/// The last time instant at which the timer was started.
std::chrono::time_point<std::chrono::steady_clock> startTime;
/// Accumulated wall time. If multiple threads of execution are merged into
/// this timer, the wall time will hold the maximum wall time of each thread
/// of execution.
std::chrono::nanoseconds wallTime = std::chrono::nanoseconds(0);
/// Accumulated user time. If multiple threads of execution are merged into
/// this timer, each thread's user time is added here.
std::chrono::nanoseconds userTime = std::chrono::nanoseconds(0);
/// The thread on which this timer is running.
uint64_t threadId;
/// A descriptive name for this timer.
std::string name;
/// Whether to omit this timer from reports and directly show its children.
bool hidden = false;
/// Child timers on the same thread the timer itself. We keep at most one
/// timer per unique identifier.
ChildrenMap children;
/// Child timers on other threads. We keep at most one timer per unique
/// identifier.
AsyncChildrenMap asyncChildren;
/// Mutex for the async children.
std::mutex asyncMutex;
};
} // namespace
//===----------------------------------------------------------------------===//
// DefaultTimingManager
//===----------------------------------------------------------------------===//
namespace mlir {
namespace detail {
/// Implementation details of the `DefaultTimingManager`.
class DefaultTimingManagerImpl {
public:
/// Whether we should do our work or not.
bool enabled = false;
/// The configured display mode.
DisplayMode displayMode = DisplayMode::Tree;
/// The stream where we should print our output. This will always be non-null.
raw_ostream *output = &llvm::errs();
/// The root timer.
std::unique_ptr<TimerImpl> rootTimer;
};
} // namespace detail
} // namespace mlir
DefaultTimingManager::DefaultTimingManager()
: impl(std::make_unique<DefaultTimingManagerImpl>()) {
clear(); // initializes the root timer
}
DefaultTimingManager::~DefaultTimingManager() { print(); }
/// Enable or disable execution time sampling.
void DefaultTimingManager::setEnabled(bool enabled) { impl->enabled = enabled; }
/// Return whether execution time sampling is enabled.
bool DefaultTimingManager::isEnabled() const { return impl->enabled; }
/// Change the display mode.
void DefaultTimingManager::setDisplayMode(DisplayMode displayMode) {
impl->displayMode = displayMode;
}
/// Return the current display mode;
DefaultTimingManager::DisplayMode DefaultTimingManager::getDisplayMode() const {
return impl->displayMode;
}
/// Change the stream where the output will be printed to.
void DefaultTimingManager::setOutput(raw_ostream &os) { impl->output = &os; }
/// Return the current output stream where the output will be printed to.
raw_ostream &DefaultTimingManager::getOutput() const {
assert(impl->output);
return *impl->output;
}
/// Print and clear the timing results.
void DefaultTimingManager::print() {
if (impl->enabled) {
impl->rootTimer->finalize();
impl->rootTimer->print(*impl->output, impl->displayMode);
}
clear();
}
/// Clear the timing results.
void DefaultTimingManager::clear() {
impl->rootTimer = std::make_unique<TimerImpl>("root");
impl->rootTimer->hidden = true;
}
/// Debug print the timer data structures to an output stream.
void DefaultTimingManager::dumpTimers(raw_ostream &os) {
impl->rootTimer->dump(os);
}
/// Debug print the timers as a list.
void DefaultTimingManager::dumpAsList(raw_ostream &os) {
impl->rootTimer->finalize();
impl->rootTimer->print(os, DisplayMode::List);
}
/// Debug print the timers as a tree.
void DefaultTimingManager::dumpAsTree(raw_ostream &os) {
impl->rootTimer->finalize();
impl->rootTimer->print(os, DisplayMode::Tree);
}
std::optional<void *> DefaultTimingManager::rootTimer() {
if (impl->enabled)
return impl->rootTimer.get();
return std::nullopt;
}
void DefaultTimingManager::startTimer(void *handle) {
static_cast<TimerImpl *>(handle)->start();
}
void DefaultTimingManager::stopTimer(void *handle) {
static_cast<TimerImpl *>(handle)->stop();
}
void *DefaultTimingManager::nestTimer(void *handle, const void *id,
function_ref<std::string()> nameBuilder) {
return static_cast<TimerImpl *>(handle)->nest(id, nameBuilder);
}
void DefaultTimingManager::hideTimer(void *handle) {
static_cast<TimerImpl *>(handle)->hidden = true;
}
//===----------------------------------------------------------------------===//
// DefaultTimingManager Command Line Options
//===----------------------------------------------------------------------===//
namespace {
struct DefaultTimingManagerOptions {
llvm::cl::opt<bool> timing{"mlir-timing",
llvm::cl::desc("Display execution times"),
llvm::cl::init(false)};
llvm::cl::opt<DisplayMode> displayMode{
"mlir-timing-display", llvm::cl::desc("Display method for timing data"),
llvm::cl::init(DisplayMode::Tree),
llvm::cl::values(
clEnumValN(DisplayMode::List, "list",
"display the results in a list sorted by total time"),
clEnumValN(DisplayMode::Tree, "tree",
"display the results ina with a nested tree view"))};
};
} // namespace
static llvm::ManagedStatic<DefaultTimingManagerOptions> options;
void mlir::registerDefaultTimingManagerCLOptions() {
// Make sure that the options struct has been constructed.
*options;
}
void mlir::applyDefaultTimingManagerCLOptions(DefaultTimingManager &tm) {
if (!options.isConstructed())
return;
tm.setEnabled(options->timing);
tm.setDisplayMode(options->displayMode);
}
|